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ABSTRACT 
Topological indices are applied to measure the chemical characteristics of chemical compounds. In this paper, we 
introduce the arithmetic-contraharmonic (AC) and contraharmonic-arithmetic (CA) indices of a graph and compute 
the exact values for some standard graphs and some families of nanotubes.  
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1. INTRODUCTION 
 
Let G be a finite, simple, connected graph with vertex set V(G) and edge set E(G). The degree dG(u) of a vertex u is the 
number of vertices adjacent to u. We refer [1], for other undefined notations and terminologies. 
 
A molecular graph is a graph such that its vertices correspond to the atoms and edges to the bonds. Chemical Graph 
Theory is a branch of mathematical chemistry, which has an important effect on the development of Chemical 
Sciences. Several topological indices have been considered in Theoretical Chemistry and have found some 
applications. 
 
The geometric-arithmetic index [2] of a graph G was defined as 
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This index was studied, for example, in [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. 
 
Motivated by the definition of geometric-arithmetic index of a graph G, we define the arithmetic-contraharmonic index 
as 
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This equation consists from arithmetic mean of end vertex degrees of an edge uv, ( ) ( )( )/ 2+G Gd u d v  as numerator 

and contraharmonic mean of end vertex degrees of the edge uv, ( ) ( ) ( ) ( )2 2( ) / ( )G G G Gd u d v d u d v+ +  as 
denominator. 
Also we introduce the contraharmonic-arithmetic index of a graph G and defined it as 
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Recently, some new indices were studied, for example, in [17, 18, 19, 20, 21, 22, 23, 24, 25]. 
  
In this paper, we compute these two newly defined novel graph indices for some standard graphs and certain families of 
nanotubes.. For nanotubes, see [26]. 
  
2. RESULTS FOR SOME STENDARD GRAPHS 
       
Proposition 1: Let Kr,s be a complete bipartite graph with 1 ≤ r ≤ s and s ≥ 2 vertices. Then 
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Proof: Let Kr,s be a complete bipartite graph with r + s vertices and rs edges such that |V1|= r, |V2| = s, V (Kr,s ) = V1 ∪ V2   
for 1 ≤ r ≤ s, and s ≥ 2. Every vertex of V1 is incident with s edges and every vertex of V2  is incident with r edges. 
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Corollary 1.1: Let Kr,r  be a complete bipartite graph with r ≥ 2. Then  
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Corollary 1.2: Let K1,r-1  be a star with  r ≥ 2. Then     
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Proposition 2: If G is r-regular with n vertices and r ≥ 2, then   
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Proof: Let   G is r-regular with n vertices and r ≥ 2 and  
2
nr

 edges. Then  
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Corollary 2.1: Let Cn  be a cycle with n ≥ 3 vertices. Then   

( ) .nAC C n=  
 
Corollary 2.2: Let Kn  be a complete graph with n ≥ 3 vertices. Then  
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Proposition 3: If G is a path with n ≥ 3 vertices, then 
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Proposition 4: Let Kr,s  be a complete bipartite graph with 1 ≤ r ≤ s and s ≥ 2 vertices. Then   
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Proof: Let Kr,s be a complete bipartite graph with r + s vertices and rs edges such that |V1|= r , |V2|= s, V (Kr,s ) = V1 ∪ V2  
for 1 ≤ r ≤ s, and s ≥ 2. Every vertex of V1 is incident with s edges and every vertex of V2   is incident with r edges. 
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Corollary 4.1: Let Kr,r be a complete bipartite graph with r ≥ 2. Then  
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2 .r rCA K r=  
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Corollary 4.2: Let K1,r-1  be a star with  r ≥ 2. Then        
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Proposition 5: If G is r-regular with n vertices and r ≥ 2, then     
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Proof: Let G is r-regular with n vertices and r ≥ 2 and 
2
nr

 edges. Then  
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Corollary 5.1: Let Cn be a cycle with n ≥ 3 vertices. Then    

( ) .nCA C n=  
 
Corollary 5.2:  Let Kn  be a complete graph with n ≥ 3 vertices. Then     
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Proposition 6:  If G is a path with n ≥ 3 vertices, then 
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3. RESULTS FOR HC5C7[p,q] NANOTUBES   
 
In this section, we focus on the family of nanotubes, denoted by HC5C7[p,q], in which p is the number of heptagons in 
the first row and q rows of pentagons repeated alternately. Let G be the graph of a nanotube HC5C7[p,q]. 
 

 
 Figure-1: 2-D lattice of nanotubeHC5C7 [8, 4] 

 
The 2-D lattice of nanotube HC5C7[p, q] is shown in Fig. 1.By calculation, we obtain that G has 4pq vertices and 6pq – 
p edges. The graph G has two types of edges based on the degree of end vertices of each edge as follows: 
 E1 = {uv∈E(G) | dG(u) = 2, dG(v) = 3}, |E1| = 4p. 
 E2 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E2| = 6pq – 5p. 
 
