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ABSTRACT 
We introduce FE-Banhatti index and its corresponding polynomial of a graph. In this paper, we compute these newly 
defined  FE-Banhatti index and its corresponding polynomial for some standard classes of graphs, wheel graphs, 
friendship graphs, tetrameric 1,3-adamanane, chain silicate, oxide and honeycomb networks. 
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1. INTRODUCTION 
 
We consider graphs which are finite, connected, undirected graphs without loops and multiple edges. Let G be such a 
graph with vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u is the number of vertices adjacent to u. 
The edge e connecting the vertices u and v is denoted by uv. If e = uv is an edge of G, then the vertex u and edge e are 
incident as are v and e. Let dG(e) denote the degree of an edge e in G, which is defined by dG(e) = dG(u) + dG(v) – 2 with 
e=uv. For term and concept not given here, we refer [1]. 
 
Mathematical Chemistry is very useful in the study of Chemical Sciences. Several graph indices [2] have found some 
applications in Chemistry, especially in QSPR/QSAR research [3, 4, 5]. 
In [6], Kulli defined the Banhatti degree of a vertex u of a graph G as  

( )
( )
( )

,G

G

d eB u
n d u

=
−  

where |V(G)|= n and the vertex u and edge e are incident in G. 
 
In [6], Kulli proposed the first and second E-Banhatti indices of a graph G and they are defined as 

( ) ( ) ( )[ ]
( )

1 ,
uv E G

EB G B u B v
∈

= +∑
            

( ) ( ) ( )
( )

2 .
uv E G

EB G B u B v
∈

= ∑  

 
Recently, some E-Banhatti indices were introduced and studied in [7, 8, 9, 10, 11]. 
 
We propose the FE-Banhatti index of a graph G, defined as 

( ) ( ) ( )
( )

2 2 .
uv E G

FEB G B u B v
∈

 = + ∑  

 
In view of the FE-Banhatti index, we define the FE-Banhatti polynomial of a graph G as 

( ) ( ) ( )

( )

2 2

, .B u B v

uv E G
FEB G x x + 

∈
= ∑  

 
In Graph Index Theory, several graph indices were introduced and studied such as the Wiener index [12, 13], the 
Zagreb indices [14, 15], the Revan indices [16, 17, 18], the reverse indices [19, 20], the Banhatti indices [21, 22], and 
the Gourava indices [23, 24, 25, 26]. 
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In this paper, we compute the FE-Banhatti index and its corresponding polynomial for wheel graphs, friendship graphs, 
some important molecular structures such as tetrameric 1,3-adamantane, chain silicate networks, oxide networks and 
honeycomb networks.  
 
2. RESULTS FOR SOME STANDARD GRAPHS 
   
Proposition 1: If G is an r-regular graph with n vertices and r ≥ 2, then        

( )
2

2
4 ( 1) .

( )
nr rFEB G
n r

−
=

−
 

 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2. Then |E(G)| =
2
nr

. For any edge uv=e in G, dG(e)=2r−2. 

Then 

( ) ( ) ( )
( )

2 2

uv E G
FEB G B u B v

∈

 = + ∑
2 2 2

2
2 2 2 2 4 ( 1) .

2 ( )
nr r r nr r

n r n r n r

 − − −   = + =    − −    − 
 

 

Corollary 1.1: Let  nC be a cycle with n≥ 3 vertices. Then     ( )
( )  2

8
2

.n
nF C

n
EB

−
=  

 
Corollary 1.2: Let Kn   be a complete graph with n≥ 3 vertices. Then   

( ) ( )( ) 
24 1 2 .nFEB n n nK = − −  

 
Proposition 2: Let  nP  be a path with n≥ 3 vertices. Then          

( ) ( ) 
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3nFEB
n

P
n

n
n n
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( ) ( )

( )

( )2 2

2

2
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2
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Proposition 3: Let Km,n   be a complete bipartite graph with 1 ≤ m≤ n and n ≥ 2. Then   

( ) 
2 2 2

,  
1 ( )( 2) .m nFEB m n m n

mn
K  == + + −   

 
Proof: Let Km,n    be a complete bipartite graph with m + n vertices and mn edges such that |V1|= m, | V2 |= n,                
V (Kr,s ) = V1 ∪ V2   for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex of V1 is incident with n edges and every vertex of V2   is 
incident with m edges. Then dG(e)= dG(u)+ dG(v) −2 = m + n −2.  

