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ABSTRACT 
Using the concept of pre*-generalized b-closed and pre*-generalized b-open sets, we introduce and study the 
toplogical properties of pre*-generalized b-neighbourhood and pre*-generalized b-interior, pre*-generalized b-
closure operators.  
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1. INTRODUCTION 
 
In 2012, T. Selvi and A. PunithaDharani [3] introduced pre*-closed sets and investigated some of their properties. The 
characterizations of pre*-generalized b-closed sets and pre*-generalized b-open sets are given in [4]. In this paper, we 
introduce the notions of p*gb-neighbourhood of a subset of topological space, p*gb-interior and p*gb-closure of a set 
in a topological space and study their properties.. 
 
2. PRELIMINARIES 
 
Throughout this paper (X, 𝜏𝜏) represent a topological space on which no separation axiom is assumed unless otherwise 
mentioned. For a subset A of a topological space X, cl(A) and int(A) denote the closure of A and the interior of A 
respectively. (X, 𝜏𝜏) will be replaced by X if there is no changes of confusion. We recall the following definitions and 
results. 
 
Definition 2.1: [1] Let (X, 𝜏𝜏) be a topological space. A subset A of the space X is said to be b-open [2] if 
A⊆int(cl(A))∪cl(int(A)) and b-closed if int(cl(A))∩cl(int(A)) ⊆A. 
 
Definition 2.2: [1] Let (X, 𝜏𝜏) be a topological space and A⊆X. The b-closure of A, denoted by bcl(A) and is defined 
by the intersection of all b-closed sets containing A. 
 
Definition 2.3: [2] Let (X, 𝜏𝜏) be a topological space. A subset A of X is said to be generalized closed (briefly g-closed) 
if cl(A)⊆U whenever A⊆U and U is open in (X, 𝜏𝜏). The complements of the above mentioned closed sets are their 
respective open sets. 
 
Definition 2.4: Let A be a subset of a topological space (X, τ). Then the union of all g-open sets contained in A is 
called the g-interior of A and it is denoted by int*(A). That is, int*(A)=∪{V:V⊆A and V∈g-О(Χ)}. 
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Definition 2.5: Let A be a subset of a topological space (X, τ). Then the intersection of all g-closed sets in X containing 
A is called the g-closure of A and it is denoted by cl*(A). That is, cl*(A)=∩{F: A⊆F and F∈g-Ϲ(Χ)}. 
 
Definition 2.6: [3] Let (X, 𝜏𝜏) be a topological space. A subset A of the space X is said to be pre*-open if                       
A⊆ int*(cl(A)) and pre*-closed if cl*(int(A))⊆A. 
 
Definition 2.7: [4] A subset A of a topological space (X, 𝜏𝜏) is called a pre* generalized b-closed set (briefly, p*gb-
closed) if bcl(A)⊆U whenever A⊆U and U is pre*-open in (X, 𝜏𝜏). 
 
Lemma 2.8: [4] For a topological space (X, 𝜏𝜏), Every open set is p*gb-open. 
 
Lemma 2.9: [4] 

(a) Arbitrary intersection of p*gb-closed sets is p*gb-closed. 
(b) Arbitrary union of p*gb-open sets is p*gb-open. 

 
Remark 2.10.[4] 

(a) The union of union of p*gb-closed sets need not be a p*gb-closed set. 
(b) The intersection of p*gb-open sets is p*gb-open. 

 
3. p*gb-neighbourhood 
 
Definition 3.1: Let X be a topological space and let x∈X. A subset N of X is said to be a p*gb-neighbourhood (shortly, 
p*gb-nbhd) of x if there exists a p*gb-open set U such that x∈U⊆N. 
 
Definition 3.2: A subset N of a space X, is called a p*gb-nbhd of A⊆X if there exists an p*gb-open set U such that 
A⊆U⊆N. 
 
Theorem 3.3: Every nbhd N of x∈X is a p*gb-nbhd of x. 
 
Proof: Let N be anbhd of point x∈ X. Then there exists an open set U such that x∈U⊆N. Since every open set is p*gb-
open, U is a p*gb-open set such that x∈U⊆N. This implies, N is a p*gb-nbhd of x. 
 
Remark 3.4: The converse of the above theorem need not be true which is shown in the following example. 
 
