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ABSTRACT 
We introduce the first and second hyper E-Banhatti indices and their corresponding polynomials of a graph. In this 
paper, we compute these newly defined hyper E-Banhatti indices of some standard classes of graphs. We also 
determine the first and second hyper E-Banhatti indices and their corresponding polynomials for wheel graphs, 
friendship graphs, silicate and honeycomb networks. 
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1. INTRODUCTION 
 
Throughout this paper, we consider simple graphs which are finite, connected, undirected graphs without loops and 
multiple edges. Let G be such a graph with vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u is the 
number of vertices adjacent to u. The edge e connecting the vertices u and v is denoted by uv. If e=uv is an edge of G, 
then the vertex u and edge e are incident as are v and e. Let dG(e) denote the degree of an edge e in G, which is defined 
by dG(e) = dG(u) + dG(v) – 2 with e=uv. For term and concept not given here, we refer [1]. 
 
A molecular graph is a simple graph, representing the carbon atom skeleton of an organic molecule of the hydrocarbon. 
Therefore the vertices of a molecular graph represent the carbon atoms and its edges the carbon-carbon bonds. 
Chemical Graph Theory is a branch of Mathematical Chemistry which has an important effect on the development of 
Chemical Sciences. Several graph indices [2] have found some applications in Chemistry, especially in QSPR/QSAR 
research [3, 4, 5]. 
 
In [6], Kulli defined the Banhatti degree of a vertex u of a graph G as  

( )
( )
( )

,G

G

d eB u
n d u

=
−  

where n is the number of vertices of G and the vertex u and edge e are incident in G. 
 
In [6], Kulli proposed the first and second E-Banhatti indices of a graph G and they are defined as 

( ) ( ) ( )[ ]
( )

1 ,
uv E G

EB G B u B v
∈

= +∑  

( ) ( ) ( )
( )

2 .
uv E G

EB G B u B v
∈

= ∑  

 
We now introduce the first and second hyper E-Banhatti indices of a graph G and they are defined as 

( ) ( ) ( )[ ]
( )

2
1 ,

uv E G
HEB G B u B v

∈
= +∑  

( ) ( ) ( )[ ]
( )

2
2 .

uv E G
HEB G B u B v

∈
= ∑  
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Considering the first and second hyper E-Banhatti indices, we define the first and second hyper E-Banhatti polynomials 
of a graph G as 

( ) ( ) ( )[ ]

( )

2

1 , ,B u B v

uv E G
HEB G x x +

∈
= ∑  

( ) ( ) ( )[ ]

( )

2

2 , .B u B v

uv E G
HEB G x x

∈
= ∑

 
 
In Graph Index Theory, several graph indices were introduced and studied such as the Wiener index [7, 8, 9, 10], the 
Zagreb indices [11, 12, 13, 14], the Revan indices [15, 16, 17, 18], the reverse indices [19, 20, 21, 22], the Banhatti 
indices [23, 24, 25, 26], and the Gourava indices [27, 28, 29, 30, 31]. 
 
In this paper, we compute the first and second hyper E-Banhatti indices and their corresponding polynomials for wheel 
graphs, friendship graphs, silicate networks and honeycomb networks.  
 
2. RESULTS FOR SOME STANDARD GRAPHS 
 
2.1. First Hyper E-Banhatti Index   
   
Proposition 1: If G is an r-regular graph with n vertices and r ≥ 2, then  

( )
2

1 2
8 ( 1) .

( )
nr rHEB G
n r

−
=

−
 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2. Then G has 
2
nr

 edges. For any edge uv = e in G,        

dG(e) = dG(u) + dG(u)−2 = 2r−2.  
From definition we have    

( ) ( ) ( )[ ]
( )

2
1

uv E G
HEB G B u B v

∈
= +∑

2 2

2
2 2 2 2 8 ( 1) .