( ) ( ) ( )
( )

,   
2 2

u G
m

v E
nFEB B u vK B

∈

 = + ∑
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2 2 21 ( )( 2) .m n m n
mn

 = + + − 
  

Corollary 3.1: Let Kn,n   be a complete bipartite graph with n≥ 2. Then 

( ),   
28( 1) .n nF nKEB = −  

 
Corollary 3.2: Let K1,n   be a star with n≥ 2. Then 

( ) ( )( ) 
22

1,  
1 1 1 .nFEB n n
n

K = + −  

 
3. RESULTS FOR FRIENDSHIP GRAPHS 
 
A friendship graph F4 is shown in Figure 1. A friendship graph Fn is a graph with 2n+1 vertices and 3n edges.  
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Figure-1: Friendship graph F4 

In Fn, there are two types of edges as follows: 
( ) ( ) ( ){ }1 | 2 ,

n nn F FE uv E F d u d v= ∈ = =          |E1| = n. 

( ) ( ) ( ){ }2 | 2, 2 ,
n nn F FE uv E F d u d v n= ∈ = =   |E2| = 2n. 

 
Therefore, in Fn, we obtain that {B(u), B(v): uv ∈ E(Wn)} has two Banhatti edge set partitions. 

BE1 = {uv ∈ E(Fn) | B(u) = B(v) =
2

2 1n −
},          |BE1| = n. 

BE2 = {uv ∈ E(Fn) | B(u) =
2

2 1
n

n −
, B(v) =2n},     |BE2| = 2n. 

 
We calculate the FE-Banhatti index and its polynomial form of a friendship graph Fn as follows:

  
Theorem 1: Let Fn be a friendship graph. Then  

(i) ( )
( )

( )

4 3 2

2
8 4 4 2 1 ,
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n

n n n nFEB F
n

− + +
=

−
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Proof: Applying definition and Banhatti edge partition of Fn, we conclude 

(i)     ( ) ( ) ( )
( )

2 2

n

n
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FEB F B u B v
∈

 = + ∑   

                          ( )
2 2 2
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2 1 2 1 2 1

nn n n
n n n

        = + + +        − − −          
By simplifying the above equation, we get the desired result.                                 

(ii)    ( ) ( ) ( )

( )

2 2

, B u B v
n

uv E G
FEB F x x + 

∈
= ∑

      

                              

( )
2 2 2

22 2 2 2
2 1 2 1 2 12 .

n n
n n nnx nx

     + +     
− − −     = +

  By simplifying the above equation, we obtain the desired result. 

                                
     

4. RESULTS FOR WHEEL GRAPHS 
 
A wheel graph Wn is the join of Cn and K1. Then Wn has n+1vertices and 2n edges. A graph Wn is presented in Figure 2. 

 
Figure-2: Wheel graph Wn 
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In Wn, there are two types of edges as follows:  

E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3},     |E1| = n. 
E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n},  |E2| = n. 

 
Therefore, in Wn, there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow: 

BE1 = {uv ∈ E(Wn) | B(u) = B(v) =
( )

4
2n −

},       |BE1| = n. 

BE2 = {uv ∈ E(Wn) | B(u) =
1
2

n
n
+
−

, B(v) = n+1},   |BE2| = n. 

 
We calculate the FE-Banhatti index and its polynomial form of a wheel graph Wn as follows:

  
Theorem 2: Let Wn be a wheel graph. Then  

(i) ( )
( ) ( )

( )

2 2

2
32 1 4 5 .

2
n

n n n nFEB W
n

 + + − + =
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( ) ( )

( )

2 2

2 2
32 1 4 5

2 2, .
n n n

n n
nFEB W x nx nx

+ − +

− −= +   
   
Proof: Applying definition and Banhatti edge partition of Wn, we conclude 

(i)     ( ) ( ) ( )
( )

2 2

n

n
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FEB W B u B v
∈

 = + ∑   

                          ( )
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By simplifying the above equation, we get the desired result. 
  

