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ABSTRACT

This paper aims to study the concept of vague g feebly continuous mappings and contra- vague g feebly continuous
mappings. We investigate the traditional connectedness and compactness for the new class as vague g feebly
connectedness and vague g feebly compactness. Also we provide some characterizations of the above mappings.
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1. INTRODUCTION

In this paper we introduce the notion of vague g feebly continuous mappings and contra- vague g feebly continuous
mappings and studied some of their properties. We also provide some characterizations of vague g feebly
connectedness and vague g feebly compactness.

2. PRELIMINARIES

Definition 2.1: ! A vague set 4 in the universe of discourse X is characterized by two membership functions given by:
e Atrue membership function T4 : X = [0,1] and
e Afalse membership functionF 4 : X - [0,1],
where T4 (x) is lower bound on the grade of membership of x derived from the “evidence for x”, F 4;(x) is a lower
bound on the negation of x derived from the “evidence againstx” and T4 (x) + F; (x) < 1.

Thus the grade of membership of x in the vague set A is bounded by a subinterval [T 4(x),1 — F_4(x)] of [0, 1].

Definition 2.2: @ Let 4 and B be vague sets of the form A = {(x, [T4(x),1—F4(x)])/x€X} and
B = {{x,[Tz(x),1 — Fz(x)])/x € X} Then

a) A CBifandonlyif T,(x) < Tg(x)and1 —F4(x) <1 — Fz(x)forallx € X

b) A¢ = {{x,F,(x),1—T,(x)/x € X)}

) ANB={(x,min(T4(x), Tg(x)), min(1 — F4(x), 1 — F5(x)))/x € X}

d) A UB = {(x, max(T,(x), Tz(x)), max(1 — F4(x), 1 — F5(x)))/x € X}

Definition 2.3: /A Vague set A of (X, T) is said to be
VSCS if Vint(Vcl(A)) € A, VSOS in short if A € Vcl(Vint(A)), VPCS if Vcl(Vint(A)) S A, VPOS if A S

Vint(Vcl(A)), VaCs if Vel (Vint(Vcl(cfl))) C A, VaOS if A C Vint (Vcl(Vint(c/l))), VROS if A = Vint(Vcl(A)),
VRCS if A = Vcl(Vint(A)).
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Definition 2.4: (A vague set A of (X,t)is said to be a vague g-closed sets (VGCS in short) if Vcl(A) S U
whenever A S U and U is a vague semi open set in X.

Definition 2.5: JA vague set A in a topological space X is called Vague feebly open in X if there exists an open set
OsuchthatO € A < Vscl(0). The complement of Vague feebly open set is a Vague feebly closed set.

Definition 2.6: ®Vague feebly open set if A € Vscl(Vint(A)) and Vague feebly closed set if Vsint(Vcl(A)) € A.

Definition 2.7: A vague set A of (X, T) is said to be a vague feebly generalised closed sets (VFGCS in short) if
V#cl(A) < U whenever A € U and U is a vague feebly open set in X.

Definition 2.8: JA vague set A of (X, 1) is said to be a vague generalised feebly closed sets (VGFCS in short) if
V#cl(A) < U whenever A € U and U is a vague open set inX.

Definition 2.9: ®JA vague set <4 in a vague topological space (X, ) is said to be a vague g feebly closed sets (VGFCS
in short) if V#cl(A) < U whenever A S U and U is a vague semi open set in X.

Definition 2.10: Let f be a mapping from a VTS (X, ) intoa VTS (Y, a). Then f is said to be a

(1) ['Vague continuous mapping (V continuous mapping for short) if f~1(B) € VC(X) for each VCSB € Y.

(i)  MVvague generalized continuous mapping (VG continuous mapping for short) if f=1(B) € VGC(X) for
each VCSBeY.

(iii) Vague a-continuous mapping (V a —continuous mapping for short) if f~1(B) € VaC(X) for each
VCSBEeY.

(iv)  “WVague semi-continuous mapping (V semi - continuous mapping for short) if f=1(B) € VSC(X) for each
VCSBEeY.