2 ( )
nr r r nr r

n r n r n r
− − − = + = − −  −

 

 
Corollary 1.1: Let  nC be a cycle with n ≥ 3 vertices. Then   

( )
( )1 2 

16
2

.n
nH C

n
EB

−
=  

 
Corollary 1.2: Let Kn   be a complete graph with n ≥ 3 vertices. Then   

( ) ( )( )2 1 8 1 2 .nHEB n n nK = − −  

 
Proposition 2: Let  nP  be a path with n ≥ 3 vertices. Then          

( ) ( ) 

2 2

1
1 2 2 22

1 2 2 2
3nH PEB

n
n

n n n
   = + + +   − − − −   

−
 

                    

( )

( ) ( )

( )

( )

2

2 2 2
3 4 3

1 2
2 16

2
.n n

n n n
− −

− − −
= +  

 
Proposition 3:  Let Km,n   be a complete bipartite graph with 1 ≤ m≤ n and n ≥ 2. Then   

( ) [ ],
2

 1  
1 ( )( 2) .m nHEB m nK m n

mn
= + + −  

 
Proof: Let Km,n    be a complete bipartite   m  n graph with m + n vertices and mn edges such that |V1|= m , | V2 |= n, V 
(Kr,s ) = V1 ∪ V2   for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex of V1 is incident with n edges and every vertex of V2   is 
incident with m edges. Then dG(e)= dG(u)+ dG(v) −2= m + n −2.  

( ) ( ) ( )[ ]
( )

,   
2

1 m n
uv E G

HEB B B vK u
∈

= +∑
22 2m n m nmn

m n n m n m
+ − + − = + + − + −   

                           
[ ]21 ( )( 2) .m n m n

mn
= + + −
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Corollary 3.1:   Let Kn,n   be a complete bipartite graph with n ≥ 2. Then 

( ),   
2

1 16( 1) .n nHEB nK = −  

 
Corollary 3.2:   Let K1,n   be a star with n ≥ 2. Then 

( ) ( )1,   
22

1
1 1 .nHEB nK
n

= −  

 
2.2. Second Hyper E-Banhatti Index   
 
Proposition 4: If G is an r-regular graph with n vertices and r ≥ 2, then  

( )
4

2 4
8 ( 1) .

( )
nr rHEB G
n r

−
=

−
 

Proof: Let G be an r-regular graph with n vertices and r ≥ 2. Then G has 
2
nr

 edges. For any edge uv = e in G,        

dG(e) = dG(u) + dG(u) −2 = 2r−2.  
 
From definition we have    

( ) ( ) ( )[ ]
( )

2
2

uv E G
HEB G B u B v

∈
= ×∑

2 4

4
2 2 2 2 8 ( 1) .

2 ( )
nr r r nr r

n r n r n r
− − − = × = − −  −

 

Corollary 4.1: Let  nC be a cycle with n ≥ 3 vertices. Then   

( ) 2 4
16 .

( 2)n
nHEB

n
C =

−
 

 
Corollary 4.2: Let Kn   be a complete graph with n ≥ 3 vertices. Then   

( ) ( )( )4 2 8 1 2 .nHEB n n nK = − −  

 
Proposition 5: Let  nP be a path with n ≥ 3 vertices. Then          

( ) ( ) 

2 2

2
1 2 2 22

1 2 2 2
3nH PEB

n
n

n n n
   = × + ×   − − − −   

−
 

                    

( )

( ) ( )

( )

( )

2

2 2 2
3 4 3

1 2
2 16

2
.n n

n n n
− −

− − −
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Proposition 6: Let Km,n   be a complete bipartite graph with 1 ≤ m ≤ n and n ≥ 2. Then   

( ),

4

 2  
( 2) .m n
m nHEB K

mn
+ −

=  

 
Proof: Let Km,n  be a complete bipartite graph with m + n vertices and mn edges such that |V1|= m, | V2 |= n,                  
V (Kr,s ) = V1 ∪ V2 for 1 ≤ m  ≤ n, and n ≥ 2. Every vertex of V1 is incident with n edges and every vertex of V2   is 
incident with m edges. Then dG(e)= dG(u)+ dG(v) −2= m + n −2.  