 (ii)     ( ) ( ) ( )

( )

2 2

, B u B v
n

uv E G
FEB W x x + 

∈
= ∑   

                                
( )

2 2 2
24 4 1 1

2 2 2 .
n n

n n nnx nx
+     + + +     

− − −     = +  
 
By simplifying the above equation, we get the desired result. 
 
5. RESULTS FOR TETRAMERIC 1, 3-ADAMANTANE 
 
In Chemistry, diamondoids are variants of the carbon cage known as a damantane (C10, H16), the smallest unit cage 
structure of the diamond crystal lattice. We focus on the molecular graph structure of the family of tetrameric                
1, 3-adamantane, denoted by TA[n]. Let G be the graph of a tetrameric 1, 3-adamantane TA[n]. The graph of a 
tetrameric 1, 3-adamantane TA[4] is presented in Figure 3. 

 
Figure-3 

 
By calculation, G has 10n vertices and 13n – 1edges. Also by calculation, we obtain three edge partitions of G based on 
the degrees of the end vertices of each edge as follows:  

E1={uv∈E(G) | dG(u)=2, dG(v)=3},        |E1| = 6n + 6. 
E2={uv∈E(G) | dG(u)=2, dG(v)=4},        |E2| = 6n – 6. 
E3={uv∈E(G) | dG(u)=dG(v) = 4},          |E3| = n – 1. 
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Therefore, in TA[n], there are three types of edges based on the Banhatti degree of end vertices of each edge as follow: 

BE1 = {uv ∈ E(G) | B(u) =
3 ,

10 2n −
 B(v) =

3
10 3n −

},       |BE1| =6n+6. 

BE2 = {uv ∈ E(G) | B(u) =
4 ,

10 2n −
B(v) =

4
10 4n −

},         |BE2| = 6n−6. 

BE3 = {uv ∈ E(G) | B(u) =
6 ,

10 4n −
B(v) =

6
10 4n −

},          |BE3| = n−1. 

We determine the E-Banhatti Nirmala index of TA[n].  
 
Theorem 3: Let G be the graph of a tetrameric 1, 3-adamantane TA[n]  with 10n vertices and 13n−1 edges. Then 

( ) [ ]( ) ( )
( ) ( )

( )
( ) ( )

( )

( )2 2 2 2 2
1 1 1 1 18 19 6 6 4 6 6 .

10 2 10 3 5 1 5 2
     

5 2
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i TA n

    −
= + + + − + +   

− − − − −   
      

  
   

(ii) [ ]( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2
9 9 4 4 18

10 2 10 3 5 1 5 2 5 2, 6 6 6 6 1 .n n n n nFEB x n x n x n xTA n
+ +

− − − − −= + + − + −   
    
Proof: From definition and by cardinalities of the Banhatti edge partition of TA[n], we obtain  

(i)  [ ]( ) ( ) ( )
[ ]( )

2 2

TAuv nE
FEB B u B vTA n

∈

 = + ∑  

 

                            ( ) ( )
2 2 2 23 3 4 46 6 6 6

10 2 10 3 10 2 10 4
n n

n n n n

          = + + + − +          − − − −              

                               
( )

2 26 61 .
10 4 10 4

n
n n

    + − +    − −      
 After simplification, we get the desired result.         

  (ii)  [ ]( ) ( ) ( )

[ ]( )

2 2

, B u B
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v

uv E n
F B TE n xA x + 

∈

= ∑   

                                   ( ) ( ) ( )

2 2 2 2 2 23 3 4 4 6 6
10 2 10 3 10 2 10 4 10 4 10 46 6 6 6 1 .n n n n n nn x n x n x
           + + +           − − − − − −           = + + − + −                                   

By simplifying the above equation, we get the desired result. 
  
6. RESULTS FOR CHAIN SILICATE NETWORKS 
               

                    
     

Silicates are very important elements of Earth's crust.  Sand and several minerals are constituted by silicates. A family 
of chain silicate network is symbolized by CSn and is obtained by arranging n≥2 tetrahedral linearly, see Figure 4. 