Example 3.5: Let 𝑋𝑋 ={a, b, c} and 𝜏𝜏 = {𝜙𝜙, {a}, {a,b}, X}. In this space X, the p*gb-open sets are 𝜙𝜙, {a}, {a,b}, {a,c}, 
X. The set {a, c} is the p*gb-nbhd of c, since {a,c} is p*gb-open set such that c∈{a,c}⊆{a,c}. But {a,c} is not a nbhd 
of the point c. 
 
Remark 3.6: Every p*gb-open set is a p*gb-nbhd of each of its points. 
 
Theorem 3.7: If F is a p*gb-closed subset of X and x∈X\F, then there exists a p*gb-nbhd N of x such that N∩F=𝜙𝜙. 
 
Proof: Let F be p*gb-closed subset of X and x∈ X\F. Then X\F is p*gb-open set of X. By Theorem 3.6, X\F contains a 
p*gb-nbhd of each of its points. Hence there exists a p*gb-nbhd N of x such that N⊆ X\F. Hence N∩F=𝜙𝜙. 
 
Definition 3.8: The collection of all p*gb-neighborhoods of x∈X is called the p*gb-neighborhood system of x and is 
denoted by p*gb-N(x). 
 
Theorem 3.9: Let (X, 𝑡𝑡) be a topological space and x ∈ X. Then 
 (i) p*gb-N(x)≠ 𝜙𝜙 and x∈each member of p*gb-N(x) 
 (ii) If N ∈ p*gb-N(x) and N ⊆ M, then M ∈ p*gb-N(x). 
 (iii) Each member N ∈p*gb-N(x) is a superset of a member G∈p*gb-N(x) where G is a p*gb-open set. 
 
Proof:  

(i) Since X is p*gb-open set containing x, it is a p*gb-nbhd of every x∈X. Thus for each x∈X, there exists atleast 
one p*gb-nbhd, namely X. Therefore, p*gb-N(x)≠ 𝜙𝜙. Let N∈p*gb-N(x). Then N is a p*gb-nbhd of x. Hence 
there exists a p*gb-open set G such that x∈G ⊆N, so x ∈ N. Therefore x∈every member N of p*gb-N(x). 

(ii) If N p*gb-N(x), then there is a p*gb-open set G such that x∈G⊆N. Since N⊆M, M is p*gb-nbhd of x. Hence 
M∈p*gb-N(x). 

(iii) Let N∈p*gb-N(x). Then there is a p*gb-open set G, such that x ∈ G⊆N. Since G is p*gb- 
open and x∈G, G is p*gb-nbhd of x. Therefore G∈p*gb-N(x) and also G⊆N. 
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4. Pre* generalized b-interior operator  
 
Definition 4.1: Let A be a subset of a topological space (X, τ). Then the union of all p*gb-open sets contained in A is 
called the p*gb-interior of A and it is denoted by p*gbint(A). That is, p*gbint(A)=∪{V:V⊆A and V∈p*gb-О(Χ)}. 
 
The union of p*gb-open subsets of X is p*gb-open in X, then p*gbint(A) is p*gb-open in X. 
 
Definition 4.2: Let A be a subset of a topological space X. A point x∈X is called a p*gb-interior point of A if there 
exists a p*gb-open set G such that x∈G⊆A.  
 
Theorem 4.3: Let A be a subset of a topological space (X, τ). Then  

(a) p*gbint(A) is the largest p*gb-open set contained in A. 
(b) A is p*gb-open if and only if  p*gbint(A)=A. 

 
Proof:  

(a) Being the union of all p*gb-open sets, p*gbint(A) is p*gb-open and contains every p*gb-open subset of A. 
Hence p*gbint(A) is the largest p*gb-open set contained in A. 

(b) Necessity: Suppose A is p*gb-open. Then by Definition 4.1, A⊆p*gbint(A). But p*gbint(A)⊆A and therefore 
p*gbint(A)=A. Sufficiency: Suppose p*gbint(A)=A. Then, p*gbint(A) is p*gb-open set. Hence A is p*gb-
open. 

 
Theorem 4.4: Let A be a subset of a topological space (X, τ). Then  

(a) p*gbint(A) is the set of all p*gb-interior points of A. 
(b) A is p*gb-open if and only if every point of A is a p*gb-interior point of A. 

 
Proof:  

(a) Let x∈p*gbint(A)⇔x∈∪{V:V⊆A and V∈p*gb-О(Χ)} 
    ⇔there exists a p*gb-open set G such that x∈G⊆A. 
    ⇔x is a p*gb-interior point of A. 
              Hence p*gbint(A) is the set of all p*gb-interior points of A. 