(v) ™wvague semi pre-continuous mapping (V semi pre—continuous mapping for short) if
f~1(B) e VSPC(X) for each VCSB € Y.

(vi) \ague g continuous mapping (Vg continuous for short) mapping if f~1(B)is a VGC(X) for every
VCSBEeY.

(vii) Vague feebly continuous mapping (V #continuous mapping for short) if f~1(B) € V#C(X) for each
VCSBEY.

(viii) Vague generalised feebly continuous mapping (V g#continuous mapping for short) if
f~1(B) e Vg#C(X) for each VCSB € Y.

(ix) Vague feebly generalised continuous mapping (V #g continuous mapping for short) if
f~1(B) e V#gC(X) for each VCS B €Y.

(x)  Contra vague continuous mapping (Contra V continuous mapping for short) if f~1(B) € VC(X) for each
VOS BeY.

(xi) Contra vague generalized continuous mapping (Contra VG continuous mapping for short) if
f~1(B) e VGC(X) for each VOS B €Y.

3. VAGUE g FEEBLY CONTINUOUS MAPPINGS
In this section we introduce vague g # continuous mapping and investigate some of its properties.

Definition 3.1: A mapping f: (X,t) = (Y, 0) is called vague g# continuous (Vg# continuous for short) mapping if
f1(Wis aVg# CSin (X, ) for every VCSin (Y, o).

Example 3.2: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 0 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.5,0.9],[0.2,0.5] >},G, = {< ¥,[0.5,0.9],[0.4,0.6] >}. Define a mapping f:(X,7) —» (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague closed set
A ={<y,[0.1,0.5],[0.4,0.6] >} in (Y,0) isa V g# CSin (X, 7). Hence f is a vague g feebly continuous mapping.

Proposition 3.3:

Every vague continuous map is vague g feebly continuous.

Every vague semi continuous map is vague g feebly continuous.

Every vague semi pre - continuous map is vague g feebly continuous

Every vague a —continuous map is vague g feebly continuous.

Every vague g — continuous map is vague g - continuous.

Every vague g - continuous map is vague g feebly continuous.

Every vague g —continuous map is vague g feebly continuous.

Every vague g # —continuous map is vague generalised feebly continuous.

Every vague g # — continuous map is vague feebly generalised continuous.
10 Every vague feebly continuous map is vague g feebly continuous.
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Proof: Let f: (X,t) - (Y, o) be a vague continuous map. Let V be a vague closed set in (Y, ). Since f is vague
continuous map, f~1(V) is a vague closed set in (X, 7). Every vague closed set is vague g feebly closed. Hence f=1(V)
is a vague g feebly closed set in (X, t). Hence f is a vague g feebly continuous.

Similarly we can prove the other propositions. The converses are not true as can be seen from the following examples.

Example 3.4: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 6 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.5,0.9],[0.2,0.5] >},G, = {< ¥,[0.5,0.9],[0.4,0.6] >}. Define a mapping f: (X,7) = (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague closed set
A ={<v,[0.1,0.5],[0.4,0.6] >}in (Y,0) isa V g# CSin (X, 1), but A is not vague closed in (X, ) Hence f is a vague
g feebly continuous mapping but not vague continuous.

Example 3.5: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 6 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.4,0.5],[0.5,0.6] >},G, = {< v,[0.6,0.7],[0.2,0.4] >}. Define a mapping f: (X,7) = (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague closed set
A ={<v,[0.3,0.4],[0.6,0.8] >}in (Y,0) isa Vg# CSin (X, 1), but A is not vague semi closed in (X,7) Hence f is a
vague g feebly continuous mapping but not vague semi continuous.