 
Figure-4: Chain silicate network 

Let G be the graph of a chain silicate network CSn with 3n+1 vertices and 6n edges. In G, by calculation, there are three 
types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv ∈ E(CSn) | dG(u) = dG(v) = 3}, |E1| = n + 4. 
E2 = {uv ∈ E(CSn) | dG(u) =3, dG(v) = 6}, |E2| = 4n – 2. 
E3 = {uv ∈ E(CSn ) | dG(u) = dG(v) = 6}, |E3| = n – 2. 

Therefore, in CSn, there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow: 

BE1 = {uv ∈ E(CSn ) | B(u) = B(v) =
4

3 2n −
},                  |BE1| = n+4. 

BE2 = {uv ∈ E(CSn ) | B(u) =
7

3 2n −
, B(v) =

7
3 5n −

},    |BE2| = 4n − 2. 

BE3 = {uv ∈ E(CSn ) | B(u) =
10

3 5n −
, B(v) =

10
3 5n −

},    |BE3| = n − 2. 
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We calculate the FE-Banhatti index and its polynomial form of CSn as follows:

  
Theorem 4: Let CSn be a chain silicate network. Then  

(i) ( )
( ) ( )2 2
228 30 396 498.
3 2 3 5

nCS n nFEB
n n

+ −
= +

− −
  

(ii) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
32 49 49 200

3 2 3 2 3 5 3 5, 4 4 2 2 .n n n n
nFEB CS x n x n x n x

+
− − − −= + + − + −   

  
Proof: Applying definition and Banhatti edge partition of CSn, we conclude 

 (i)    ( ) ( ) ( )
( )

2 2

n

n
CSuv E

FEB B u B vCS
∈

 = + ∑   

                            ( ) ( )
2 2 2 24 4 7 74 4 2

3 2 3 2 3 2 3 5
n n

n n n n

          = + + + − +          − − − −          
 

                                   ( )
2 210 102

3 5 3 5
n

n n

    + − +    − −    
      

gives the desired result after simplification.   

 (ii)   ( ) ( ) ( )

( )

2 2

, B u B v

uv E G
nFEB S xC x  + 

∈
= ∑   

                                ( ) ( ) ( )

2 2 2 2 2 24 4 7 7 10 10
3 2 3 2 3 2 3 5 3 5 3 54 4 2 2 .n n n n n nn x n x n x

           + + +           
− − − − − −           = + + − + −                                   

 
By simplifying the above equation, we get the desired result. 
 
7. RESULTS FOR OXIDE NETWORKS 
      
Oxide networks are of vital importance in the study of silicate networks. An oxide network of dimension n is denoted 
by OXn. A 5-dimensional oxide network is presented in Figure 5. 

 
Figure-5: Oxide network of dimension 5 

 
Let G be the graph of an oxide network OXn. By calculation, we obtain that G has 9n2+3n vertices and 18n2 edges. In 
G, by calculation, there are two types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv ∈ E(G) | dG(u) = 2, dG(v) = 4}, |E1| = 12n. 
E2 = {uv ∈ E(G) | dG(u) = dG(v) = 4},                 |E2| = 18n2 – 12n. 

 
Therefore, in OXn, there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow: 

BE1 = {uv ∈ E(OXn) | B(u) = 29 3 2
4

n n+ −
, B(v) = 29 3 4

4
n n+ −

},       |BE1| = 12n. 

BE2 = {uv ∈ E(OXn) | B(u) = B(v) = 29 3 4
6

n n+ −
},                               |BE2| =18n2 – 12n . 
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We determine the FE-Banhatti index of a wheel graph OXn.

  
 Theorem 5: Let OXn be a chain silicate network. Then  

(i) ( )
( ) ( )

2

2 22 2

192 1296 672 .
9 3 2 9 3 4

n
n n nFEB

n n n n
OX −

= +
+ − + −

  

(ii) ( ) ( ) ( ) ( ) ( )2 2 22 2 2

16 16 72
29 3 2 9 3 4 9 3 4, 12 18 12 .n n n

n
n n nFEB x nx n n xOX

+
+ − + − + −= + −   

   
Proof: From definition and by cardinalities of the Banhatti edge partition of OXn, we obtain 

(i)  ( ) ( ) ( )
( )

2 2

n

n
OXuv E

FEB B u B vOX
∈

 = + ∑   

                     ( )
2 2 2 2

2
2 2 2 2

4 4 6 612 18 12
9 3 2 9 3 4 9 3 4 9 3 4

n n n
n n n n n n n n

          = + + − +          + − + − + − + −          
                            

gives the desired result after simplification.   