(b) Suppose A is p*gb-open. Then by Theorem 4.3(b) and by above part, we have every point of A is the p*gb-
interior point of A. 

 
Theorem 4.5: Let A and Β be subsets of (X, τ). Then the following results hold. 

(a) p*gbint( 𝜙𝜙)= 𝜙𝜙 and p*gbint(Χ)=Χ. 
(b) If B is any p*gb-open set contained in A, then B⊆p*gbint(A) . 
(c) If A⊆Β, then p*gbint(A)⊆p*gbint(Β). 
(d) int(A)⊆p*gbint(A)⊆A. 
(e) p*gbint(p*gbint(A))=p*gbint(A).  

 
Proof:  

(a) Since 𝜙𝜙 is the only p*gb-open set contained in 𝜙𝜙, then p*gbcl(𝜙𝜙)= 𝜙𝜙. Since X is p*gb-open and 
p*gbint(X) is the union of all p*gb-open sets contained in X, p*gbint(X)=X.  

(b) Suppose B is p*gb-open set contained in A. Since p*gbint(A) is the union of all p*gb-open set contained 
in A, then we have B⊆p*gbint(A). 

(c) suppose A⊆ B. Let x∈p*gbint(A). Then x is a p*gb-interior point of A and hence there exists a p*gb-open 
set G such that x∈G⊆A. Since A⊆B, then x∈G⊆B. Therefore x is a p*gb-interior point of B. Hence 
x∈p*gbint(B). 

(d) Since open set is p*gb-open, int(A)⊆p*gbint(A). Therefore int(A)p*gbint(A)⊆A.  
(e) Since p*gbint(A) is p*gb-open and by Theorem 4.3(b), p*gbint(p*gbint(A))=p*gbint(A).  

 
Theorem 4.6: Let Α and Β are the subsets of a topological space Χ. Then, 

(a) p*gbint(A)∪p*gbint(B)⊆p*gbint(A∪B). 
(b) p*gbint(A∩B)⊆p*gbint(A)∩p*gbint(B).  

 
Proof: 

(a) Let A and B be subsets of Χ. We have A⊆A∪B and B⊆A∪B. By Theorem 4.5(c), p*gbint(A)⊆p*gbint(A∪B) 
and p*gbint(B)⊆p*gbint(A∪B) which implies that,  p*gbint(A)∪p*gbint(B)⊆p*gbint(A∪B). 

(b) We have A∩B⊆A and A∩B⊆B. Then by Theorem 4.5(c), p*gbint(A∩B)⊆p*gbint(A) and 
p*gbint(A∩B)⊆p*gbint(B) which implies p*gbint(A∩B)⊆p*gbint(A)∩p*gbint(B).  
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Theorem 4.7: For any subset A of X, 

(a) int(p*gbint(A))=int(A) 
(b) p*gbint(int(A))=int(A). 

 
Proof: 

(a) Since p*gbint(A)⊆A , then int(p*gbint(A))⊆int(A). By Theorem 4.5(d), int(A)⊆(p*gbint(A)), we have 
int(A)=int(int(A))⊆int(p*gbcl(A)). Hence int(p*gbint(A))=int(A). 

(b) Since int(A) is open and hence p*gb-open, by Theorem 4.3(b), p*gbint(int(A))=int(A). 
 
5. p*gb-closure operator  
 
Definition 5.1: Let A be a subset of a topological space (X, τ). Then the intersection of all p*gb-closed sets in X 
containing A is called the p*gb-closure of A and it is denoted by p*gbcl(A). That is, p*gbcl(A)=∩{F: A⊆F and 
F∈p*gb-Ϲ(Χ)}. The intersection of p*gb-closed set is p*gb-closed, then p*gbcl(A) is p*gb-closed. 
 
Theorem 5.2: LetΑ be a subset of a topological space (X, τ). Then  

(a) p*gbcl(A) is the smallest p*gb-closed set containing A. 
(b) Α is p*gb-closed if and only if p*gbcl(A)=A. 

 
Proof:  

(a) Being the intersection of all p*gb-closed sets, p*gbcl(A) is p*gb-closed and contained in every p*gb-closed 
set containing A. Hence p*gbcl(A) is the smallest p*gb-closed set containing A. 

(b) Necessity: Suppose A is p*gb-closed. Then, p*gbcl(A)⊆A. But A⊆p*gbcl(A) and therefore p*gbcl(A)=A. 
Sufficiency: Suppose p*gbcl(A)=A. Since p*gbcl(A) isa p*gb-closed set, hence A is p*gb-closed. 