Theorem 1: Let G be the graph of a nanotube HC5C7[p, q]. Then  

  5 7
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Proof: From definition and by cardinalities of the edge partition of HC5C7[p, q], we deduce 
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Theorem 2: Let G be the graph of a nanotube HC5C7[p, q]. Then  

  5 7
21, 6 .
25
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Proof: From definitions and by cardinalities of the edge partition of HC5C7[p, q],   we deduce 
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4. RESULTS FOR SC5C7[p,q] NANOTUBES   
 
In this section, we focus on the family of nanotubes, denoted bySC5C7[p,q], in which p is the number of heptagons in 
the first row and q rows of vertices and edges are repeated alternately. The 2-D lattice of nanotube SC5C7[p,q] is 
presented in Fig. 2. 

 
                                                   Figure-2: 2-D lattice of nanotube SC5C7[p,q] 
 
Let G be the graph of SC5C7[p,q]. By calculation, we obtain that G has 4pq vertices and 6pq – p edges. Also by 
calculation, we get that G has three types of edges based on the degree of end vertices of each edge as follows: 

E1 = {uv∈E(G) | dG(u) =  dG(v) = 2}, |E1| = q. 
E2 = {uv∈E(G) | dG(u) = 2,dG(v) = 3}, |E2| = 6q. 
E2 = {uv∈E(G) | dG(u) = dG(v) = 3}, |E3| = 6pq – p–7q. 

 
 
Theorem 3: Let G be the graph of a nanotube SC5C7[p, q]. Then  
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Proof: From definition and by cardinalities of the edge partition of SC5C7[p, q], we deduce 
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Theorem 4: Let G be the graph of a nanotube SC5C7[p, q]. Then  
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Proof: From definitions and by cardinalities of the edge partition of SC5C7[p, q],  we deduce 
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5. RESULTS FOR ARMCHAIR POLYHEX NANOTUBES   
 
Carbon polyhex nanotubes are the nanotubes whose cylindrical surface is made up of entirely hexagons. These carbon 
nanotubes exist in nature with remarkable stability and possess very interesting electrical, thermal and mechanical 
properties, The armchair polyhex nanotube is denoted by TUAC6 [p, q] is shown in Fig. 3. 

 
Figure-3: A 2-dimensional networks of TUAC6[p, q]. 

 
Let G = TUAC6 [p, q]. By calculation, G has 2p(q+1) vertices and 3pq + 2p edges. There are three types of edges based 
on degrees of end vertices of each edge. We present that the edge partition of G is given in Table 3. 
 

dG(u), dG(v) \ uv  ∈ E(G)  (2, 2) (2, 3) (3, 3) 
Number of edges p 2p 3pq- p 

Table-3: Edge partition of TUAC6 [p, q] 
 
Theorem 5: Let G be the graph of an armchair polyhex nanotube TUAC6[p, q]. Then  
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Proof: From definition and by cardinalities of the edge partition of TUAC6[p, q], we deduce 
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Theorem 6: Let G be the graph of an armchair polyhex nanotube TUAC6[p, q]. Then  
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Proof:  From definition and by cardinalities of the edge partition of TUAC6[p, q], we deduce 
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6. RESULTS FOR ZIGZAG POLYHEX NANOTUBES   
 
The zigzag polyhex nanotube is denoted by TUZC6 [p, q], where p is the number of hexagons in a row whereas q is the 
number of hexagons in a column. A 2-dimensional networks of TUZC6 [p, q] is depicted in FIG. 4. 
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Figure-4: A 2-dimensional networks of TUZC6[p, q] 

 
Let G be a graph of a (p, q) dimensional zigzag polyhex nanotube. The graph G has 2p(q+1) vertices and 3pq + 2p 
edges. In G, there are two types of edges based on degrees of end vertices of each edge. By calculation, the edge 
partition of G is given in Table 4. 
 

dG(u), dG(v) \ uv  ∈ E(G) (2, 3) (3, 3) 
Number of edges 4p 3pq – 2p 

Table-4: Edge partition of  TUZC6 [p, q] 
 
Theorem 7: Let G be the graph of a zigzag polyhex nanotube TUZC6[p, q]. Then  
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Proof:  From definition and by cardinalities of the edge partition of TUZC6[p, q], we deduce 
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Theorem 8: Let G be the graph of a zigzag polyhex nanotube TUZC6[p, q]. Then  
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Proof: From definition and by cardinalities of the edge partition of TUZC6[p, q], we deduce 
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7. CONCLUSION  
 
In this study, we have introduced the arithmetic-contraharmonic index and contraharmonic-arithmetic index of a graph. 
Furthermore we have computed these indices for some standard graphs and certain families of nanotubes.  
 
Many questions are suggested by this research, among them are the following: 

1. Characterize the AC and CA indices in terms of other degree based topological indices. 
2. Obtain the extremal values and extremal graphs of AC and CA indices. 
3. Compute the exact values of these two indices for other chemical nanostructures. 
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