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ABSTRACT 

We introduce the Gourava Nirmala index and the reduced Gourava Nirmala index of a graph. Furthermore, we 

determine Gourava Nirmala index, the reduced Gourava Nirmala index of some standard classes of graphs. We also 

compute the Gourava Nirmala index, the reduced Gourava Nirmala index and their corresponding exponetials of 

linear [n]-Tetracene and certain nanostructures 

 

Mathematics Subject Classification: 05C07, 05C09, 05C31, 05C92. 

 

Keywords: Gourava Nirmala index, reduced Gourava Nirmala index, nanostructures. 

 

  

1. INTRODUCTION 

 

The simple, finite connected graph G is a graph with vertex set V(G) and edge set E(G).The number of vertices adjacent 

to the vertex v is called the degree of v, denoted by d(v). We refer to [1] for undefined terms and notations. 

 

A molecular graph is a simple graph which has vertices correspond to the atoms and edges correspond to the bonds. 

Chemical Graph Theory is a branch of Mathematical Chemistry, concerned with all aspects of the application of Graph 

Theory to Chemistry. A topological index is a numerical parameter mathematically derived from the graph structure. 

Applications of topological indices are found in quantitative structure activity/ property relations; we refer to [2]. 

 

Kulli [3] defined the first Gourava index of a graph G as 

          
 

1 ,
uv E G

GO G d u d v d u d v


  
 

 

Recently, some Gourava indices were studied, for example, in [4, 5, 6, 7, 8]. 

 

The Nirmala index [9] of a graph G is  

     
 

.
uv E G

N G u d vd


 
 

 

Motivated by the definition of the Nirmala index and its wide applications, we put forward Gourava Nirmala index of a 

graph as follows: 

 

The Gourava Nirmala index of a graph G is  

          
 

1

2 .
uv E G

GN G d u d v d u d v


      

 

In view of the Gourava Nirmala index, we introduce the Gourava Nirmala exponential, defined as  

 
        

 

1

2

, .
d u d v d u d v

uv E G

GN G x x
   



 
 

 

Corresponding Author: V. R. Kulli* 
Department of Mathematics, Gulbarga University, Gulbarga 585106, India. 

 



V. R. Kulli*/ Gourava Nirmala indices of Certain Nanostructures / IJMA- 14(2), Feb.-2023. 

© 2023, IJMA. All Rights Reserved                                                                                                                                                                         2 

 

We propose the reduced Gourava Nirmala index of a graph G and defined it as  

           
 

1

21 1 (d 1)(d 1) .
uv E G

RGN G d u d v u v


        
 

 
In view of the reduced Gourava Nirmala index, we introduce the reduced Gourava Nirmala exponential of G as 

 
 

         

 

1

21 1 (d 1)(d 1)
, .

d u d v u v

uv E G

RGN G x x
       



 
 

 

Some results on Nirmala indices can be found in [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27]. 

 

In this paper, the Gourava Nirmala and the reduced Gourava Nirmala indices for some standard classes of graphs and 

certain nanostructures are determined. 

  

 

2. RESULTS FOR SOME STANDARD CLASSES OF GRAPHS 

 

Proposition 1: If Km, n is a complete bipartite graph with 1 m n, then  

(i)    , .m nGN K mn m n mn    

(ii)  , 1.m nRGN K mn mn   

 

Proof: Let Km,n be a complete bipartite graph with m + n vertices and mn edges such that |V1| = m, |V2| = n,           

V(Km,n) = V1V2. Every vertex of V1 is adjacent with n vertices and every vertex of V2 is adjacent with m vertices. 