Example 3.6: X = {a,b},Y = {u,v} and t = {0,G;,G,, 1}and 0 = {0,G5, 1} are VT, onXand Y

respectively. G; = {< x,[0.7,0.8],[0.8,0.9] >},G, = {< x,[0.1,0.2],[0.2,0.3] >}and G5 =

{< ¥,10.1,0.4],[0.6,0.9] >} Define a mapping f: (X,t) = (Y,0) by f(a) = uand f(b) = v . Since the inverse image
of a vague closed set A = {< y,[0.6,0.9],[0.1,04] >}in (Y,0)isa Vg# CSin (X,7), but A is not vague semi pre-
closed in (X, ), since Vint (B) € A € B. Hence f is a vague g feebly continuous mapping but not vague semi pre -
continuous.

Example 3.7: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 6 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.5,0.9],[0.5,0.5] >},G, = {< ¥,[0.5,0.9],[0.4,0.6] >}. Define a mapping f: (X,7) = (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague closed set
A ={<v,[0.1,0.5],[0.4,0.6] >}in (Y,0) isa Vg# CSin (X,7), but A is not vague a — closed in (X,7) Hence f is a
vague g feebly continuous mapping but not vague a — continuous.

Example 3.8: X = {a,b}, Y = {u,v} and t = {0,G,, G,,G3,G,, 1}and 0 = {0,Gs,1} are VT, onXand Y

respectively. G; = {< x,[0.2,0.5],[0.4,0.5] >},G, = {< x,[0.5,0.6],[0.3,0.4] >},G; =

{< x,[0.5,0.9],[0.5,0.6] >}, G, = {< x,[0.2,0.5],[0.3,0.4] >}and G5 = {< y,[0.4,0.5],[0.5,0.6] >} Define a
mapping f:(X,7) » (Y,0) by f(a) =uand f(b) =v . Since the inverse image of a vague closed set A =
{<,[0.5,0.6],[0.4,0.5] >}in (Y,0)isaVgCSin (X,7), but A is not vague g closed in (X,7), when B =
{< x,[0.5,0.8],[0.5,0.6] >} is a vague semi closed set containing A. Hence f is a vague g continuous mapping but not
vague g continuous.

Example 3.9: X = {a,b},Y = {u,v} and T = {0,G;, 1}and 6 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.4,0.7],[0.2,0.2] >},G, = {< v,[0.2,0.4],[0.8,0.9] >}. Define a mapping f: (X,7) = (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague closed set
A ={<v,[0.6,0.8],[0.1,0.2] >}in (Y,0)isaVg# CSin (X, 1), but A is not vague g - closed in (X,7) Hence f is a
vague g feebly continuous mapping but not vague g - continuous.

Example 3.10: X = {a,b},Y = {u,v}and t = {0,G,, G,,G3,G,, 1}and 0 = {0,Gs, 1} are VT, on X and Y

respectively. G; = {< x,[0.2,0.5],[0.4,0.5] >},G, = {< x,[0.5,0.6],[0.3,0.4] >},G; =

{< x,0.5,0.9],[0.5,0.6] >}, G, = {< x,[0.2,0.5],[0.3,0.4] >}and G5 = {< y,[0.4,0.5],[0.5,0.6] >} Define a
mapping f:(X,7) » (Y,0) by f(a) =uand f(b) =v . Since the inverse image of a vague closed set A =
{<,[0.5,0.6],[0.4,0.5] >}in (Y,0) isa Vg#CSin (X,7), but A is not vague g closed in (X,7), when B =
{< x,[0.5,0.8],[0.5,0.6] >} is a vague semi closed set containing A. Hence f is a vague g# continuous mapping but
not vague g continuous.

