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ABSTRACT

Exploring a new type of neutrosophic set in neutrosophic topological spaces is the major aim of our research. In this
paper, the concept “Neutrosophic Beta Omega Open Sets™ is newly defined and their properties and some interesting
theorems are discussed. We have analyzed the relationships between this newly introduced set and the already existing
neutrosophic sets.
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1. INTRODUCTION

Fuzzy set theory has played a vital role in the research of mathematics. The research on fuzzy set theory has been
witnessing an exponential growth in mathematics. Zadeh [13] introduced the fuzzy set as an extension of a classical
notion of crisp set in 1965. K. Atanassov, established the intuitionistic fuzzy set as a extension of fuzzy set. Then
Florentin Smarandache [5] extended the concept intuitionistic fuzzy sets as Neutrosophic sets in 1999. Later A. Salama
and S. A. Alblowi [9] studied the concept of neutrosophic topological spaces.

2. PRELIMINARIES

Definition 2.1: [4] Let X be a non-empty fixed set. A neutrosophic set (NS) G is an object having the form
G={< X, Hs(X), 0a(X), va(X) > : X € X} wherelg(x), oc(x) and v(X) represent the degree of membership, degree
of indeterminacy and the degree of nonmembership respectively of each element x € X to the set G. A
neutrosophic set G = {< X, Ma(X), 66(X), ve(X) >: x €X}can be identified as an ordered triple < pg, o,
ve > in 170, 1*[ on X. '

Definition 2.2: [1] For any two sets G and H,

1. GSH eps(X) < Hu(X), o6(X) < ou(X) and ve(X) > va(x), X € X
GNH = < X, Ha(X) A Hu(X), 66(X) A ou(X), ve(X) V vu(X) >
GUH = < X, ue(X) V Hu(X), 0c(X) V on(X), va(X) Avu(X) >
G° = {< x,v5(X), 1- 6a(X), He(X) >: x €X}

On = {<x,0,0,1>:x € X}
In ={<x,1,1,0 >: x €X}.
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Definition 2.3: [9] A neutrosophic topology (NT) on a non-empty set X is a family t of neutrosophic subsets
in X satisfies the following axioms:

1. ON,lN c1

2. G1NGocr forany G1 Gp &1

3. UGj &St where{Gj :icJ}c
Here the pair (X, 1) is a neutrosophic topological space (NTS) and any neutrosophic set in t is known as a
neutrosophic open set (N-open set) in X. A neutrosophic setG is a neutrosophic closed set (N-closed set) if and
only if its complement G€ is a neutrosophic open set in X.

Definition 2.4: [12] A subset G of a neutrosophic topological space (X, ty) is called,

(1). a neutrosophic semi open set (NSO set) if G < Cly(Inty(G)) and a neutrosophic semi closed set(NSC set)
if Inty(CIn(G)) < G.

(2). a neutrosophic pre open set (NPO set) if G < Inty(CIn(G)) and a neutrosophic pre closed set(NPC set) if

(3). aneutrosophic a open set (NaO set) if G < Inty(Cly(Inty(G))) and an neutrosophic a closed(NaC set) set
if Cly(Inty(CIN(G))) < G.

(4). a neutrosophic semi pre open set (NSPO set) if G < Cly(Inty(CIn(G)))) and a neutrosophic semi pre
closed set (NSPC set) if Inty(Cln(Intn(G))) < G.

(5). a neutrosophic regular open (NRO) set if G = Inty(Cl\(G)) and a neutrosophic regular closed (NRC) set
if G = Cly(Intn(G)).

Definition 2.5: A subset Gy of a neutrosophic topological space (X, ty) is called

(1). a neutrosophic generalized closed set (NG-closed set) [4] if cly(Gy) < Uy whenever Gy < Uy and Uy is N-
open in (X, ty).

(2). a neutrosophic generalized semi closed set (briefly NGS-closed) [11] if Scly (Gy) < Uy whenever Gy < Uy
and Uy is N- open in (X, ty)-

(3). a neutrosophic w closed set (Nw-closed set) [9] if cly (Gy) < Uy whenever Gy < Uy and Uy is NS- open in
X, ty)-

(4). a neutrosophic a generalized closed set (briefly NaG-closed) [7] if acly(Gy) < Uy whenever Gy < Uy
and Gy is N- open in (X, Ty).