(i)    , .m nGN K mn m n mn    

(ii)          , 1 1 1 1 1.m nRGN K mn m n m n mn mn          

 
Corollary 1.1:   For Kn,n   with n≥ 2, 

(i)  ,   
2 22 .n nGN n nK n   

(ii)  ,   
2 2 1.n nRGN n nK    

                 

Corollary 1.2:   For K1,n   with n≥ 2 

(i)  1,    1 2 .nGN n nK    

(ii)  1,    1.nRGN K n n   

 

Proposition 2: If G is an r-regular graph with n vertices, then  

(i)   22 .
2

nr
GN G r r   

(ii)  
2 1

.
2

nr r
RGN G


  

Proof: Let G be an r-regular graph with n vertices and 
2

nr
edges. Then the degree of each vertex of G is r.  

(i)     2 22 .
2 2

nr nr
GN G r r r r r      

(ii)      
2

2 1
1 1 1 .

2 2

nr nr r
RGN r r rG


        

 

Corollary 2.1: For  nC with n≥ 3 vertices, 

(i)        2 2 .nN CG n
 

(ii)      3 .nRGN C n  
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Corollary 2.2: For Kn   with n≥ 3 vertices, 

(i)       
21

1 1 .
2

nGN nK n n    

(ii)       
21

1 2 .
2

nRGN n n n nK                  

  

Proposition 3: Let Pn be a path with n3 vertices. Then  

(i)   2 2 2 5 6 2.nGN P n    

(ii)   3 2 3 3.  nRGN P n  

 

Proof: Let G=Pn be a path with n3 vertices. We obtain two partitions of the edge set of Pn as follows: 

E3 = {uv  E(G) | dG(u)=1, dG(v)=2}, | E3| = 2. 

E4 = {uv  E(G) | dG(u) = dG(v)=2}, | E4| = n – 3. 

 

To compute NGO(Pn), we see that 

(i)            1 2 1 2 2 2 2 2 2 3 2 2 2 5 6 2.nGN P n n             

(ii)            1 2 1 2 2 2 2 2 2 3 2 2 2 5 6 2nRGN P n n               

                                      1 1 2 1 1 1 1 2 2 2 1 2 1 2 1 2 1 3n                   

                    3 2 3 3.n    

 
3. RESULTS FOR LINEAR [n]-TETRACENE 

 

       The molecular graph of a linear [n]-Tetracene is shown in Figure -1. 

 

1 2 i n
 

Figure-1: The graph of a linear [n]-Tetracene 

 

Let T be a linear [n]-Tetracene with |V(T)| =18n and |E(T)| =23n – 2. In T, we obtain that {d(u), d(v): uv  E(T)} has 

three edge set partitions. 

E1 = {uv  E(T) | dT(u)=dT(v)=2}, | E1| = 6. 

E2 = {uv  E(T) | dT(u) = 2, dT(v)=3}, | E2| = 16n – 4. 

E3 = {uv  E(T) | dT(u) = dT(v)=3}, | E3| = 7n – 4. 

 

We calculate the Nirmala Gourava index and its exponential of a linear [n]-Tetracene. 

 

Theorem 1: Let T be a linear [n]-Tetracene. Then 

(i)      16 11 7 15 12 2 4 11 4 15 .GN T n      

(ii)   2 2 11 15, 6 (16 4) (7 4) .GN T x x n x n nx      

 

Proof: Applying definition and edge partition of T, we conclude 

(i)           
 

1

2

uv E T

GN T d u d v d u d v


      

                              
1 1 1

2 2 26 2 2 2 2 16 4 2 3 2 3 7 4 3 3 3 3 .n n                          

 

By simplifying the above equation, we get the desired result. 

(ii)  
        

 

1

2

,
d u d v d u d v

uv E T

GN T x x
   



   

                    
           

1 1 1

2 2 22 2 2 2 2 3 2 3 3 3 3 3
6 (16 4) (7 4) .x n x n nx

                        

 

By simplifying the above equation, we get the desired result. 
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We calculate the reduced Nirmala Gourava index and its exponential of a linear [n]-Tetracene. 