Example 3.11: X = {a,b},Y = {u,v} and t = {0,G,, 1}and 6 = {0, G,,1} are VT, on Xand Y

respectively. G; = {< x,[0.4,0.7],[0.2,0.4] >},G, = {< y,[0.6,0.8],[0.4,0.7] >}. Define a mapping f:(X,7) >
(Y,o)by f(a)=uand f(b) =v . Since the inverse image of a vague closed  set
A ={<v,[0.2,0.4],[0.3,0.6] >}in (Y,0) is a Vg#CSin (X, ), but A is not vague g# closed in (X,7), when B =
{< x,[0.4,0.7],[0.3,0.6] >} is a vague semi open set in X. Hence f is a vague g feebly continuous mapping but not
vague g feebly continuous.
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Example 3.12: X = {a,b},Y = {u,v} and t = {0,G,, 1}and 6 = {0, G,, 1} are VT, on Xand Y

respectively. G; = {< x,[0.1,0.6],[0.2,0.4] >},G, = {< y,[0.4,0.8],[0.7,0.8] >}. Define a mapping f:(X,7) >
(Y,o)by f(a)=uand f(b) =v . Since the inverse image of a vague closed  set
A ={<v,[0.2,0.6],[0.2,0.3] >}in (Y,0) is a Vg#CSin (X, ), but A is not vague g# closed in (X,7), when B =
{< y,[0.2,0.6],[0.2,0.4] >} is a vague semi open set in X. Hence f is a vague feebly g continuous mapping but not
vague g feebly continuous.

Example 3.13: X = {a,b},Y = {u,v}and t = {0,G,, 1}and 6 = {0, G,, 1} are VT, on Xand Y

respectively. G; = {< x,[0.5,0.9],[0.2,0.5] >}, G, = {< ¥,[0.5,0.9],[0.4,0.6] >}. Define a mapping f:(X,7) >
(Y,o)by f(a) =uand f(b) =v . Since the inverse image of a vague closed  set
A ={<v,[0.1,0.5],[0.4,0.6] >}in (Y,0) isa V g# CSin (X, 1), but A is not vague feebly closed in (X,7) Hence f isa
vague g feebly continuous mapping but not vague feebly continuous.

Theorem 3.14: The following statements are equivalent for a function f: (X,7) - (¥,0)
(i) fisvague g# continuous.
(ii) For every vague open set VV of Y, f~1(V) is vague 8# open set in X.

Proof: (i) = (ii) Let V be vague open subset of Y and let x € £~ (V) be any arbitrary point. Since f(x) € V by (i),
there exist vague g# open set U, in X, containing x such that arbitrary union of vague g# open sets is vague g4 open,
f~1(V) is vague gfopen in X.

(i) = (i) itis obvious.

Theorem 3.15: If f:(X,t) = (Y,0) is vague g# continuous then f(V8#cl(A)) c Vgfcl(f(A)) for every vague subset
A of X.

Proof: Let A € X. Then Vg#cl(f(A)) is a vague closed in Y, since f is vague gf continuous, f~1(Vgfcl(f(4))) is
vague 8f closed in X. And AC fUf(A) € FLVEpcl(fA), Therefore
Vefcl(4) < vagel(f (Vasel(F(4))) = £ (VaFcl(f(A)). Hence f(VEFcl(A)) € VEFCl(f(A)) for every vague
subset A of X.

Theorem 3.16: Let (X,7) and (Y, o) be any two VTS. Let f: (X, 1) — (Y, 0) be a vague g# continuous mapping. Then
for every vague set A in Y, Vggcl(f~1(4)) € f1(Vegcl(A)).

Proof: Let A be a vague set in (Y,0). Let B = f~1(4). Then f(B) = f(f~'(4)) € A. Then by the theorem 3.15
fVES — cl(f~1 (M) € Vpel(F(f (D). Thus Vegel(f () € £ (Vahel(A)).

Theorem 3.17: The composition of two Vg# —continuous mapping may not be Vg# —continuous.

Example 3.18: X = {a,b},Y = {u,v},Z = {c,d} and T = {0, G, 1},0 = {0, G,,1},A = {0, G5, 1}are VT, on

X,Yand Z respectively. G; = {< x,[0.5,0.5],[0.4,0.6] >}, G, = {< v,[0.5,0.5],[0.3,0.7] >} and G; = {<
,0.4,0.6,0.3,0.5>. Define a mapping /-, =), o by fa=u and fo=v and g:¥,0-2,4. Then the mappings /and g
are vague g feebly continuous mapping but the mapping gof: (X, ) = (Z, A) is not vague g feebly continuous.

