International Journal of Mathematical Archive-13(6), 2022, 4-9 MAAvailable online through www.ijma.info ISSN 2229 - 5046

NEUTROSOPHIC BETA OMEGA OPEN SETS IN NEUTROSOPHIC TOPOLOGICAL SPACES

S. PIOUS MISSIER¹, A. ANUSUYA^{*2}, NAGARAJAN A³

¹Head & Associate Professor, Department of Mathematics, Don Bosco College of Arts and Science, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli) Keela Eral, Thoothukudi, Tamil Nadu-628 908, India.

²Research Scholar(Reg.No-19222232092024), V. O. Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Thoothukudi-628 003, India.

³Head & Associate Professor, V.O.Chidambaram College, Thoothukudi, Tamilnadu-628 008, India.

(Received On: 17-05-21; Revised & Accepted On: 08-06-22)

ABSTRACT

Exploring a new type of neutrosophic set in neutrosophic topological spaces is the major aim of our research. In this paper, the concept "Neutrosophic Beta Omega Open Sets" is newly defined and their properties and some interesting theorems are discussed. We have analyzed the relationships between this newly introduced set and the already existing neutrosophic sets.

Keywords: neutrosophic beta omega open set, neutrosophic beta omega interior.

AMS Mathematics Subject Classification: 18B30, 03E72.

1. INTRODUCTION

Fuzzy set theory has played a vital role in the research of mathematics. The research on fuzzy set theory has been witnessing an exponential growth in mathematics. Zadeh [13] introduced the fuzzy set as an extension of a classical notion of crisp set in 1965. K. Atanassov, established the intuitionistic fuzzy set as a extension of fuzzy set. Then Florentin Smarandache [5] extended the concept intuitionistic fuzzy sets as Neutrosophic sets in 1999. Later A. Salama and S. A. Alblowi [9] studied the concept of neutrosophic topological spaces.

2. PRELIMINARIES

Definition 2.1: [4] Let X be a non-empty fixed set. A neutrosophic set (NS) G is an object having the form $G = \{ \langle x, \mu_G(x), \sigma_G(x), \nu_G(x) \rangle : x \in X \}$ where $\mu_G(x), \sigma_G(x)$ and $\nu_G(x)$ represent the degree of membership, degree of indeterminacy and the degree of nonmembership respectively of each element $x \in X$ to the set G.A. neutrosophic set G = { $\langle x, \mu_G(x), \sigma_G(x), \upsilon_G(x) \rangle$: $x \in X$ } can be identified as an ordered triple $\langle \mu_G, \sigma_G, \upsilon_G(x), \upsilon_G(x) \rangle$ $v_G > in]^{-}0, 1^{+}[on X.$

Definition 2.2: [1] For any two sets G and H,

- 1. $G \subseteq H \Leftrightarrow \mu_G(x) \le \mu_H(x), \sigma_G(x) \le \sigma_H(x) \text{ and } \upsilon_G(x) \ge \upsilon_H(x), x \in X$
- 2 $G \cap H = \langle x, \mu_G(x) \land \mu_H(x), \sigma_G(x) \land \sigma_H(x), \upsilon_G(x) \lor \upsilon_H(x) \rangle$
- 3. $G \cup H = \langle x, \mu_G(x) \lor \mu_H(x), \sigma_G(x) \lor \sigma_H(x), \upsilon_G(x) \land \upsilon_H(x) \rangle$ 4. $G^C = \{\langle x, \upsilon_G(x), 1 \sigma_G(x), \mu_G(x) \rangle : x \in X\}$
- 5. $0_N = \{ < x, 0, 0, 1 >: x \in X \}$
- 6. $1_N = \{ < x, 1, 1, 0 >: x \in X \}.$

Corresponding Author: A. Anusuva*2,

²Research Scholar(Reg.No-19222232092024), V. O. Chidambaram College, (Affiliated to Manonmaniam Sundaranar University, Tirunelveli), Thoothukudi-628 003, India. **Definition 2.3:** [9] A neutrosophic topology (NT) on a non-empty set X is a family τ of neutrosophic subsets in X satisfies the following axioms:

1. $0_N, 1_N \subseteq \tau$

- 2. $G_1 \cap G_2 \subseteq \tau$ for any $G_1, G_2 \subseteq \tau$
- 3. $\bigcup G_i \subseteq \tau$ where $\{G_i : i \subseteq J\} \subseteq \tau$

Here the pair (X, τ) is a neutrosophic topological space (NTS) and any neutrosophic set in τ is known as a neutrosophic open set (N-open set) in X. A neutrosophic setG is a neutrosophic closed set (N-closed set) if and only if its complement G^{C} is a neutrosophic open set in X.