 

Theorem 2: Let T be a linear [n]-Tetracene. Then 

(i)         16 5 14 2 6 3 4 5 8 2 .RGN T n      

(ii)      3 5 2 2, 6 (16 4) (7 4) .RGN T x x n x n nx      

 

Proof: Applying definition and edge partition of T, we conclude 

(i)               
 

1

21 1 1)( 1)
uv E T

RGN T d u d v d u d v


          

                                      
1 1 1

2 2 26 1 1 1 1 (16 4) 1 2 1 2 (7 4) 2 2 2 2 .n n                          

 

By simplifying the above equation, we get the desired result.  

(ii)      
         

 

1

21 1 ( 1) 1)
,

d u d v d u d v

uv E T

RGN T x x
       



   

                                
           

1 1 1

2 2 21 1 1 1 1 2 1 2 2 2 2 2
6 (16 4) (7 4) .x n x n nx

                        

 

By simplifying the above equation, we get the desired result. 

 

4. RESULTS FOR NANOSTRUCTURE F = F[p,q]  

 

The graph of 2-D lattice of F = F[p,q] with p = 2 and q = 4 is shown in Figure 2. 

 

 
Figure-2: The graph of 2-D lattice of F = F[p, q] with p = 2 and q = 4 

 

Let F = F[p, q] be a nanostructure with |V(F)| = and |E(F)| = . In F, we obtain that {d(u), d(v): uv  E(F)} has three 

edge set partitions. 

E1 = {uv  E(F) | dF(u)=dF(v)=2}, | E1| = 2q+4. 

E2 = {uv  E(F) | dF(u) = 2, dF(v)=3}, | E2| = 16p + 4q – 8. 

E3 = {uv  E(F) | dF(u) = dF(v)=3}, | E3| = 27pq – 20p – 8q + 4. 

 

We calculate the Nirmala Gourava index and its exponential of a nanostructure F = F[p, q]. 

 

Theorem 3: Let F = F[p, q] be a nanostructure. Then 

(i)        27 15 16 11 20 15 4 2 4 11 8 15 8 2 8 11 4 15 .GN F pq p q          

(ii)        2 2 11 15, 2 4 16 4 8 27 20 8 4 .GN F x q x p q x pq p q x          

 

Proof: Applying definition and edge partition of F, we conclude 

(i)           
 

1

2

uv E F

GN F d u d v d u d v


      

                          
1 1

2 22 4 2 2 2 2 16 4 8 2 3 2 3q p q                        

                       
1

227 20 8 4 3 3 3 3 .pq p q           
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By simplifying the above equation, we get the desired result.  

(i)  
        

 

1

2

,
d u d v d u d v

uv E F

GN F x x
   



   

                    
           

1 1 1

2 2 22 2 2 2 2 3 2 3 3 3 3 3
(2 4) (16 4 8) (27 20 8 4) .q x p q x pq p q x

                            

 

By simplifying the above equation, we get the desired result.  

 

We compute the reduced Nirmala Gourava index and its exponential of a nanostructure F=F[p,q]. 

 

Theorem 4: Let F =F[p, q] be a nanostructure. Then 

(i)        54 2 16 5 40 2 2 3 4 5 16 2 4 3 8 5 8 2 .RGN F pq p q          

(ii)   3 5 2 2, (2 4) (16 4 8) (27 20 8 4) .RGN F x q x p q x pq p q x          

 

Proof: Applying definition and edge partition of F, we conclude   

(i)            
 

1

21 1 ( 1)( 1)
uv E F

RGN F d u d v d u d v


          

                              
1 1

2 22 4 1 1 1 1 16 4 8 1 2 1 2q p q                   

                              
1

227 20 8 4 2 2 2 2 .pq p q           

 

By simplifying the above equation, we get the desired result.   

(i)  
         

 

1

21 1 ( 1)( 1)
,

u v u v

uv E F

RGN F x x
          



   

                                    
1 1 1

2 2 21 1 1 1 1 2 1 2 2 2 2 2
2 4 (16 4 8) (27 20 8 4) .q x p q x pq p q x

                            

 

By simplifying the above equation, we get the desired result.  