( ) ( ) ( )[ ]
( )

,   
2

2 m n
uv E G

HEB B B vK u
∈

= ×∑
 

                           

22 2m n m nmn
m n n m n m
+ − + − = × + − + − 

4( 2) .m n
mn
+ −

=  

 
Corollary 6.1: Let Kn,n  be a complete bipartite graph with n ≥ 2. Then 

( ),

4

2 2  
16( 1) .n n

nHE KB
n
−

=  

Corollary 6.2: Let K1,n  be a star with n ≥ 2. Then 

( )
( )

1,   

4

2
1 .n

nKHEB
n
−

=  
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3. RESULTS FOR FRIENDSHIP GRAPHS 
 
A friendship graph Fn, n ≥ 2, is a graph that can be constructed by joining n copies of C3 with a common vertex. A 
graph F4 is shown in Figure 1. 
 

 
 

Figure-1: Friendship graph F4 
 

Let Fn be a friendship graph with 2n+1 vertices and 3n edges. By calculation, we obtain that there are two types of 
edges as follows: 

( ) ( ) ( ){ }1 | 2 ,
n nn F FE uv E F d u d v= ∈ = =          |E1| = n. 

( ) ( ) ( ){ }2 | 2, 2 ,
n nn F FE uv E F d u d v n= ∈ = =   |E2| = 2n. 

Therefore, in Fn, there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow: 

BE1 = {uv ∈ E(Fn) | B(u) = B(v) =
2

2 1n −
},          |BE1| = n. 

BE2 = {uv ∈ E(Fn) | B(u) =
2

2 1
n

n −
, B(v) =2n},     |BE2| = 2n. 

 
We now compute the first hyper E-Banhatti index of a friendship graph Fn.

  
Theorem 1: Let Fn be a friendship graph with 2n + 1 vertices and 3n edges. Then  

( )
( )

5

1 2
32 16 .

2 1
n

n nHEB F
n
+

=
−

 

 
Proof: From definition and by cardinalities of the Banhatti edge partition of Fn, we obtain 

( ) ( ) ( )[ ]
( )

2
1

n

n
uv E F

HEB F B u B v
∈

= +∑  
2 22 2 22 2

2 1 2 1 2 1
nn n n

n n n
   = + + +   − − −   

 

                     ( )

5

2
32 16 .

2 1
n n
n
+

=
−  

In the following theorem, we obtain the second hyper E-Banhatti index of a friendship graph Fn.
  

Theorem 2: Let Fn be a friendship graph with 2n + 1 vertices and 3n edges. Then  

( )
( ) ( )

5

2 4 2
16 32 .

2 1 2 1
n

n nHEB F
n n

= +
− −

 

  
Proof: From definition and by cardinalities of the Banhatti edge partition of Fn, we obtain 

( ) ( ) ( )[ ]
( )

2
2

n

n
uv E F

HEB F B u B v
∈

= ∑  
2 22 2 22 2

2 1 2 1 2 1
nn n n

n n n
   = × + ×   − − −   

 

                      ( ) ( )

5

4 2
16 32 .

2 1 2 1
n n

n n
= +

− −
 

 
 
By using definitions and by cardinalities of the Banhatti edge partition of Fn, we obtain the first and second hyper        
E-Banhatti polynomials of Fn. 
  
 



V. R. Kulli* / Hyper E-Banhatti indices of Certain Networks / IJMA- 13(12), Dec.-2022. 

© 2022, IJMA. All Rights Reserved                                                                                                                                                                         5 

 
Theorem 3: The first hyper E-Banhatti polynomial of Fn is given by 

( )
22 24 4

2 1 2 1
1 , 2 .

n
n n

nHEB F x nx nx
  

   
− −   = +  

         
Theorem 4: The second hyper E-Banhatti polynomial of Fn is given by 

( )
24 22 4

2 1 2 1
2 , 2 .

n
n n

nHEB F x nx nx
  

   
− −   = +  

     
4. RESULTS FOR WHEEL GRAPHS 
 
A wheel graph Wn is the join of Cn and K1. Then Wn has n+1vertices and 2n edges. A graph Wn is presented in Figure 2. 

 
Figure-2: Wheel graph Wn 

 
In Wn, there are two types of edges as follows:  

E1 = {uv ∈ E(Wn) | d(u) = d(v) = 3},     |E1| = n. 
E2 = {uv ∈ E(Wn) | d(u) =3, d(v) = n},  |E2| = n. 