Definition 2.4: [12] A subset G of a neutrosophic topological space (X, τ_N) is called,

- (1). a neutrosophic semi open set (NSO set) if $G \subseteq Cl_N(Int_N(G))$ and a neutrosophic semi closed set(NSC set) if $Int_N(Cl_N(G)) \subseteq G$.
- (2). a neutrosophic pre open set (NPO set) if $G \subseteq Int_N(Cl_N(G))$ and a neutrosophic pre closed set(NPC set) if $Cl_N(Int_N(G)) \subseteq G$.
- (3). a **neutrosophic** α open set (N α O set) if $G \subseteq Int_N(Cl_N(Int_N(G)))$ and an **neutrosophic** α closed(N α C set) set if $Cl_N(Int_N(Cl_N(G))) \subseteq G$.
- (4). a neutrosophic semi pre open set (NSPO set) if $G \subseteq Cl_N(Int_N(Cl_N(G)))$ and a neutrosophic semi pre closed set (NSPC set) if $Int_N(Cl_N(Int_N(G))) \subseteq G$.
- (5). a neutrosophic regular open (NRO) set if $G = Int_N(Cl_N(G))$ and a neutrosophic regular closed (NRC) set if $G = Cl_N(Int_N(G))$.

Definition 2.5: A subset G_N of a neutrosophic topological space (X, τ_N) is called

- (1). a neutrosophic generalized closed set (NG-closed set) [4] if $cl_N(G_N) \subseteq U_N$ whenever $G_N \subseteq U_N$ and U_N is N-open in (X, τ_N) .
- (2). a neutrosophic generalized semi closed set (briefly NGS-closed) [11] if $Scl_N(G_N) \subseteq U_N$ whenever $G_N \subseteq U_N$ and U_N is N- open in (X, τ_N) .
- (3). a **neutrosophic** ω closed set (N ω -closed set) [9] if $cl_N(G_N) \subseteq U_N$ whenever $G_N \subseteq U_N$ and U_N is NS- open in (X, τ_N) .
- (4). a **neutrosophic** α generalized closed set (briefly N α G-closed) [7] if α cl_N(G_N) \subseteq U_N whenever G_N \subseteq U_N and G_N is N- open in (X, τ _N).
- (5). a neutrosophic generalized regular closed set (briefly NGR-closed) [2] if $Rcl_N(G_N) \subseteq U_N$ whenever $G_N \subseteq U_N$ and U_N is N- open in (X, τ_N) .

Definition 2.6: [8] A neutrosophic set G of a neutrosophic topological space (X, τ_N) is called **neutrosophic beta** omega closed (N $\beta\omega$ -closed) if $\beta cl_N(G) \subseteq U$ whenever $G \subseteq U$ and U is N ω - open in (X, τ_N) .

3. NEUTROSOPHIC BETA OMEGA OPEN SET

Definition 3.1: A neutrosophic set G of a neutrosophic topological space (X, τ_N) is called neutrosophic beta omega open $(N\beta\omega$ -open) if the complement of G is $N\beta\omega$ -closed set.

Example 3.1: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.7}\right) \rangle$. Then τ_N is a NT and consider $W = x, \left(\frac{a}{0.7}, \frac{b}{0.9}, \frac{c}{0.8}\right), \left(\frac{a}{0.8}, \frac{b}{0.9}, \frac{c}{0.8}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.1}\right) \rangle$. Whenever $W \subseteq U$ and U is N ω -open, we get $\beta cl_N(W) \subseteq U$. Then W^C is N $\beta \omega$ -closed. Hence W is N $\beta \omega$ -open.