(5). a neutrosophic generalized regular closed set (briefly NGR-closed) [2] if Rcly (Gy) < Uy Whenever Gy < Uy
and Uy is N- open in (X, ty)-

Definition 2.6: [8] A neutrosophic set G of a neutrosophic topological space (X, ty) is called neutrosophic beta
omega closed (NBw-closed) if Bcly(G) < U whenever G < U and U is Nw- open in (X, ty).

3. NEUTROSOPHIC BETA OMEGA OPEN SET

Definition 3.1: A neutrosophic set G of a neutrosophic topological space (X, ty) is called neutrosophic beta
omega open (NPw-open) if the complement of Gis NBw-closed set.

Example 3.1: Let X = {a, b, ¢}, Ty = {0y, G, 1} Where G = < x, (02 Obz OCZ) (033 0'13 OC—B) (;’7 0b7 07) >. Then 1y

is a NT and consider W= x, (i,i,i),(i,i,i) (a LE ) >. Whenever W < U and U is No-open, we get
0.7°09°0.8 0.8°09°0.8 0.2’ 02 0.1

Bcly (W) CU. Then WE is NBw-closed. Hence W is NBw-open.
Theorem 3.1: Every N-open set in (X, ty) is NBw-open in (X, ty).

Proof: Let G be N-open in (X, ty). Then G® is N-closed set. Let U be any Nw-open such that G¢ < U. Since G° is
N-closed, we get cly (G®) = G°. Therefore, G < U implies Bcly (G®) S cly(G) € U. Therefore Bcly (G©) SU. Therefore
G is NBw-closed set. Hence G is NBw-open set.

Remark 3.1: The converse of the above theorem need not be true.

Example 3.2: Let X = {a, b, ¢}, ty = {0y, G, H, 1y} where G = <x, (04 0b3 0C4) (;—3;;3;—2) (0i 0b—6i6)H =<

0
b b b b b
X, (i - i) (i - i) (a )> Then ty isa NT and consider W = < x, (i —, = (i — i),
05’04’04 04’04’03 0.5’ 06 0.5 08’0807 0.8°0.7

a b
03702’ E) >. Then W is NBw-open. But W is not N-open.
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Theorem 3.2: Every NB-open set in (X, ty) is NBw-open in (X, ty).

Proof: Let G be NB-open in (X, ty). Then G® is Np-closed in (X, Ty). Let U be Nw-open such that G° € U. Since G€ is
Np-closed, we have Bcly (G°) = G© < U. Therefore G is NBw-closed set. Hence G is NBw-open set.

Remark 3.2: The converse of the above theorem need not be true.

Example 3.3: Let X = {a, b, ¢}, ty = {0y, G, 1y} where G = < x, (03 Obz Ocl) (;—7;’—8;—8) (;’6 Obg 07) >. Then Ty

b ¢ a b ¢ a b ¢ .
is a NT and consider W =< x, (02 07 01) (E’H’E)’(E’E’E) >. Then W is NBw-open. But W is not Nf-
open.

Theorem 3.3: Every NG*-open set in (X, ty) is NBw-open in (X, ty).

Proof: Let G be NG*-open in (X, Ty). Then G° is a NG*-closed set in (X, Ty). Let U be Nw-open such that G¢ € U.
Since U is Nw-open, U is NG-open. Therefore, we have Bcly(G®) < cly(G®) < GC. Therefore G is NBw-closed set.
Hence G is NBw-open set.

Remark 3.3: The converse of the above theorem need not be true.

Example 3.4: Let X = {a, b, ¢}, Ty = {0y, G, H, I, 13} where G = <x (ii,i,(ii,i) (a 2 )>H

0 0.7’ 08 0.7
a b c a b c a b c b
XI _l_l_ ) _l_l_ ) _l_l_ I=
0.43°0.34 " 0.44 0.45°0.43°0.42 0.61°0.73°0.71

UJ
O
(SN
(=}
K
o
mw
=]
K

a b ¢ c
X(E 02’ ﬁ) 03’02’ ﬁ) (08 0.85’ 08)> Then ©y is
a NT and consider W= < x, (a ML ) ( 2 b )> Then W is NBw-open. But W is not NG*-open.
0.8’ 088 70.87 0.21 013 0.37

Theorem 3.4: Every Ny-open set in (X, ty) is NBw-open in (X, ty).