 
Therefore, in Wn, there are two types of Banhatti edges based on Banhatti degrees of end vertices of each edge follow: 

BE1 = ( ) ( ) ( ) ( )
4|  =

2
= ∈ 

 −nuv E W B u B v
n

,                  |BE1| = n. 

BE2 = ( ) ( ) ( )| , 1
2
1 

−
+ ∈ = = + 

 
n

nuv E W B u B v n
n

,           |BE2| = n. 

 
We determine the first hyper E-Banhatti index of a wheel graph Wn.

  
Theorem 5: Let Wn be a wheel graph with n + 1 vertices and 2n edges. Then  

( )
( )

( )
( )

22

1 2 2
64 1 .

2 2
n

n n nHEB W
n n

−
= +

− −
 

 
Proof: From definition and by cardinalities of the Banhatti edge partition of Wn, we obtain 

( ) ( ) ( )[ ]
( )

2
1

n

n
uv E W

HEB W B u B v
∈

= +∑  
2 24 4 1 1

2 2 2
nn n n

n n n
+   = + + + +   − − −   

 

                     ( )

( )
( )

22

2 2
64 1 .

2 2
n n n

n n
−

= +
− −  

 
In the next theorem, we compute the second hyper E-Banhatti index of a wheel graph Wn.

  
Theorem 6: Let Wn be a wheel graph with n + 1 vertices and 2n edges. Then  

( )
( )

( )

( )

2

2 4 2
256 1 .

2 2
n

n n nHEB W
n n

+
= +

− −  



V. R. Kulli* / Hyper E-Banhatti indices of Certain Networks / IJMA- 13(12), Dec.-2022. 

© 2022, IJMA. All Rights Reserved                                                                                                                                                                         6 

   
Proof: From definition and by cardinalities of the Banhatti edge partition of Wn, we obtain 

( ) ( ) ( )[ ]
( )

2
2

n

n
uv E W

HEB W B u B v
∈

= ∑  ( )
2 24 4 1 1

2 2 2
nn n n

n n n
+   = × + × +   − − −   

 

                      ( )

( )

( )

2

4 2
256 1 .

2 2
n n n

n n
+

= +
− −

 

By using definitions and by cardinalities of the Banhatti edge partition of Wn, we obtain the first and second hyper E-
Banhatti polynomials of Wn.  
 
Theorem 7: The first hyper E-Banhatti polynomial of Wn is given by 

( )
22 28 1

2 2
1 , .

n
n n

nHEB W x nx nx
 − 

   
− −   = +  

         
Theorem 8: The second hyper E-Banhatti polynomial of Wn is given by 

( ) ( )
( )
( )

2

4 2
256 1

2 2
2 , .

n
n n

nHEB W x nx nx
+

− −= +  
 
5. RESULTS FOR SILICATE NETWORKS 
 
Silicates are obtained by fusing metal oxide or metal carbonates with sand. A silicate network is symbolized by SLn, 
where n is the number of hexagons between the center and boundary of SLn. A 2-dimensional silicate network is 
depicted in Figure 3. 

 

 
Figure-3: A 2-dimensional silicate network 

 
Let G be the graph of a silicate network SLn. By calculation, we obtain that G has 15n2 + 3n vertices and 36n2 edges. In 
G, by calculation, there are three types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv ∈ E(SLn)  | dG(u) = dG(v) = 3},        |E1| = 6n. 
E2 = {uv ∈ E(SLn)  | dG(u) =3, dG(v) = 6},            |E2| = 18n2 + 6n. 
E3 = {uv ∈  E(SLn) | dG(u) = dG(v) = 6},        |E3| = 18n2 – 12n. 

 
Therefore, in SLn, there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge as 
follow: 

BE1 = ( ) ( ) ( ) ( )2
4

15
|  

3 3

 
∈ = =

+ −


 
nuv E

n n
SL B u B v ,                        |BE1| = 6n. 

BE2 = ( ) ( ) ( )2 215 3 3 15 3 6
7 7|  .
+

 ∈ = = 
 − + − 

nuv E SL B u B v
n n n n

,   |BE2| = 18n2 + 6n. 