Theorem 3.1: Every N-open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N) .

Proof: Let G be N-open in (X, τ_N) . Then G^C is N-closed set. Let U be any N ω -open such that $G^C \subseteq U$. Since G^C is N-closed, we get $cl_N(G^C) = G^C$. Therefore, $G^C \subseteq U$ implies $\beta cl_N(G^C) \subseteq cl_N(G^C) \subseteq U$. Therefore $\beta cl_N(G^C) \subseteq U$. Therefore G^C is N $\beta\omega$ -closed set. Hence G is N $\beta\omega$ -open set.

Remark 3.1: The converse of the above theorem need not be true.

Example 3.2: Let X = {a, b, c}, $\tau_N = \{0_N, G, H, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.2}\right), \left(\frac{a}{0.7}, \frac{b}{0.6}, \frac{c}{0.6}\right), H = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.4}, \frac{c}{0.4}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.3}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.5}\right) \rangle$. Then τ_N is a NT and consider W = $\langle x, \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.8}, \frac{b}{0.7}, \frac{c}{0.8}\right), \left(\frac{a}{0.3}, \frac{b}{0.7}, \frac{c}{0.2}\right) \rangle$. Then W is N $\beta\omega$ -open. But W is not N-open.

S. Pious Missier¹, A. Anusuya^{*2}, Nagarajan A³/ Neutrosophic Beta Omega Open Sets in Neutrosophic Topological spaces/ IJMA- 13(6), June-2022.

Theorem 3.2: Every N β -open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N).

Proof: Let G be N β -open in (X, τ_N) . Then G^C is N β -closed in (X, τ_N) . Let U be N ω -open such that $G^C \subseteq U$. Since G^C is N β -closed, we have $\beta cl_N(G^C) = G^C \subseteq U$. Therefore G^C is N $\beta\omega$ -closed set. Hence G is N $\beta\omega$ -open set.

Remark 3.2: The converse of the above theorem need not be true.

Example 3.3: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.1}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.8}\right), \left(\frac{a}{0.6}, \frac{b}{0.8}, \frac{c}{0.7}\right) \rangle$. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.1}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.8}\right) \rangle$. Then W is N $\beta\omega$ -open. But W is not N β -open.

Theorem 3.3: Every NG*-open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N) .

Proof: Let G be NG*-open in (X, τ_N) . Then G^C is a NG*-closed set in (X, τ_N) . Let U be N ω -open such that $G^C \subseteq U$. Since U is N ω -open, U is NG-open. Therefore, we have $\beta cl_N(G^C) \subseteq cl_N(G^C) \subseteq G^C$. Therefore G^C is N $\beta\omega$ -closed set. Hence G is N $\beta\omega$ -open set.

Remark 3.3: The converse of the above theorem need not be true.

Example 3.4: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, H, I, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.4}, \frac{b}{0.3}, \frac{c}{0.4}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.7}\right) \rangle, H = \langle x, \left(\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.45}, \frac{b}{0.43}, \frac{c}{0.42}\right), \left(\frac{a}{0.61}, \frac{b}{0.73}, \frac{c}{0.71}\right), I = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.4}\right), \left(\frac{a}{0.8}, \frac{b}{0.85}, \frac{c}{0.8}\right) \rangle$. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.88}, \frac{c}{0.87}\right), \left(\frac{a}{0.21}, \frac{b}{0.13}, \frac{c}{0.37}\right) \rangle$. Then W is N $\beta\omega$ -open. But W is not NG*-open.

Theorem 3.4: Every N ψ -open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N).

Proof: Let G be N ψ -open in (X, τ_N) . Then G^C is N ψ -closed in (X, τ_N) . Let U be any N ω -open set such that $G^C \subseteq U$. Since every N ω -open is NSG-open, U is NSG-open, we have $Scl_N(G^C) \subseteq U$. But $\beta cl_N(G^C) \subseteq Scl_N(G^C)$. Then we get $\beta cl_N(G^C) \subseteq U$. Therefore G^C is N $\beta \omega$ -closed set. Hence G is N $\beta \omega$ -open set.

Remark 3.4: The converse of the above theorem need not be true.