Proof: Let G be Ny-open in (X, ty). Then G is N y-closed in (X, Ty). Let U be any Nw-open set such that G© < U.
Since every Nw-open is NSG-open, U is NSG-open, we have Scly(G®) € U. But Bcly(G®) € Scly(G®). Then we get
Bcly (G%) € U. Therefore G is NBw-closed set. Hence G is NBw-open set.

Remark 3.4: The converse of the above theorem need not be true.

b b b
Example 3.5: Let X = {a, b, ¢}, ty = {0y, G,H, 1y} where G =<x, (027 = Oil) (OZIE#) (o%ﬁocﬂ)

b b b
H=<x ( ; ; ) ( : ,—,i) (a )> Then ty is a NT and consider
0.33 049 0.49 0.4570.49 0.4 0.5’ 05 0.5

b ¢ a b c a b
W=<x, (07 YL 07) (0_7,ﬁ, E) (01 02 03) >. Then W is NBw-open. But W is not Ny-open.
Theorem 3.5: Every NWG*-open set in (X, ty) is NBw-open in (X, ty).

Proof: Let G be NWG*-open in (X, Ty). Then G® is NWG*-closed in (X, ty). Let U be any Nw-open set such that
GcU. Since every Nw-open is NG-open, U is NG-open, we have cly(inty(G))SU. But inty(cly(inty(G)))<
cly (inty (G)) which implies Bcly (G) € U. Therefore G® is NBw-closed set. Hence G is NBw-open set.

Remark 3.5: The converse of the above theorem need not be true.

b b b
Example 3.6 Let X = {a, b, ¢}, oy = {0y, G, H, 1y} where G = <x, (022 033’ oczz) (023 022’ 0C27) (02;7 " 0.88’ 0C7)

b b b
> H <x( C) (a —L) (a )>ThenersaNTandcon5|derW <X, (i
0.33 044 ’0.33 0.44’0.3370.33 0.66" 077 7 0.66 04’06’ 0.6

a b c)y(rb < %
(0_5,0.5,0_5) (05 v 05) >. Then W is NBw-open, but not NWG*-open.

Theorem 3.6: Every NP-open set in (X, Ty) is NBw-open in (X, ty).

Proof: Let G be NP-open in (X, Ty). Then G° is NP-closed in (X, Ty). Let U be any Nw-open such that G € U. We
have Pcly(G) = G. But Bcly(G) € Pcly(G). Then we get Bcly(G) € U. Therefore G© is NBw-closed set. Hence G is
NBw-open set.

Remark 3.6: The converse of the above theorem need not be true.
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Example 3.7: Let X = {a, b, ¢}, ty = {0y, G, 1y} where G =<x, (03 0b4 Ocl) (034 0'12 OC—Z) (036 0b8 07) >. Then Ty is

b ¢ a b ¢ a b
a NT and consider W = < x, (05 L 05) (o.s’E’E) (05 o 05) >. Then W is NBw-open but not NP-open.

Remark 3.7: The following examples show that Nfw-open set and NGS-open are independent in (X, ty).

b b b
Example 3.8: Let X = {a, b, ¢}, ty = {0y, G, Hy,, I, 1y} where G = <x, (023 = 013) (0;8,@,(;?),(;7,E,

a b c a b c a b c a b c a b ¢ a b
) > = ) (i e (e ) 21 =, (i) () G
0.67 0.3370.44° 0.44 0.3370.48° 0.44 0.69° 079 0.57 0.22°0.24° 0.4 02703704 0.8’ 0.87

a b c a b c a b
E)> Then ty is a NT and consider W = < x, (08 05 07) (0_82,m,ﬁ) (0 5023 034) >. Then W is NBw-open.