(ii)  ( ) ( ) ( )

( )

2 2

, B u B v

uv E G
nFEB X xO x  + 

∈
= ∑   

                               ( )
2 2 2 2

2 2 2 2
4 4 6 6

29 3 2 9 3 4 9 3 4 9 3 412 18 12n n n n n n n nnx n n x
       + +       

+ − + − + − + −       = + −   
By simplifying the above equation, we get the desired result. 
 
8. RESULTS FOR HONEYCOMB NETWORKS 
 
Honeycomb networks are useful in Computer Graphics and Chemistry. A honeycomb network of dimension n is 
denoted by HCn, where n is the number of hexagons between central and boundary hexagon. A 4-dimensional 
honeycomb network is shown in Figure 6. 

 
Figure-6: A 4-dimensional honeycomb network 

 
Let G be the graph of a honeycomb network HCn. By calculation, we obtain that G has 6n2 vertices and 9n2–3n edges. 
In G, by algebraic method, there are three types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv ∈  E(HCn) | dG(u) = dG(v) = 2},  |E1| = 6. 
E2 = {uv ∈  E(HCn) | dG(u) = 2, dG(v) = 3},    |E2| = 12n – 12. 
E3 = {uv ∈ E(HCn)  | dG(u) = dG(v) = 3},  |E3| = 9n2 – 15n + 6. 

 
Therefore, in HCn, there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge as 
follow: 

BE1 = {uv ∈ E(HCn) | B(u) = B(v) = 2
2

6 2n −
},                          |BE1| = 6. 

BE2 = {uv ∈ E(HCn) | B(u) = 2
2

6 2n −
, B(v) = 2

3
6 3n −

},          |BE2| = 12n – 12. 

BE3 = {uv ∈ E(HCn) | B(u) = B(v) = 2
4

6 3n −
},                           |BE3| = 9n2 – 15n + 6. 

 
 
 



V. R. Kulli* / FE-Banhatti index of Certain Nanostructures / IJMA- 14(1), Jan.-2023. 

© 2023, IJMA. All Rights Reserved                                                                                                                                                                         28 

 
We now compute the FE-Banhatti index of a honeycomb network HCn. 

  
Theorem 6: Let HCn be a honeycomb network. Then   

(i) ( )
( ) ( )

2

22 226

108 60 288 3 8

6
.

2 3

72 4
n

n n nF
n

EB H
n

C − − −
= +

− −
  

(ii) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 22 22 2 2

8 9 9 32

6 2 6 2 6 3 32 6, 6 11 5 .12 2 9 6n nn n
n n nFEB HC x x xnx

+
− − − −++ −−= +   

  
Proof: From definition and by cardinalities of the Banhatti edge partition of HCn, we obtain 

(i)    ( ) ( ) ( )
( )

2 2

n

n
uv E HC

FEB HC B u B v
∈

 = + ∑
 

                             ( )
2 2 2

2 2

2

2 2

122 2 312
6 2 6 2 6 2

3
6

6
3

n
n n n n

          = + + +          
     

−
   − − − −

   

         

                                ( )
2

2
2 2

2

9 15 6
6 3

4
3

4
6

n n
n n

    + +    
   

+
− − 

−                  
                                 

 After simplification, we obtain the desired result.              

 (ii)   ( ) ( ) ( )

( )

2 2

,
n

B u B v
n

uv E HC
FEB HC x x + 

∈
= ∑           

                                 ( ) ( )
2 2 2 2

2 2 2 2 2 2

2 22 2 3 3 4 4
26 2 6 2 6 2 6 3 6 3 6 312 12 9 66 15 .n n n n n nnx xn nx

           + + +           
           − − − − − −= + − + +−   

         
By simplifying the above equation, we get the desired result.             

 
9. CONCLUSION 
 
In this study, we have introduced the FE-Banhatti index of a graph. Furthermore, we have determined the newly 
defined index for some standard graphs, wheel graphs, friendship graphs and certain nanostructures. This study is a 
new direction in The Theory of Graph Index in Graphs. 
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