Example 3.5: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, H, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.27}, \frac{b}{0.38}, \frac{c}{0.41}\right), \left(\frac{a}{0.41}, \frac{b}{0.38}, \frac{c}{0.27}\right), \left(\frac{a}{0.63}, \frac{b}{0.65}, \frac{c}{0.66}\right), H = \langle x, \left(\frac{a}{0.33}, \frac{b}{0.49}, \frac{c}{0.49}\right), \left(\frac{a}{0.45}, \frac{b}{0.49}, \frac{c}{0.4}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right) \rangle$. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.7}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.9}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.9}\right), \left(\frac{a}{0.1}, \frac{b}{0.2}, \frac{c}{0.3}\right) \rangle$. Then W is N $\beta\omega$ -open. But W is not N ψ -open.

Theorem 3.5: Every NWG*-open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N) .

Proof: Let G be NWG*-open in (X, τ_N) . Then G^C is NWG*-closed in (X, τ_N) . Let U be any N ω -open set such that $G \subseteq U$. Since every N ω -open is NG-open, U is NG-open, we have $cl_N(int_N(G)) \subseteq U$. But $int_N(cl_N(int_N(G))) \subseteq cl_N(int_N(G))$ which implies $\beta cl_N(G) \subseteq U$. Therefore G^C is N $\beta \omega$ -closed set. Hence G is N $\beta \omega$ -open set.

Remark 3.5: The converse of the above theorem need not be true.

Example 3.6: Let X = {a, b, c}, $\tau_N = \{0_N, G, H, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.22}, \frac{b}{0.33}, \frac{c}{0.22}\right), \left(\frac{a}{0.33}, \frac{b}{0.22}, \frac{c}{0.27}\right), \left(\frac{a}{0.77}, \frac{b}{0.88}, \frac{c}{0.77}\right) \rangle$ >, $H = \langle x, \left(\frac{a}{0.33}, \frac{b}{0.44}, \frac{c}{0.33}\right), \left(\frac{a}{0.44}, \frac{b}{0.33}, \frac{c}{0.33}\right), \left(\frac{a}{0.66}, \frac{b}{0.77}, \frac{c}{0.66}\right) \rangle$. Then τ_N is a NT and consider W = $\langle x, \left(\frac{a}{0.4}, \frac{b}{0.6}, \frac{c}{0.6}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right), \left(\frac{a}{0.5}, \frac{b}{0.6}, \frac{c}{0.5}\right) \rangle$. Then W is N $\beta\omega$ -open, but not NWG*-open.

Theorem 3.6: Every NP-open set in (X, τ_N) is N $\beta\omega$ -open in (X, τ_N) .

Proof: Let G be NP-open in (X, τ_N) . Then G^C is NP-closed in (X, τ_N) . Let U be any N ω -open such that $G \subseteq U$. We have $Pcl_N(G) = G$. But $\beta cl_N(G) \subseteq Pcl_N(G)$. Then we get $\beta cl_N(G) \subseteq U$. Therefore G^C is N $\beta \omega$ -closed set. Hence G is N $\beta \omega$ -open set.

Remark 3.6: The converse of the above theorem need not be true.

S. Pious Missier¹, A. Anusuya^{*2}, Nagarajan A³/ Neutrosophic Beta Omega Open Sets in Neutrosophic Topological spaces/ IJMA- 13(6), June-2022.

Example 3.7: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.1}\right), \left(\frac{a}{0.4}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.6}, \frac{b}{0.8}, \frac{c}{0.7}\right) \rangle$. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right) \rangle$. Then W is N $\beta\omega$ -open but not NP-open.

Remark 3.7: The following examples show that N $\beta\omega$ -open set and NGS-open are independent in (X, τ_N).