But W is not NGS-open.

b b b
Example 3.9: Let X = {a, b, ¢}, ty = {0y, G, 1N}whereG-<x(ﬁ ot 0°—7) (O%m 0%) (o%ﬁ 0°?)>

Then Ty is a NT and consider W = < x, (0 > 0b2 0°3) (0330%;—3) (038 0b8 08) >. Then W is NGS-open. But W is not
NBw-open.

Remark 3.8: The following examples show that NBw-open set and NaG-open are independent in (X, ty).

b b b
Example 3.10: Let X = {a, b, ¢}, Ty = {0y.,G,H, 1y} where G =<, (042 = 0;2) (013 Vo OC?) ((}%mé)

b c a b c a b _ b ¢
> H=< X (048 043’ 042) (045 033’ 044) (052 0.7’ 05)> ThenTN is a NT and consider W= <X (07 0.8’ 09
a b ¢ a b
(E’E'ﬁ) (02 03’ 01) >. Then W is NBw-open. But not NaG-open.

b b b
Example 3.11: Let X = {a, b, ¢}, Ty = {0y, G, 1y} where G =< x, (066 —, 0;6) (013 oy ﬁ) (o% o OCR)

a b c a b c a b
>. Then ty isa NT and consider W = < x, (0 o 78" 076) (0.74’@’@) (0 2’ 020" 046) >. Then W is NaG-open
but W is not NBw-open.

Remark 3.9: The following examples show that NBw-open set and NG-open are independent in (X, ty).

Example 3.12: Let X = {a, b, ¢}, ty = {0y, , 1y} where G = <x(i718i)( LE C)(a LE )> Then Ty

0.6’ 07 0.6 0.3’ 04 0.3
b ¢ a b ¢ a
isa NT and consider W = < x, (08 L 06) (0_7,ﬁ,6),(0_2 03 0_2) . Then W is NBw-open but W is not NG-open.

Example 3.13: Let X = {a, b, ¢}, Ty = {0y, , 1y} where G = < x, (06 0b6 OCB) (035 0'15 OC—S) (034 0b4 04) >. Then Ty

b ¢ a b ¢ a b
isa NT and consider W = < x, (02 07 02) (0.4’@’@) (08 o5 08) >. Then W is NG-open but W is not NfBw-open.

o BN

NpBw-open

H"" — "
NGS—Dpen / \ NG -open

Figure-1: Implications of NBw-open Set

where A — B (resp. A«——»B) represents A implies B (resp. A and B are independent).
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4. BETA OMEGA INTERIOR

Definition 4.1: For any G € (X, 1), Pointy(G) is defined as the union of all NPw-open sets contained in G. That is,
Bwinty(G) = U {H : H € G and HE NBoO(X, 1)}

Theorem 4.1: Let G be any subset of (X, ). Then
1. (Bointy(G))° = Pucly(GO)
2. Bointy(G) = (Bocly(G®))®
3. Bocly(G) = (Bointy(G®))©
Lemma 4.1: For any set Ge (X, 1), inty(G) S Pointy(G).

Proof: The proof follows from that every N-open set is Nfw-open set.

Theorem 4.1: For any two subsets G and H of (X, 1), the following statements are true:
1. Ba)intN(lN) = 1N and BO)il’ltN(ON) = ON

2. Pointy(G) € G

3. IfHis any NBw-open set contained in G, then H C Bointy(G)

4. If G € H, then Bointy(G) S Bwinty(H)

5. If G and H are subsets of (X, 1), then Bwinty(G) U Bointy(H)=Pointy(GUH).

6. If G and H are subsets of (X, 1), then Bwinty(GNH) S Bointy(G) N Pointy(H).
Proof

1. Since 1y and Oy are NBw-open sets, Bointy(1n) = U {G: G € 1y and G € NBwoO(X, 1)} = 1. Similarly, since
Oy is the only NBw-open set contained in Oy, NBwint(Oy) = O

2. By the definition of NBw-interior of G, it is obvious that Bointy(G) € G

3. Let H be any Npw-open set contained in G. Since Bwinty(G) is the union of all NBw-open sets contained in G,
Bwintn(G) is containing every NBw-open set containing G. Hence H € Bointy(G)

4. Follows from the definition 4.1.

5. SinceG < GUHandHCc G U H, we get oint(G) < Bointy(G U H) and Buinty(H) € Bointy(G U H) which
implies that Bwinty(G) U Pointy(H) S Pointy(G U H). Also Bointy(G U H) = Uu{V : VS GUH, V€
NBwO(X, )} S U {V :V C G,V e NBoO(X, 1)}U{V : V C H, V € NBoO(X, 1)}= Bointy(G) U Bointy(H).
Hence pointy(GU H) = fointy(G) U Bointy(H).

