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ABSTRACT

In this paper we discuss the existence and uniqueness of solutions of initial value problem for impulsive fractional
mixed integrodifferential equations using Schaefer fixed point theorem.

Keywords: Fractional integrodifferential equations. Schaefer fixed point theorem, impulsive conditions, Caputo
fractional derivative.

2000 Mathematics subjects Classifications: 34K05, 34A12, 34A40.

1. INTRODUCTION

In this paper, we study the existence and uniqueness of solutions for the nonlocal impulsive fractional mixed
integrodifferential equations of the form

D" y(t) = f(t, y(©) . [, g(t,5,y(s)ds), [ k(t,s,y(s)ds)) fort€J=[0,a] at t#t, (1.1)
Ay lt=t, =T (y(t ")) (1.2)
y(0) = yo—q(y) (1.3)

where k=1,2,...m. 0 <a<1,°D" is the Caputo fractional derivative, f: J X RXRXR —R, g:JXJXR—R, k:
JXJX R — R are given continuous functions and [, : R - Rand yp € R, 0 = tp< t;< .. .t <ty = A,

Ay lt=ty =y (t") = y (&),
y(t") = limy_o+ y(t+h)  and
y(te ) = limp_o- y(te+h).
represent the right and left limits of y(t) at t = t,_
Nonlocal conditions were in initiated by Byszewski [13] when he proved the existence and uniqueness of mild and

classical solutions of nonlocal Cauchy problems. As remarked by Byszewski [11, 12], the nonlocal conditions can be
more useful than the standard initial condition to describe some physical phenomena. For example q(y) may given by

qly) = X, ciy(m)
where ¢;,i = 1,2,...p are given constants and 0 <7,<1,<...7,< a.

Differential equations of fractional order have proved to be valuable tools in the modelling of many phenomena in
various fields of science and engineering. Indeed, we can find numerous applications in viscoelasticity,
electrochemistry, control; porous media, electromagnetic, etc. (see [16, 24, 25, 28, 33, 34, 38]). There has been a
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significant development in fractional differential and partial differential equations in recent years; see the monographs
of Kilbas et al[30], Miller and Ross[35], Samko et al[44] and the papers of Agarwal et al [1], Murugesu and Suguna
[39] Babakhani and Daftardar-Gejji [2, 3, 14], Belmekki et al [6], Benchohra et al [5,7,10], Delbosco and Rodino [15],
Diethelm et al [16, 18], El-Sayed [19, 21], Furati and Tatar [22,23], Kaufmann and Mboumi [29], Kilbas and Marzan
[30], Mainardi [33], Momani and Hadid [36], Momani et al [37], Podlubny et al [41, 42, 43], Yu and Gao [46] and
Zhang [47] and the references therein. Applied problems require definitions of fractional derivatives allowing the
utilization of physically interpretable initial conditions, which contain y(0), y'(0), etc., the same requirements of
boundary conditions. Caputo’s fractional derivative satisfies these demands. For more details on the geometric and
physical interpretation for fractional derivative of both the Riemann-Liouville and Caputo types see [27, 41].

Impulsive differential equations (for a € N) have become important in recent years as mathematical models of
phenomena in both the physical and social services. There has been a significant improvement in impulsive theory
especially in the area of impulsive differential equations with fixed moments; see, for instance, the monographs by
Bainov and Simeonov [4], Benchohra et al [9], Lakshmikantham et al [32] and Samoilenko and Perestyuk [44] and the
references therein. This paper is organized as follows. In section 2 we present some preliminary results about fractional
derivative and integration needed in the following sections. Section 3 will be concerned with existence and uniqueness
results for the equations (1.1) — (1.3). The result is based on Schaefer fixed point theorem.

2. PRELIMINARIES

In this section, we introduce notation, definitions and preliminary facts which are used throughout this paper. By C(J,
R), we denote the Banach space of all continuous functions from J into R with the norm

[y lloo:= sup{|ly®Il ; t € J}

Definition: 2.1 ([31, 41]). The fractional (arbitrary) order integral of the function h € L'([a, b], R,) of order o € R,
defined by
« ot ((t=s)* !
1%h = [ (—r 2 ) h(s)ds 1
ta-

where I' is the gamma function. When a = 0, we write [*h(t) = [h * ®,](t), where @, (t) = (F_a)) for t > 0, and
@, =0fort<0,and O, (t) — 5(t) as a— 0, where 9 is the delta function.