Example 3.8: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, H_N, I, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.23}, \frac{b}{0.34}, \frac{c}{0.43}\right), \left(\frac{a}{0.28}, \frac{b}{0.38}, \frac{c}{0.43}\right), \left(\frac{a}{0.77}, \frac{b}{0.85}, \frac{c}{0.85}\right) > H = \langle x, \left(\frac{a}{0.33}, \frac{b}{0.44}, \frac{c}{0.44}\right), \left(\frac{a}{0.33}, \frac{b}{0.48}, \frac{c}{0.44}\right), \left(\frac{a}{0.69}, \frac{b}{0.79}, \frac{c}{0.57}\right) >, I = x, \left(\frac{a}{0.22}, \frac{b}{0.24}, \frac{c}{0.4}\right), \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.4}\right), \left(\frac{a}{0.2}, \frac{c}{0.4}\right), \left(\frac{a$

Example 3.9: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.67}, \frac{b}{0.67}, \frac{c}{0.67}\right), \left(\frac{a}{0.38}, \frac{b}{0.23}, \frac{c}{0.33}\right) \rangle$. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.3}, \frac{b}{0.2}, \frac{c}{0.3}\right), \left(\frac{a}{0.3}, \frac{b}{0.3}, \frac{c}{0.3}\right), \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.8}\right) \rangle$. Then W is NGS-open. But W is not N $\beta\omega$ -open.

Remark 3.8: The following examples show that N $\beta\omega$ -open set and N α G-open are independent in (X, τ_N).

Example 3.10: Let X = {a, b, c}, $\tau_N = \{0_N, G, H, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.42}, \frac{b}{0.41}, \frac{c}{0.32}\right), \left(\frac{a}{0.43}, \frac{b}{0.22}, \frac{c}{0.41}\right), \left(\frac{a}{0.61}, \frac{b}{0.71}, \frac{c}{0.53}\right) \rangle$ $>, H = \langle x, \left(\frac{a}{0.48}, \frac{b}{0.43}, \frac{c}{0.42}\right), \left(\frac{a}{0.45}, \frac{b}{0.33}, \frac{c}{0.44}\right), \left(\frac{a}{0.52}, \frac{b}{0.7}, \frac{c}{0.5}\right) \rangle$. Then τ_N is a NT and consider W = $\langle x, \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.9}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.9}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.9}\right)$. Then W is N $\beta\omega$ -open. But not N α G-open.

Example 3.11: Let $X = \{a, b, c\}, \tau_N = \{0_N, G, 1_N\}$ where $G = \langle x, \left(\frac{a}{0.66}, \frac{b}{0.66}, \frac{c}{0.76}\right), \left(\frac{a}{0.43}, \frac{b}{0.22}, \frac{c}{0.54}\right), \left(\frac{a}{0.56}, \frac{b}{0.46}, \frac{c}{0.56}\right)$ >. Then τ_N is a NT and consider $W = \langle x, \left(\frac{a}{0.76}, \frac{b}{0.76}, \frac{c}{0.76}\right), \left(\frac{a}{0.74}, \frac{b}{0.64}, \frac{c}{0.66}\right), \left(\frac{a}{0.36}, \frac{b}{0.26}, \frac{c}{0.46}\right) \rangle$. Then W is N α G-open but W is not N $\beta\omega$ -open.

Remark 3.9: The following examples show that N $\beta\omega$ -open set and NG-open are independent in (X, τ_N).

Example 3.12: Let X = {a, b, c}, $\tau_{N} = \{0_{N}, 1_{N}\}$ where $G = \langle x, \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.6}, \frac{b}{0.7}, \frac{c}{0.6}\right), \left(\frac{a}{0.3}, \frac{b}{0.4}, \frac{c}{0.3}\right) \rangle$. Then τ_{N} is a NT and consider $W = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.9}, \frac{c}{0.6}\right), \left(\frac{a}{0.7}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.2}, \frac{b}{0.3}, \frac{c}{0.2}\right) \rangle$. Then W is N $\beta\omega$ -open but W is not NG-open.

Example 3.13: Let X = {a, b, c}, $\tau_{N} = \{0_{N}, 1_{N}\}$ where G = $\langle x, \left(\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}\right), \left(\frac{a}{0.5}, \frac{b}{0.5}, \frac{c}{0.5}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.4}\right) \rangle$. Then τ_{N} is a NT and consider $W = \langle x, \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.4}, \frac{b}{0.4}, \frac{c}{0.4}, \frac{c}{0.4}\right), \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.8}\right) \rangle$. Then W is NG-open but W is not N $\beta\omega$ -open.