Theorem 3.19: If f: (X,7) - (Y,0) is vague g feebly continuous and g: (Y,o) — (Z, 1) is vague continuous. Then
gof:(X,7) = (Z,2) is vague g feebly continuous.

Proof: Let A is a vague closed set in (Z,1), then g~1(A) is vague closed in (Y,0), since g is vague continuous.
Therefore (gof)™1(4) = f~'(g~1(4)) is vague g feebly closed in (X,7). Hence gof:(X,t) — (Z,2) is vague g
feebly continuous.

4. CONTRA - VAGUE g FEEBLY CONTINUOUS MAPPINGS

Definition 4.1: Let (X, 7) and (Y, o) be two VTSs and let f: (X,7) — (Y, o) be a function. Then f is said to be contra
— vague feebly continuous if f~1(V) is vague feebly closed set of (X, t), for every vague open set V in (Y, o).

Definition 4.2: A function f: (X,7) — (Y, o) is said to be a contra — vague g continuous, if f~1(V) is vague g closed
set of (X, 7), for every vague open set V in (Y, o).

Definition 4.3: A function f: (X,7) - (Y, o) is said to be a contra — vague g feebly continuous, if f (V) is vague g
feebly closed set of (X, 1), for every vague open set V in (Y, o).
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Definition 4.4: A function f: (X, t) - (Y, 0) is said to be a contra — vague feebly generalised continuous, if
f~1(V) is vague #g closed set of (X, 7), for every vague open set V in (Y, o).

Definition 4.5: A function f: (X,t) — (Y, o) is said to be a contra — vague generalised feebly continuous, if f=1(V)
is vague g# closed set of (X, ), for every vague open set V in (Y, o).

Definition 4.6: A vague subset ‘A’ of a VTS (X, 7) is called vague — clopen if it is both vague open and vague closed.

Proposition 4.7:
1. Every contra vague continuous map is contra vague g feebly continuous.
Every contra vague g - continuous map is contra vague g feebly continuous.
Every contra vague g —continuous map is contra vague g feebly continuous.
Every contra vague g # —continuous map is contra vague generalised feebly continuous.
Every contra vague feebly continuous map is contra vague g feebly continuous.

arwn

Proof: Let f: (X,7) — (Y, o) be a contra vague continuous map. Let V be a vague open set in (Y, o). Since f is contra
vague continuous map, f~1(V) € VC(X) for each VOS V €Y.

Similarly we can prove the other propositions. The converses are not true as we can see from the following examples.

Example 4.8: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 6 = {0, G,, 1} are VT, on X and Y respectively.

G, = {< x,[0.5,0.9],[0.2,0.5] >},G, = {< ¥,[0.1,0.5],[0.4,0.6] >}. Define a mapping f: (X,7) = (Y,0) by f(a) =
uand f(b) =v . Since the inverse image of a vague open set
A ={<v,[0.1,0.5],[0.4,0.6] >}in (Y,0) isa V g# CSin (X, 1), but A4 is not vague closed in (X, t) Hence f is a contra
vague g feebly continuous mapping but not contra vague continuous.

Example 4.9: X = {a,b},Y = {u,v} and t = {0,G;, 1}and 6 = {0, G,,1} are VT, onXand Y

respectively. G; = {< x,[0.4,0.7],[0.2,0.4] >},G, = {< y,[0.2,0.4],[0.3,0.6] >}. Define a mapping f:(X,7) >
(Y,o)by f(a)=uand f(b)=v . Since the inverse image of a vague open  set
A ={<v,[0.2,0.4],[0.3,0.6] >}in (Y,0) isa Vg #CSin (X, ), but A is not vague g closed in (X,7). Hence f is a
contra vague g feebly continuous mapping but not contra vague g continuous.