 
 
 

BE3 = ( ) ( ) ( ) 2
10

15 3 6
|   ∈ = = 

+ −nuv E S
n n

L B u B v ,                            |BE2| =18n2 – 12n. 

 
In Theorem 9, we establish the first hyper E-Banhatti index of a silicate network SLn. 
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Theorem 9: Let SLn be a silicate network. Then  

( ) ( )2
2 2 2

2 2

1 18  6
15 3 3 15 3 3 15

8 7 7
3 6

6nHEB n n
n n n n n n

SL n +
+ − + − + −

  = + +   
     

                                  ( )
2

2
218  12

1 6
20

5 3
= .n n

n n
 

 − 

+
+  

 
Proof: From definition and by cardinalities of the Banhatti edge partition of SLn, we obtain 

( ) ( ) ( )[ ]
( )

2
1

n

n
uv E SL

HEB SL B u B v
∈

= +∑  

        
( )2

2 2

2

2 2

2

18  6
15 3 3 15 3 3 15

4 4 7 7
3 3 15 3 6

6 n n
n n n n n n n n

n   = + + ++
+ − + − + − + −   

     

               
( )2

2 2

2

18  12
15 3 6

10 10=
15 3 6

.n n
n n n n+ − + −

 + + 
   

After simplification, we get the desired result.      
 
In the following theorem, we obtain the second hyper E-Banhatti index of a silicate network SLn. 

  
Theorem 10: Let SLn be a silicate network. Then  

( ) ( )
( )( )

2
2 2 2

4 2

2 18  6
15 3 3 15 3 3 15

4
3

496
6

nH n n
n n n n n n

EB SL n +
+ − + − + −

   = +        

                               ( )
2

4
218  12

1 6
10

5 3
= .n n

n n
 

 − 

+
+  

  
Proof: From definition and by cardinalities of the Banhatti edge partition of SLn, we obtain 

( ) ( ) ( )[ ]
( )

2
2

n

n
uv E SL

HEB SL B u B v
∈

= ∑  

( ) ( )
( )2

2 22 2

2 2

18  6
15 3 3 15 3 615 3 3 15 3

7
3

4 4 76 n n
n n n nn n

n
n n

   = × + ×+
+ − + −   − + −  +  

( )2
2 2

2

18  12
15 3 6 15 3 6

10 10=n n
n n n n

 + × 
 − − + +  

gives the desired result after simplification. 
  

By using definitions and by cardinalities of the Banhatti edge partition of SLn, we obtain the first and second hyper E-
Banhatti polynomials of SLn. 
  
Theorem 11: The first hyper E-Banhatti polynomial of SLn is given by 

( ) ( )2

2

2 2

2

215 3 3 15 3
8 7 7

3 1
1

5 3 618  6, 6 n n n n
n

n nHEB SL x nx xn n
   +

+ − + − + −
   
   = + + ( )

2

2
20

2 15 3 612 .18 n nn n x
 
 
 + −+ −  

         
Theorem 12: The second hyper E-Banhatti polynomial of SLn is given by 

( ) ( ) ( )( )2 22

24

2 15 3 3 15 3 615 3
494

2
3 1 66 8  , n n n

n
nn n nHEB SL x nx xn + − + −+ −

  
   
   = ++  ( )

4

2
10

2 15 3 612 .18 n nn n x
 
 
 + −+ −  

 
6. RESULTS FOR HONEYCOMB NETWORKS 
 
Honeycomb networks are useful in Computer Graphics and Chemistry. A honeycomb network of dimension n is 
denoted by HCn, where n is the number of hexagons between central and boundary hexagon. A 4-dimensional 
honeycomb network is shown in Figure 4. 
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Figure-4: A 4-dimensional honeycomb network 

 
Let G be the graph of a honeycomb network HCn. By calculation, we obtain that G has 6n2 vertices and 9n2–3n edges. 
In G, by algebraic method, there are three types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv ∈  E(HCn) | dG(u) = dG(v) = 2},    |E1| = 6. 
E2 = {uv ∈  E(HCn) | dG(u) = 2, dG(v) = 3},      |E2| = 12n – 12. 
E3 = {uv ∈ E(HCn)  | dG(u) = dG(v) = 3},     |E3| = 9n2 – 15n + 6. 