Figure-1: Implications of Nβω-open Set

where A \longrightarrow B (resp. A \longrightarrow B) represents A implies B (resp. A and B are independent).

4. BETA OMEGA INTERIOR

Definition 4.1: For any $G \in (X, \tau)$, $\beta \omega int_N(G)$ is defined as the union of all N $\beta \omega$ -open sets contained in G. That is, $\beta \omega int_N(G) = \bigcup \{H : H \subseteq G \text{ and } H \in N\beta \omega O(X, \tau) \}$

Theorem 4.1: Let G be any subset of (X, τ) . Then

- 1. $(\beta \omega int_N(G))^C = \beta \omega cl_N(G^C)$
- 2. $\beta \omega int_N(G) = (\beta \omega cl_N(G^C))^C$
- 3. $\beta \omega cl_N(G) = (\beta \omega int_N(G^C))^C$

Lemma 4.1: For any set $G \in (X, \tau)$, $int_N(G) \subseteq \beta \omega int_N(G)$.

Proof: The proof follows from that every N-open set is N $\beta\omega$ -open set.

Theorem 4.1: For any two subsets G and H of (X, τ) , the following statements are true:

- 1. $\beta \omega int_N(1_N) = 1_N$ and $\beta \omega int_N(0_N) = 0_N$
- 2. $\beta \omega int_N(G) \subseteq G$
- 3. If H is any N $\beta\omega$ -open set contained in G, then H $\subseteq \beta\omega$ int_N(G)
- 4. If $G \subseteq H$, then $\beta \omega int_N(G) \subseteq \beta \omega int_N(H)$
- 5. If G and H are subsets of (X, τ) , then $\beta \omega int_N(G) \cup \beta \omega int_N(H) = \beta \omega int_N(G \cup H)$.
- 6. If G and H are subsets of (X, τ) , then $\beta \omega int_N(G \cap H) \subseteq \beta \omega int_N(G) \cap \beta \omega int_N(H)$.

Proof:

- Since 1_N and 0_N are N $\beta\omega$ -open sets, $\beta\omega$ int_N $(1_N) = \bigcup \{G : G \subseteq 1_N \text{ and } G \in N\beta\omega O(X, \tau)\} = 1_N$. Similarly, since 1. 0_N is the only N $\beta\omega$ -open set contained in 0_N , N $\beta\omega$ int $(0_N) = 0_N$.
- 2. By the definition of N $\beta\omega$ -interior of G, it is obvious that $\beta\omega$ int_N(G) \subseteq G
- 3. Let H be any N $\beta\omega$ -open set contained in G. Since $\beta\omega$ int_N(G) is the union of all N $\beta\omega$ -open sets contained in G, $\beta \omega int_N(G)$ is containing every N $\beta \omega$ -open set containing G. Hence $H \subseteq \beta \omega int_N(G)$
- 4. Follows from the definition 4.1.
- 5. Since $G \subseteq G \cup H$ and $H \subseteq G \cup H$, we get $\beta \omega int(G) \subseteq \beta \omega int_N(G \cup H)$ and $\beta \omega int_N(H) \subseteq \beta \omega int_N(G \cup H)$ which implies that $\beta \omega int_N(G) \cup \beta \omega int_N(H) \subseteq \beta \omega int_N(G \cup H)$. Also $\beta \omega int_N(G \cup H) = \bigcup \{V : V \subseteq G \cup H, V \in G \cup H, V \in G \cup H, V \in G \cup H\}$ $N\beta\omega O(X, \tau)\} \subseteq \cup \{V : V \subseteq G, V \in N\beta\omega O(X, \tau)\} \cup \{V : V \subseteq H, V \in N\beta\omega O(X, \tau)\} = \beta\omega int_N(G) \cup \beta\omega int_N(H).$ Hence $\beta \omega int_N(G \cup H) = \beta \omega int_N(G) \cup \beta \omega int_N(H)$.
- Since $G \cap H \subseteq G$ and $G \cap H \subseteq H$, by theorem 4.1(4), $\beta \omega int_N(G \cap H) \subseteq \beta \omega int_N(G)$ and $\beta \omega int_N(G \cap H) \subseteq \beta \omega int_N(H)$. 6. Hence $\beta \omega int_N(G \cap H) \subseteq \beta \omega int_N(G) \cap \beta \omega int_N(H)$.