 
Theorem 5.3: Let A and B be a two subsets of a topological space (X, τ). Then  

(a) p*gbcl( 𝜙𝜙)= 𝜙𝜙and p*gbcl(Χ)=Χ. 
(b) If B is any p*gb-closed set containing A, then p*gbcl(A)⊆ B. 
(c) If A⊆B, then p*gbcl(A)⊆p*gbcl(B). 
(d) A⊆p*gbcl(A)⊆cl(A). 
(e) p*gbcl(p*gbcl(A))=p*gbcl(A). 

 
Proof: 

(a) Since 𝜙𝜙 is p*gb-closed and p*gbcl(𝜙𝜙) is the intersection of all p*gb-closed sets containing 𝜙𝜙, 
p*gbcl(𝜙𝜙)= 𝜙𝜙. since X is the only p*gb-closed set containing X, then p*gbcl(X)=X. 

(b) Suppose B is p*gb-closed set containing A. Since p*gbcl(A) is the intersection of all p*gb-closed set 
containing A, then p*gbcl(A)⊆ B. 

(c) Suppose A⊆ B. Let F be any p*gb-closed set containing B. Since A⊆ B, then A⊆F and hence by (b), 
p*gbcl(A) ⊆ F. Therefore p*gbcl(A)⊆∩{F/ B⊆ F and F is p*gb-closed}=p*gbcl(B).  

(d) Every closed set is p*gb-closed, p*gbcl(A)⊆cl(A). Therefore A⊆p*gbcl(A)⊆cl(A). 
(e) p*gbcl(A) is p*gb-closed, by Theorem 5.2(b), p*gbcl(p*gbcl(A))=p*gbcl(A).  

 
Theorem 5.4: Let A and B be subsets of a topological space (X, τ). Then, 

(a) p*gbcl(A)∪p*gbcl(B)⊆p*gbcl(A∪B). 
(b) p*gbcl(A∩B)⊆p*gbcl(A)∩p*gbcl(B).  

 
Proof: 

(a) Let A and B be subsets of Χ. We have A⊆A∪B and B⊆A∪B. By Theorem 5.3 (c), 
p*gbcl(A)⊆p*gbcl(A∪B) and p*gbcl(B)⊆p*gbcl(A∪B) which implies that,  
p*gbcl(A)∪p*gbcl(B)⊆p*gbcl(A∪B).  

(b) We have A∩B⊆A and A∩B⊆B. Then by Theorem 5.3(c), p*gbcl(A∩B)⊆p*gbcl(A) 
andp*gbcl(A∩B)⊆p*gbcl(B) which implies p*gbcl(A∩B)⊆p*gbcl(A)∩p*gbcl(B).  

 
Theorem 5.5: For a subset A of X and x∈Χ, x∈p*gbcl(A) if and only if  V∩A≠ 𝜙𝜙 for every p*gb-open set V 
containing x.      
 
Proof: Necessity: Let x∈p*gbcl(A). Suppose there is ap*gb-open set V containing x such that V∩A= 𝜙𝜙. Then A⊆Χ\V 
and Χ\V is p*gb-closed and hence p*gbcl(A)⊆Χ\V. Since x∈p*gbcl(A), then x∈X\V which contradicts to x∈V.  
Sufficiency: Assume that V∩A≠ 𝜙𝜙 for every p*gb-open set V containing x. Suppose x∉p*gbcl(A). Then there exists a 
p*gb-closed set F such that A⊆F and x∉F. Therefore x∈Χ\F, A∩(X\F)= 𝜙𝜙 and Χ\F is p*gb-open. This is a 
contradiction to our assumption. Hence x∈p*gbcl(A). 
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Theorem 5.6: For any subset A of X, 

(a) cl(p*gbcl(A))=cl(A) 
(b) p*gbcl(cl(A))=cl(A). 

 
Proof:  

(a) Since A⊆p*gbcl(A), then cl(A) ⊆cl(p*gbcl(A)). By Theorem 5.3(d), p*gbcl(A)⊆cl(A), we have 
cl(p*gbcl(A)) ⊆cl(cl(A)) = cl(A). Hence cl(p*gbcl(A)) = cl(A). 

(a) Since cl(A) is closed and hence p*gb-closed, by Theorem 5.2(b), p*gbcl(cl(A)) = cl(A). 
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