Example 4.10: X = {a,b},Y = {u,v} and t = {0,G,, G,,G3,G,, 1}and 0 = {0,Gs, 1} are VT, on Xand Y

respectively. G; = {< x,[0.2,0.5],[0.4,0.5] >},G, = {< x,[0.5,0.6],[0.3,0.4] >},G; =

{< x,[0.5,0.9],[0.5,0.6] >}, G, = {< x,[0.2,0.5],[0.3,0.4] >}and G5 = {< y,[0.5,0.6],[0.4,0.5] >} Define a
mapping f: (X,7) - (Y,0) by f(a) =uand f(b) =v . Since the inverse image of a vague open set A=
{<,10.5,0.6],[0.4,0.5] >}in (Y,0) isa Vg#CSin (X,7), but A is not vague g closed in (X,7), when B =
{< x,[0.5,0.8],[0.5,0.6] >} is a vague semi closed set containing A. Hence f is a contra vague g# continuous mapping
but not contra vague g continuous.

Example 4.11: X = {a,b},Y = {u,v} and t = {0,G,, 1}and 6 = {0, G,,1} are VT, on Xand Y

respectively. G; = {< x,[0.4,0.7],[0.2,0.4] >},G, = {< y,[0.2,0.4],[0.3,0.6] >}. Define a mapping f:(X,7) >
(Y,o)by f(a)=uand f(b)=v . Since the inverse image of a vague open  set
A ={<v,[0.2,0.4],[0.3,0.6] >}in (Y,0) is a Vg#CSin (X, ), but A is not vague g# closed in (X,7), when B =
{< x,[0.4,0.7],[0.3,0.6] >} is a vague semi open set in X. Hence f is a contra vague g feebly continuous mapping but
not contra vague g feebly continuous.

Example 4.12: X = {a,b},Y = {u,v}and t = {0,G,, 1}and 6 = {0, G,, 1} are VT, on Xand Y

respectively. G; = {< x,[0.5,0.9],[0.2,0.5] >}, G, = {< ¥,[0.1,0.5],[0.4,0.6] >}. Define a mapping f:(X,7) >
(Y,o)by f(a)=uand f(b)=v . Since the inverse image of a vague open  set
A ={<v,[0.1,0.5],[0.4,0.6] >}in (Y,0) isa V g# CSin (X, 1), but A is not vague feebly closed in (X, t) Hence f isa
contra vague g feebly continuous mapping but not contra vague feebly continuous.

Remark 4.13: The composition of two Contra Vg# —continuous mapping may not be Contra Vg# —continuous.

Theorem 4.14: Let f: (X, 7) = (Y, o) be a mapping.Then the following statements are equivalent.
a) fisa contravague g feebly continuous mapping,
b) f~1(V)isa VgFCS(X) for every VOS'V'in Y.

Proof: (i) = (ii) Let 'V’ be a VCS in Y. Then 'V¢’ isa VOS in Y. By hypothesis, f~1(V¢) isa Vg#CS in X.

(i.e)., f1(V)isa Vg#0Sin X.

(i) =(i) Let'V' beaVOSinY.Then V¢ isaVCS in Y. By hypothesis, f =1 (V) isa VE£#0S in X. (i.e)., f~1(V) isa
Vg#CS in X. Thus f is a contra vague g feebly continuous mapping.
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Theorem 4.15: If f: (X,7) —» (Y, o) is contra vague g feebly continuous and g: (Y, o) — (Z,1) is vague continuous.
Then gof: (X,7) - (Z, 1) is a contra vague g feebly continuous.

Proof: Let A is a vague open set in (Z, 1), then g~ (4) is vague open in (Y, a), since g is vague continuous. Therefore
(gof)~1(A) = f~Y(g~'(A)) is vague g feebly closed in (X, 7). Hence gof: (X,T) — (Z, 1) is contra vague g feebly
continuous.

Theorem 4.16: If f:(X,7) - (Y,0) is contra vague g feebly continuous and g:(Y,o) - (Z,4) is contra vague
continuous. Then gof: (X,t) — (Z, 1) is a vague g feebly continuous.