Remark 4.3: The following example shows that the reverse inclusion of theorem 4.1(6) is not true.

Example 4.1: Let X = {a, b, c}, $\tau_{N} = \{0_{N}, G, 1_{N}\}$ where G = $\langle x, \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.6}, \frac{b}{0.6}, \frac{c}{0.6}\right), \left(\frac{a}{0.4}, \frac{b}{0.6}, \frac{c}{0.5}\right) \rangle$. Then τ_{N} is a NT and consider $W_{N} = \langle x, \left(\frac{a}{0.8}, \frac{b}{0.8}, \frac{c}{0.9}\right), \left(\frac{a}{0.8}, \frac{b}{0.7}, \frac{c}{0.9}\right), \left(\frac{a}{0.9}, \frac{b}{0.8}, \frac{c}{0.9}\right) \rangle$ and and

 $V_{N} = \langle \mathbf{x}, \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right) \rangle$. Here, $\beta \omega int_{N}(W) \cap \beta \omega int_{N}(V) = W \cap V$ and $\beta \omega int_{N}(W \cap V) = 0_{N}$. Hence $\beta \omega int_N(W) \cap \beta \omega int_N(V) \not\subseteq \beta \omega int_N(W \cap V)$.

Proposition 4.1: Let G be any subset of (X, τ) . If G is N $\beta\omega$ -open in (X, τ) then $\beta\omega$ int_N(G) = G.

Proof: Let G be N $\beta\omega$ -open in (X, τ). We know that $\beta\omega$ int_N(G) \subseteq G. Also G is a N $\beta\omega$ -open set contained in G. From theorem 4.1., $G \subseteq \beta \omega int_N(G)$. Hence $\beta \omega int_N(G) = G$.

Corollary 4.1: $\beta \omega int_N(\beta \omega int_N(G)) = \beta \omega int_N(G)$

Proof: By (2) and (4) of theorem 4.1., $\beta \omega int_N(\beta \omega int_N(G)) \subseteq \beta \omega int_N(G)$.

5. PROPERTIES OF NEUTROSOPHIC Nβω-OPEN SET

Theorem 5.1: G is any N $\beta\omega$ -open iff $H \subseteq \beta$ int_N(G) where H is N ω -closed and $H \subseteq G$.

Proof: Let G be any N $\beta\omega$ -open set and H be N ω -closed such that H \subseteq G. Then G^C \subseteq H^C which implies $\beta cl_N(G^C) \subseteq H^C$, since G^C is N $\beta\omega$ -closed and H^C is N ω -open. Therefore, we have $H \subseteq \beta int_N(G)$. Conversely, assume that $H \subseteq \beta int_N(G)$ whenever H is N ω -closed and $H \subseteq G$. Let I be any N ω -open such that $I^C \subseteq G$. Then I^{C} is N ω -closed. Therefore by assumption, $I^{C} \subseteq \beta$ int_N(G) which implies β cl_N(G^C) \subseteq I_N. Hence G is N $\beta\omega$ open.

© 2022, IJMA. All Rights Reserved

Theorem 5.2: If $\beta int_N(G) \subseteq H \subseteq G$ and G is N $\beta \omega$ -open, then H is N $\beta \omega$ -open.

Proof: $\beta int_N(G) \subseteq H \subseteq G$ implies $G^C \subseteq H^C \subseteq \beta cl_N(G)^C$. Since G is N $\beta \omega$ -open, G^C is N $\beta \omega$ -closed. Therefore, H is N $\beta \omega$ -closed. Hence H is N $\beta \omega$ -open.

Theorem 5.3: The union of the N $\beta\omega$ -open sets is N $\beta\omega$ -open.

Proof: Let G and H_N be N $\beta\omega$ -open sets in (X, τ_N). By theorem 4.1., $\beta\omega$ int_N(GUH) = $\beta\omega$ int_N(G) $\cup\beta\omega$ int_N(H) = GUH. However, $\beta\omega$ int_N(GUH) \subseteq GUH. Therefore GUH = $\beta\omega$ cl_N(GUH). Hence GUH is N $\beta\omega$ -open set.