  
5. RESULTS FOR NANOSTRUCTURE G = G [p,q]. 

 

The molecular graph of 2-D lattice of G=G[p, q] with p = 2 and q = 4 is shown in Figure 3. 

 

 
Figure-3: The graph of 2-D lattice of G = G [p,q] with p = 2 and q = 4 

 

Let G = G [p, q] be a nanostructure. By algebraic method, we obtain |V(G)| =18pq and |E(G)| =27pq – 4p.  

 

Also we obtain two partitions of the edge set of G as follows: 

E23 = {uv  E(G) | dG(u)=2, dG(v)=3}, | E23| = 16p. 

E33 = {uv  E(G) | dG(u) = dG(v)=3}, | E33| = 27pq – 20p. 
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In the following theorem, we compute the Nirmala Gourava index and its exponential of a nanostructure G = G[p, q]. 

 

Theorem 5: Let G = G[p, q] be a nanostructure. Then 

(i)    27 15 16 11 20 15 .GN G pq p    

(ii)    11 15, 16 27 20 .GN G x px pq p x    

 

Proof: Applying definition and edge partition of G, we conclude      

(i)           
 

1

2

uv E G

GN G d u d v d u d v


      

                         
1 1

2 216 2 3 2 3 27 20 3 3 3 3 .p pq p                 

By simplifying the above equation, we get the desired result.  

(i)  
        

 

1

2

,
d u d v d u d v

uv E G

GN G x x
   



   

                    
       

1 1

2 22 3 2 3 3 3 3 3
16 (27 20 ) .px pq p x

               

By simplifying the above equation, we get the desired result.  
 

In the following theorem, we compute the reduced Nirmala Gourava index and its exponential of a nanostructure 

G=G[p,q]. 

 

Theorem 6: Let G =G[p, q] be a nanostructure. Then 

(i)    54 2 16 5 40 2 .RGN G pq p    

(ii)   5 2 2, 16 (27 20 ) .RGN G x px pq p x    

 

Proof: Applying definition and edge partition of G, we conclude   

(i)            
 

1

21 1 ( 1)( 1)
uv E G

RGN G d u d v d u d v


          

                             
1 1

2 216 1 2 1 2 27 20 2 2 2 2 .p pq p                 

 

By simplifying the above equation, we get the desired result.  

(i)  
         

 

1

21 1 ( 1)( 1)
,

d u d v d u d v

uv E G

RGN G x x
       



   

                       
       

1 1

2 21 2 1 2 2 2 2 2
16 (27 20 ) .px pq p x

               

By simplifying the above equation, we get the desired result.  
 

6. RESULTS FOR NANOSTRUCTURE K = K [p, q]  
 

The molecular graph of 2-D lattice of K = K [p, q] with p = 2 and q = 3 is shown in Figure 4. 

 
Figure-4: The graph of 2-D lattice of K = K[p, q] with p = 2 and q = 3 
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Let K = K[p, q] be a nanostructure. By algebraic method, we obtain |V(K)| =18pq and |E(K)| =27pq – 2q. Further, we 

obtain three partitions of the edge set of K as follows: 

 E22 = {uv  E(K) | dK(u) = dK(v)=2}, | E22| = 2q. 

 E23 = {uv  E(K) | dK(u) = 2, dK(v)=3}, | E23| = 4q. 

 E33 = {uv  E(K) | dK(u) = dK(v)=3}, | E33| = 27pq – 8q. 

   

In the following theorem, we compute the the sum connectivity Gourava index of a nanostructure K = K[p,q]. 