Therefore, in HCn, there are three types of Banhatti edges based on Banhatti degrees of end vertices of each edge as 
follow: 

BE1 = ( ) ( ) ( ) 26
2|

2
   ∈ = 

− 
nuv E HC B u B v

n
,                       |BE1| = 6. 

BE2 = ( ) ( ) ( )2 2n
2 3E HC ,

6 2 6 3
 ∈

− −
= = 

 
uv B

n
u v

n
B ,          |BE2| = 12n – 12. 

BE3 = ( ) ( ) ( ) 26
4|

3
  ∈ = = 

− 
nuv E HC B u B v

n
,                     |BE2| = 9n2 – 15n + 6. 

We now compute the first hyper E-Banhatti index of a honeycomb network HCn. 
  

Theorem 13: Let HCn be a honeycomb network. Then   

( ) ( ) ( )
2 2

2
2 2 2 2

2

1
4 2 3 86 12 12 9 15 6

6 2 6 2 6 3 6 3
.n n n n

n n n
B

n
HE HC      = + + +     

 
− − +

− −  −  −  
 
Proof: From definition and by cardinalities of the Banhatti edge partition of HCn, we obtain 

( ) ( ) ( )[ ]
( )

2
1

n

n
uv E HC

HEB HC B u B v
∈

= +∑  

                         
( )

2

2

2 2

2

2 12 122 2 2 3
6 2 6 2 6 2 6

6
3

n
n n n n

−   = + + +   
  − − − −  

                             
( )2

2 2

2

9 15 6
6 3 3

.
6

4 4n n
n n

−  + +
 − 


+

−  
After simplification, we obtain the desired result.           
We determine the second hyper E-Banhatti index of a honeycomb network HCn.             

  
Theorem 14: Let HCn be a honeycomb network. Then  

( ) ( )
( )( )

( )
4 2 4

2
2

2 22 2
12 12 9 15 6

6 2 6 36 2 6
2 46 .

3
6

nHEB n n n
n n

H
n

C
n

     = + +− − +
− −      − −  

  
Proof: From definition and by cardinalities of the Banhatti edge partition of HCn, we obtain 

( ) ( ) ( )[ ]
( )

2
2

n

n
uv E HC

HEB HC B u B v
∈

= ∑  

( )
2

2

2 2

2

2 12 122 2 2 3
6 2 6 2 6 2 6

6
3

n
n n n n

−   = × + ×   
  − − − −  

     
( )2

2 2

2

9 15 6
6 3 6 3

4 4n n
n n

−  + × 
 − 

+
−  

gives the desired result after simplification.                    
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By using definitions and by cardinalities of the Banhatti edge partition of HCn, we obtain the first and second hyper      
E-Banhatti polynomials of HCn. 
  
Theorem 15: The first hyper E-Banhatti polynomial of HCn is given by 

( ) ( ) 2

2

2

2

26 2 6 2
2 3

6
4

1
31, 6 2 12n n n

nHE x nB HC x x−
   +   
  − − = −+  

( ) 2

2

2 6
8

315 .9 6 nn xn
 
 
 − + +−  

         
Theorem 16: The second hyper E-Banhatti polynomial of HCn is given by 

( ) ( ) ( )( )

24

2 22 6 2 6 36 2
62

2 , 6 12 12n
n nnH B HC nE x x x −

  
 
 − 

 −= + = ( ) 2

4

2 6
4

315 .9 6 nn xn
 
 
 − + +−                

 
7. CONCLUSION 
 
In this study, we have introduced the first and second hyper E-Banhatti indices of a graph. Furthermore, we have 
determined these newly defined indices for some standard graphs, wheel graphs, friendship graphs and certain 
networks. This study is a new direction in The Theory of Graph Index in Graphs. 
 
Many questions are suggested by this research, among them are the following: 

1. Obtain properties of the first and second hyper E-Banhatti indices. 
2. Compute these two indices for other chemical nanostructures. 
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