Definition: 2.2([31, 41]) For a function h given on the interval [a, b], the a-th Riemann-Liouville fractional derivative
of h, is defined by

D&h) 0 = () 2 [f(t = 5)" " 'his)ds

Ir'(n—a) H
Here n=[a] + 1 and [a] denotes the integer part of a.

Definitions: 2.3([30]) For a function h given on the interval [a, b], the Caputo fractional order derivative of order a of

h, is defined by
1

r(n-a)

(“D&h) () = (=) o ((t = 5)" """ h(s)ds

Where n =[a] + 1.
3. EXISTENCE OF SOLUTIONS
Consider the set of functions

PCUJ,R) = {y:J—R:y € C((ty, t 41), R), k = 0,1,2,...m and there exist y(t; ) and y(t}), k = 1,2,...m with y(t; )
= y(tg). This set is a Banach space with the norm

Iyllec = sup &, [yl
Set J':=[0,a]\ {t;, ta, ...tn}

Lemma: 3.1 A function y € PC(J, R) whose a —derivative exists on J' is said to be a solution of (1.1) — (1.3) if y
satisfies the equation

“Dy() = f(t, y(1) , J, 8(t,5,y(s))ds, [; k(t,s,y(s))ds)

on J' and satisfy the conditions
Ay It=t, = LIi(y(ty)), k=1,2,...m,

y (0) =yo.
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To prove the existence of solutions to (1.1) — (1.3), we need the following auxiliary lemmas.

Lemma: 3.2([47]) Let a.> 0, then the differential equation ‘D®h(t) = 0 has solutions

h(t) = co+ et + oot +...+coit™’, ¢ €R, 1=0,1,2,...,n-1,n=[a] + L.

Lemma: 3.3([47]) Let . > 0, then 1" °D°h(t) = h(t) + co + ¢it + cot” +...+c,yt"" for some ¢; ER,i=0,1,2,...n-1,

n = [a] + 1. As a consequence of Lemma 3.2 and Lemma 3.3 we have the following result which is useful in what

follows.

Lemma: 34LetO<a<1landlet f:JXRXRXR — R be continuous. A function y is a solution of the fractional
integrodifferential equations

Yo = a0 + (5) [ (=9 DhE)ds if t € [0.t,]

7 re—a0+ 3, g 9 s "
@ f (t — )@ Dh(s)ds + X L((y(t), if t € (t ti]
where h(s) = f(ty(t), fot g(t,s,y(s))ds), foak(t, s,y(s))ds), k=1,2,...,m
if and only if y is a solution of fractional integrodifferential equations
Dy(t) = f(ty(®) . [, gt,s,y(s))ds), [; k(t,s,y(s))ds) tel (1.5)
Ay It=t, = Li(y(ty ), k=1,2,...m (1.6)
y0)=yo - q(y) (1.7)

Proof: Assume y satisfies (1.5) - (1.7). If t € [0, t;] then

‘Dy(t) = f(t.y(), fot g(t,s,y(s))ds, foak(t, s,y(s))ds).

Lemma 3.3 implies
YO = Yo = AW) + 15 JoE = 9" (s, y(5) [, 86,7y T k(s T y(@)d )ds.
If t € (t, tp], then Lemma 3.3 implies

y(t) = yt,") + @ J =) (s, y(5), [, g(s, T.y@)d 1. [ k(s, 7. y(@)d T)ds
= Aylt=ti + (7 )+ 15 [ (6= 9" G, Y(), f, 86, T y@)d . [ k(s T y(md Dds
=10y (&5 >)+yo—q(y)+$ ot (= 9" (s, y(5).) 8 Ty T,

foak(s, 7, y(r))d T)ds + e )f (t—s)* (s, y(s) ,fos g(s, T, y(@)d T, foak(s, 7, y(r))d T)ds
Ift € (t, t3], then by Lemma 3.3, we get

YO = Y&+ 5 Jo (=) s, y(), [; gl T y@M T [ kG, 7 y(@d 1ds

Ay li=to + y(t ) + s f (6= 9*7H(s,y(5) . 85, y0)d 7. [ k(5,7 y(@)d D)ds

L (y(e7 )+ 11 (y(e5 ))+yo—q(y)+@ftz (= 9" 'fs, ys), J; 8(s Ty T,

[y k(s T y@)d s + o= 7 (L =9)" " 'f(s.y(5), [ (s, T y(@)d T [ k(s, 7. y(@)d D)ds

%f; (t —s)* (s, y(s), ftz g(s, T, y(m)d, fé k(s, T, y(r))d T)ds.