Remark 5.1: The intersection of two N $\beta\omega$ -open sets need not be N $\beta\omega$ -open.

Example 5.1: Let X = {a, b, c}, $\tau_{N} = \{0_{N}, G, 1_{N}\}$ where G = $\langle x, \left(\frac{a}{0.7}, \frac{b}{0.7}, \frac{c}{0.4}\right), \left(\frac{a}{0.7}, \frac{b}{0.6}, \frac{c}{0.6}\right), \left(\frac{a}{0.4}, \frac{b}{0.6}, \frac{c}{0.5}\right) \rangle$. Then τ_{N} is a NT and consider W = $\langle x, \left(\frac{a}{0.1}, \frac{b}{0.1}, \frac{c}{0.1}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right), \left(\frac{a}{0.2}, \frac{b}{0.2}, \frac{c}{0.2}\right) \rangle$ and V = $\langle x, \left(\frac{a}{0.9}, \frac{b}{0.8}, \frac{c}{0.7}\right), \left(\frac{a}{0.8}, \frac{b}{0.7}, \frac{c}{0.9}\right), \left(\frac{a}{0.8}, \frac{b}{0.7}, \frac{c}{0.9}\right) \rangle$. Then W and V are N $\beta\omega$ -open. But W \cap V is not N $\beta\omega$ -open.

REFERENCES

- 1. Arokiarani, I., Dhavaseelan, R., Jafari, S., Parimala, M.: On Some New Notions and Functions in Neutrosophic Topological Spaces. Neutrosophic Sets and Systems. Vol.16, pp.16-19(2017).
- 2. Atkinswestley, A., Chandrasekar, S.: Neutrosophic Weakly G*-closed Sets. Advances in Mathematics: Scientific Journal, Vol.9, pp.2853-2864(2020).
- 3. Blessie Rebecca, S., Francina Shalini, A.: Neutrsophic Generalised Regular Sets in Neutrosophic Topological Spaces, IJRAR Feb 2019, Vol.6, Issue 1, 2019
- 4. Dhavaseelan, R., Saied Jafari: Generalised neutrosophic closed sets. New Trends in Neutrosophic Theory and Applications, Vol.2, pp. 61-67(2017).
- 5. Florentin Smarandache: Single Valued Neutrosophic Sets. Technical Sciences and Applied Mathematics, pp. 10-14(2009).
- 6. Jayanthi, D.: On alpha generalized closed sets in neutrosophic topological space. International Conference on Recent Trends in Mathematics and Information Technology, pp. 88-91(2018).
- 7. Pious Missier, S., Anusuya, A.: Intuitionistic Fuzzy Strongly α Generalised Star Closed Sets In Intuitionistic Fuzzy Topological Spaces, International Journal of Mathematical Archive-12(2), pp.1-6(2021).
- 8. Pious Missier S, Anusuya A, "Neutrosophic Beta Omega Closed Sets in Neutrosophic Fuzzy Topological Spaces", Proceedings of 24th FAI-ICDBSMD 2021Vol. 6(i), pp.42(2021).
- 9. Salama, A., Alblowi, S. A.: Neutrosophic set and Neutrosophic topological spaces. IOSR Jour. of Mathematics, pp. 31-35(2013).
- 10. Santhi, R. Udhayarani, N.: N_{ω} -closed Sets in Neutrosophical Topological Spaces. Neutrosophic Sets and Systems, Vol.12, pp.114-117(2016).
- 11. Shanthi, V. K., Chandra Sekar, S., Safina begam, K.: Neutrosophic generalised semi closed sets in neutrosophic topology spaces, International Journal of Research in Advent Technology, Vol.6, pp. 1739-1743(2018).
- 12. Wadei Al Omeri, Saeid jafari: On generalised closed sets & generalized preclosed sets in neutrosophic topological spaces. MDPI(Mathematics), pp. 1-12(2018).
- 13. Zadeh, L.: Fuzzy sets. Information and Control, Vol.8, pp. 338–353(1963).

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2022. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]