6. Since GNHSG and GNH < H, by theorem 4.1(4), Bwinty(GNH) € Bointy(G) and Pointy(GNH) S Bwinty(H).
Hence Bwinty(GNH) S Bointy(G) N Bointy(H).

Remark 4.3: The following example shows that the reverse inclusion of theorem 4.1(6) is not true.

Example 4.1: Let X = {a, b, ¢}, Ty = {0y, G, 1y} where G = < x, (;—8;’—8;—7)(;—6;’—6;—6)(;—4 ;’—6;—5) >. Then Ty

i i ey (X b o) (b ) a b ¢

1S a NT and consider Wy =<X% (0.8’ 0.8’ 0.9) ’ (0.8’0.7 ’ 0.9) ’ (0.9'0.8'0.9) > and
= a b cy(a b c)(fa b c ; ; - : —

W=<x%, (0_2, 02 ,0_2) , (0.2’0.2 ,0_2) , (0_2, 07 0_2) >. Here, Bointy(W) N Bointy(V) = W NV and Pointy(W N V) = Op.

Hence pointy(W) N Pointy(V) € Bointy(W N V).
Proposition 4.1: Let G be any subset of (X, 7). If G is Nfw-open in (X, 1) then Pointy(G) = G.

Proof: Let G be NBw-open in (X, t). We know that Bointy(G) € G. Also G is a Npw-open set contained in G. From
theorem 4.1., G < Pointy(G). Hence Bointy(G) = G.

Corollary 4.1: Bointy(Bointy(G)) = Bointy(G)

Proof: By (2) and (4) of theorem 4.1., Bointy( fointy(G)) S Bointy(G).

5. PROPERTIES OF NEUTROSOPHIC NBw-OPEN SET

Theorem 5.1: G is any NBw-open iff H < Binty(G) where H is Nw-closed and H € G.

Proof: Let G be any Npw-open set and H be No-closed such that H € G. ThenG® < H® which implies
Beln(G®) < HE, since G° is NPw-closed and HCis Nw-open. Therefore, we have H € Binty(G). Conversely,
assume that H SBinty(G) whenever H is No-closed and H € G. Let | be any Nw-open such that 1° € G. Then
I is No-closed. Therefore by assumption, I € Binty(G)which implies Bcly(G) < Iy. Hence G is NBo—

open.
© 2022, IIMA. All Rights Reserved 8
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Theorem 5.2: If Binty(G) € H € G and G is Nfw-open, then H is NBw-open.

Proof: Binty(G) € H < G implies G° € H® < Bcly(G)°. Since G is Npw-open, G¢ is Npw-closed.
Therefore, H is Npw-closed. Hence H is Nfw-open.

Theorem 5.3: The union of the Nfw-open sets is NBw-open.

Proof: Let G and Hy be NBw-open sets in (X, ty). By theorem 4.1, Bointy(GUH) = Bointy(G)UPwinty(H)
= GUH. However, Bointy(GUH) € GUH. Therefore GUH = Bocly (GUH). Hence GUH is Nfw-open set.

Remark 5.1: The intersection of two NBw-open sets need not be NBw-open.

0.7’ 07 0.4

4°0.
b b b b
isa NT and consider W = <ac("’l C) (i— i) (a )>andV <x( ) (i b ) (1,
0.1 01 70.1 0.2°0.2°0.2 0.2’ 02 0.2 0.9’ 08 0.7 0.8°0.7 0.8
b

e ﬁ) >. Then W and V are Nfw-open. But WNV is not NBw-open.

Example 5.1: Let X = {a, b, ¢}, Ty = {0y, G, 1n} where G = <x( 2 C) (07 =, 06) (0
C
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