If t € (t, txs1], then again from Lemma 3.3, we get (1.4)
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Conversely assume that y satisfies the impulsive fractional integral equations (1.4). If t € [0, t;] then y(0) =y, and
using the fact that ‘D" is the left inverse of I*, we get

‘Dy(t) = f(ty(t), fot g(t,s,y(s))ds, foa k(t,s,y(s))ds) foreach t € [0, t,].

If t € [t, ty1), k=1,2,...,m and using the fact that “D*C = 0 where C is a constant, we get
Dy(t) == f(ty(t), fot g(t,s,y(s))ds, foa k(t,s,y(s))ds) for each t € [ty, ti,)).

Also we can easily show that
Ay It=t, = L(y(tg)), k=1,2,...m.

Schaefer’s Theorem: Let E be a normed linear space. Let F : E — E be a completely continuous operator, that is, it is
continuous and the image of any bounded set is contained in a compact set and let {(F) = { x € E; x = AFx for some
0 <A< 1}. Then either {(F) is unbounded or F has a fixed point.

Theorem: 3.5 Assume that
(H;) The functionf: JXRXRXR —-R, g:JXJXR—-R, k:JXJXR — Rare continuous functions

(H,) There exists a constant M* > 0 such that [If(t, x1, X2, X3)|| < M* for each t €J = [0, a] and each
x; € X, fori=1,2,3.

(H3) There exists a constant M;> 0 such that
[t x1, X2, x3) — £t y1, y2, y3) | < My(llxs — yull + [Ix2 = yall + |[x3 — yslD

(H4) There exist constants M,> 0, M3 > 0 such that
llg(t, s, x1) = g(t, s, y) [l <Ma(llx; — yil]) and [[k(t, s, x)) — k(t, s, y) [| <Ms(l[x; = yilD

(Hs) The function Iy : R — R is continuous and there exists a constant M** > (0 such that
[IL(x) || <M** foreachx € R,k =1,2,...,m.

(Hg) There exists a constant M > 0 such that ||y, — q(y) || <M. Then (1.1) — (1.3) has atleast one solution on J.

Proof: We shall use Schaefer’s fixed point theorem to prove that F has a fixed point. The proof will be given to several
steps.

Step 1: F is continuous. Let {y,} be a sequence such that y, — y in PC (J, R). Then for each t € J
IF () (0 = Fy) O | < llyo= a®) = yo+ aWIl + 775 Zo<tpee S5 1= 9!

(s, ya(s) f; &(s, T, ya(t)A T, [} k(s, 7, ya(r))d )ds

—f(s,y(s), fos g(s, T.y(m)d T,foa k(s, T, y(r)d T)ds||

+ 1 o (= 97U, ya(9).f; 8Cs, T ya(@Dd T,

foa k(s, 7, yo(r))d T)ds — f(s,y(s), fos g(s, T, y())dr,

foa k(s, 7, y(0)dD) ds|| + Xo<r<e 1lynlte ) — Lyt ) I

<t Zoctect f, (6 =9 Millly®) = ¥
+f, g(s, T ya@Ddr — f; g(s, T, y@)drl| +I| [ k(s, T ya(r)dr — [ k(s, 7. y(r)dr |[1ds
= [ (t= ) Milllyn(s) — yO) |+l J; &(s, 7, ya(@)dr — [ g(s,7, y(@)de ||

I'(a) "tk 0 0

+| [} (s, T, yo(m)dT — [3 (s, T, y(@)dT [[1ds + Zocgper ITyaltc ) — Lyt Nl

Sﬁzoqkqf::_l G = 9" My =yl + aMly(r) =yl + aMs]ly(7)
—y(@)|[lds+ %a)fti(t = 8)*“ IM[lya(s) — YOI + aMallya(r) — y@I + a.Ms|lya(7) — y(@)|l1ds
+ Yo<tpet (yalty ) — Lly(te DI

< i Zo<test W = w)* Milllya(s) = y(s) | +aMallya(®) —y(@ [l + aMsllya(®) —y(@) Il
+ﬁm(t = t)*"Mi[|lya(s) — y(©) [l+ aMy|lyn(r) —y@Il + aMs]|lyn(r) —y(@)ll]
+ Yo<tpet M(yalty ) — Lyt DI
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mZo«kq [(tc — t)*+(t — D TM[llya(s) — y(s) || + aMallya(r) — y(7) ||
+aMsllya(r) = y(@ 11+ Zo<gpee Mlyalte ) — Tyt Nl

mZo«kq [t — teD)®+ (€ — W TM[1 +aM; +My)] [lyn(r) —y(@) [l
+20<tk<t IL(yn(te ) — Ly DI