 

Theorem 7: Let K = K[p, q] be a nanostructure. Then 

(i)    27 15 4 2 4 11 8 15 .GN K pq q     

(ii)    2 2 11 15, 2 4 27 8 .GN K x qx qx pq q x     

 

Proof: Applying definition and edge partition of K, we conclude   

(i)           
 

1

2

uv E K

GN K d u d v d u d v


      

                             
1 1 1

2 2 22 2 2 2 2 4 2 3 2 3 27 8 3 3 3 3 .q q pq q                         

 

By simplifying the above equation, we get the desired result.  

(ii)  
        

 

1

2

,
d u d v d u d v

uv E K

GN K x x
   



   

                    
           

1 1 1

2 2 22 2 2 2 2 3 2 3 3 3 3 3
2 4 (27 8 ) .qx qx pq q x

                       

 

By simplifying the above equation, we get the desired result.  
  

Theorem 8: Let K =K[p, q] be a nanostructure. Then 

(i)    54 2 2 3 4 5 16 2 .RGN K pq q     

(ii)   3 5 2 2, 2 4 (27 8 )RGN K x qx qx pq q x     

 

Proof: Applying definition and edge partition of K, we conclude   

(i)            
 

1

21 1 ( 1)( 1)
uv E K

RGN K d u d v d u d v


          

                                
1 1 1

2 2 22 1 1 1 1 4 1 2 1 2 27 8 2 2 2 2 .q q pq q                         

 

By simplifying the above equation, we get the desired result.  

(ii)  
         

 

1

21 1 ( 1)( 1)
,

d u d v d u d v

uv E K

RGN K x x
       



   

                        
           

1 1 1

2 2 21 1 1 1 1 2 1 2 2 2 2 2
2 4 (27 8 ) .qx qx pq q x

                       

 

By simplifying the above equation, we get the desired result.  
 

7. RESULTS FOR NANOSTRUCTURE L = L [p,q] 

 

The graph of 2-D lattice of L = L[p,q] with p = 2 and q = 4 is shown in Figure 5. 
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Figure-5: The graph of 2-D lattice of L = L[p, q] with p = 2 and q = 4. 

 

Let L = L[p, q] be a nanostructure. By algebraic method, we obtain |V(L)| =18pq and |E(L)| =27pq. Since the degree of 

each vertex of L is 3, the edge partition of L is as follows: 

 E33 = {uv  E(L) | dL(u) = dL(v)=3}, | E33| = 27pq. 

  

In the next theorem, we compute the sum connectivity Gourava index of a nanostructure L = L[p,q]. 

 

Theorem 9: Let L = L[p, q] be a nanostructure. Then 

(i)   27 15 .GN L pq  

(ii)   15, 27 .GN L x pqx  

 

Proof: Applying definition and edge partition of L, we conclude   

(i)           
 

1

2

uv E L

GN L d u d v d u d v


      

                
1

227 3 3 3 3 .pq        

 

By simplifying the above equation, we get the desired result.  

(ii)  
        

 

1

2

,
d u d v d u d v

uv E L

GN L x x
   



   

                   
   

1

23 3 3 3
27 .pqx

      

 

By simplifying the above equation, we get the desired result.  
 

Theorem 10: Let L =L[p, q] be a nanostructure. Then 

(i)   54 2 .RGN L pq  

(ii)   2 2, 27 .RGN L x pqx  

 

Proof: Applying definition and edge partition of L, we conclude   

(i)            
 

1

21 1 ( 1)( 1)
uv E L

RGN L d u d v d u d v


          

                      
1

227 2 2 2 2 .pq        

 

By simplifying the above equation, we get the desired result.  

(ii)  
         

 

1

21 1 ( 1)( 1)
,

d u d v d u d v

uv E L

RGN L x x
       



   

                       
   

1

22 2 2 2
27 .pqx
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By simplifying the above equation, we get the desired result.  

 
8. CONCLUSION 

  
In this paper, we have computed the Gourava Nirmala and the reduced Gourava Nirmala indices for some standard 

classes of graphs and certain nanostructures. 
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