Proof: Let A is a vague open set in (Z, 1), then g1 (A) is vague closed in (Y, o), since g is contra vague continuous.
Therefore (gof)~1(4) = f~1(g~1(A4)) is vague g feebly open in (X, 7). Hence gof: (X,7) - (Z, 1) is vague g feebly
continuous.

Theorem 4.17: A vague continuous mapping f: (X,7) - (Y, o) is a contra vague g feebly continuous if V80 (X) =
VE#C(X)

Proof: Let A C Y be a vague open set in (Y, a), then by hypothesis f~1(A) is vague open in (X, ) and hence f~1(4)
is a VB£0S in X. since VBFO(X) = VE#C(X), f1(A) is a VEFCS in (X, 7). Therefore f: (X,7) - (Y,0) is contra
vague g feebly continuous mapping.

5. VAGUE g FEEBLY COMPACTNESS & VAGUE g FEEBLY CONNECTEDNESS

Definition 5.1: A collection {U, }, ¢, 0f vague g feebly open sets in VTS (X, 7) is said to a vague g feebly open cover
of a vague subset ‘A’ of X if A € U{U,},ea.

Definition 5.2: A VTS (X, t) is said to be a vague g feebly compact if every vague g feebly open cover of X has a
finite vague sub cover.

Definition 5.3: A vague set B of VTS (X, 1) is said to be a vague g compact relative to X, if for every collection
{U,},ea Of vague g open subset of X such that B € U{U,},ca there exist a finite subset A, of A such that B cu

{Ua }a S

Definition 5.4: If B is vague g feebly compact as a subspace of X then a subset of a VTS X is said to be vague g feebly
compact.

Theorem 5.5: Every Vg feebly closed subset A of a Vg feebly compact space is Vg feebly compact relative to X.
Proof is similar to the case of V g compactness so omitted.

Theorem 5.6: The V g#- continuous image of a vague g feebly compact is vague g feebly compact.

Proof: Let f: (X,7) = (Y,0) be a V g#- continuous map from a vague g feebly compact space (X, t) onto a VTS. Let
{U,},ea be an vague open cover of Y then f=1({U,},ea ) is a V g#- open cover in X. Since (X, 7) is a vague g feebly
compact this V g# -open cover has a finite sub cover f~*({U;};,=1,.., )- Since f is onto ({U;};=1 .., ) is a finite vague
sub cover of Y, soY isvague g feebly compact.

Definition 5.7: A vague topological space X is said to be a vague g feebly connected if X cannot be written as a
disjoint union of two non empty vague g feebly open sets.

Definition 5.8: If B is vague g feebly connected as a subspace of X then a subset of a VTS X is said to be vague g
feebly connected.

Theorem 5.9: For a VTS (X, 7) , the following are equivalent:
i (X, 7) is vague g feebly connected.
ii. The only vague subset of (X, 7) which are both V g —open and V g# —closed are 0, and 1,,.

Proof: (i) = (ii) Let U, be a V gf —open and V g# —closed subset of (X,7) then U,° is both V g# —open and
V 8# —closed. Since X is disjoint union of V 84 —open sets U, and U, °, one of these must be empty (i.e)., U, = 0, or
u,=1,.

(ii) = (i) Let X =U, UV, where U, and V, are disjoint non empty V g# —open subsets of X then U, is both
V g# —open and V g# —closed. By assumption U, = 0, or U, = 1,,. Hence (X, 7) is vague g feebly connected.
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Theorem 5.10: Let f: (X,7) —» (Y,0) is a V gf —continuous, surjection and (X, t) is vague g feebly connected then
(Y, o) is also vague g feebly connected.

Proof: Suppose that (Y, o) is not vague g feebly connected, then Y = U, U V,, where U, and V,, are disjoint non empty
sets in Y. Since f is V gf —continuous and surjection, X = f~1(U,) U f~1(V,), where f~1(U,) and f~1(V,) are
disjoint non empty and V g# —open in X. This contradicts the fact that X is vague g feebly connected. Hence Y is
vague g feebly connected.
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