Since f, g, k and I, k = 1, 2... m are continuous functions, we have
IF(yn)(® — F@©®ll> — 0asn— oo
Step 2: F maps bounded sets into bounded sets in PC(J,R). Indeed it is enough to show that for any n* > 0, there exists

a positive constant ‘v’ such that for each y € Bn* = {yePC (J, R): || y|l.. <n*} we have ||F(y) ||, <tu. By (H;) - (Hg)
we have for each t € J.

IEDO < llyo = o) |+ 55 Botiee o, = 9 MG, y(), f; 8(s, 7. ()T [ k(s, 7, y(@)dr) [lds
F(a)f t — )" (s, y(s), [, 8(s, 7. y(0)da). [, k(s, T, y()d)) [|ds
+ Xo<tp<e I(yatie Nl

1 t, a - * _ % _
< llyo—a Il + m20<tk<t ftkk_l (tc— )" +M'ds + ra )f (t— )" ™Mds+ Do<tr<t k(yatic Nl

1 an g o
<llyo — a9 I+ Zo<e<e m(tk - )M + r(a+1)(t - )M +mM"

mT*M" + M + mM"™

=M+ I'(a+1) I'(a+1)

=M+ T°M (m+1) + mM "™

I'(a +1)

TM* *k
=M+ F(a+1)(1 +m) + mM

Thus [[F(y) O |l< M+

@ +1)(1 +m)+mM"

Step 3: F maps bounded sets into equicontinuous sets of PC (J, R). Let 7{, 7, € J, T1< T, , Bn* be a bounded set of
PC(J, R) as in step 2, and let y € Bn*. Then

mado @ = 9 = @ = ) I, y(), J; 8(s, 7. y(@)dz. [ ks, 7. y(e)drl|ds
— [ (1, - )"l y(s), f, 8(s, 7.y (1)) dr,

@ e
Jo k(s 7, y@)ATllds + Tocre T2-T1 Iy EII

IECy)(T2) —F(y)(Toll =

<M'— L f [z — s)"‘I - (1, — s)“l||ds

I'(a)“0
LN — 9 s+ Bocre Toom IKGE]
< - ar(a) (T2 — )% = @)1+ (71 — )= @)}
- (M )al“(a){”[(Tz_ )" = (- T} + Zo<te T2-T1 ILYE
< ar(a) (@) = (72 = T)* = (@) +M ar(a) (w2 = =)™l

+ Do<te< T2-T1 ILyE&G)Il

——2(1; — T)" + M ——((12) " = (11)") + Xo<tp< T2-T1 [ILyE&GI

- F(a+1) I'(a +1)

IF(y)(t2) — Fy)@)ll < M’

T +1)[2(72 = )" (1) = (@)Y I+ Zocy< T2-T1 [IyE)

As T— T, the right hand side of the above inequality tends to zero. As a consequence of steps 1 to 3 together with the
Arzela-Ascoli theorem. We can conclude that F : PC(J, R) — PC(J, R) is completely continuous.
© 2011, IUIMA. All Rights Reserved 2001
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Step 4: A priori bounds. Now it remains to show that the set € = {y € PC(J, R) : y = AF(y), for some 0 <A< 1}is
bounded. Let y € €, then y = AF(y), for some 0 <A < 1. Thus for each t € J we have
A t -
yO = Myo = AW+ 5 o<t fyl | (= 97
2 -

£(5,y(5), [, &(s, 7. YO)T.f) k(5,7 y@)dDds + 7= [y (b= 97 (s, 9(5), [, (s, 7. y(@) dr,

Jy (s, 7, y@)dnyds + 4 Toceeer Iyt ) I
This implies by (H;) — (He) (as in step 2) that for each t € J we have

T*M*
I'(a+1)

ly®OI = llyo—all + (1+m) +mM =1
TOM*

=M+ T(a+1)

1+m)+mM =1

Thus for every t € J, we have

T*M*
TI'(a+1)

Iyl <M + (1+m)+mM =1

This shows that the set ‘€’ is bounded. As a consequence of Schafer’s fixed point theorem, we deduce that F has a
fixed point which is a solution of the problem (1.1) — (1.3).
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