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ABSTRACT

The aim of this paper is to study certain subclasses of multivalent a- spiral starlike functions and a- spiral convex
functions defined by subordination. We obtain an upper bound estimate for the second Hankel determinant of functions
belonging to these classes using Toeplitz determinants. Also, the bounds rendered in this paper generalize some previous
results.
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1. INTRODUCTION

For a fixed integer p = 1, let A, denote the class of functions f of the form
f(Z) =2zP + z:1(')lo=p+1)[anzn’ (11)

which are analytic in the open unit disc U = {z: |z| < 1} with p e N ={1,2,3,---}.
Let S be the subclass of A; =: 4, consisting of univalent functions.

Let Q be the class of Schwarzian functions

[o2]

w(z) = z ld,z",

n=p+1
which are analytic in the open unit disc U = {z: |z| < 1} and satisfies the conditions w(0) = 0 and |w(z)| < 1.

Let f and g be analytic functions in U, we say that f is subordinate to g, written as f < g if there exist a Schwarz
function w € Q, such that f(z) = g(w(2)),(z € U) [2].

In 1976, Noonan and Thomas [18] defined the q‘* Hankel determinant of f given by (1.1) for integers n > 1 and
q=1hby

an An+1 e an+q—1
an+1 Any2 --- an+q

Hq (n) =
an+q—1 an+q tee an+2q—2

This determinant has been investigated by several authors in the literature [1, 18]. It is interesting to note that the Hankel
determinants H,(1) = |a; — a3| and H,(2) = |a,a, — a3| are well known as Fekete-Szegd functional and second
Hankel determinant respectively.
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The Fekete-Szeg6 problem for the well known classes

o (zf'(@)
ST.—{fEA.Re<f(Z) ) > O,zE[U}

o ) (zf'(2))'
CV:= {f € A:Re (—f,(z) ) >0,z€ IU}

and

was investigated by Keogh and Merkes [12]. Recently, many authors have discussed upper bounds for the Hankel
determinant of functions belonging to various subclasses of univalent functions [3, 4, 22] and references therein.

Janteng et al. discussed the Hankel determinant problem for the classes of starlike functions with respect to symmetric
points and convex functions with respect to symmetric points in [9] and for the functions whose derivative has a positive

real part in [10]. In their work, they have shown that if f € RT then |a,a, — d| < %. In [11], the authors also obtained
the second Hankel determinant and sharp bounds for the familiar subclasses of S, namely starlike and convex functions
denoted by ST and CV and showed that |a,a, —a3| <1 and |a,a, — a3| < % respectively. Mishra and Gochchayat
[16] have obtained the sharp bound to the non-linear functional |a,a, — aZ| for the class of analytic functions denoted

by Ry(ap),(0<p <plal < %)

Analogous to the Hankel determinant of univalent functions, we consider the Hankel determinant in the case ¢ = 2 and
n = p, known as second Hankel determinant for multivalent functions given by

H,(p) = ‘ap+1 ap+2|
2 Ap+2 Ap43l’

Estimate on the functional |a,,1a,3 — a3.,| for the classes of p-valent starlike and p-valent convex functions were
obtained by Krishna and Ramreddy [21]. However, for any real number u, the sharp estimate on the functional
|ay42 — ua§+1| for the classes of p-valent starlike and convex funtions of order a were obtained by Hayami and Owa

[71

Inspired by the earlier works obtained by different researchers in this direction, we in the present paper, obtain an upper
bound to the functional |a,,a,.3 — a3,| for the functions f belonging to multivalent a-spiral starlike and a-spiral
convex functions which are defined as follows.

Definition 1.1: For —1 < B < A <1, afunction f € 4,, given by (1.1), is said to be p-valently a —spiral starlike if
it satisfies the inequality
ez (2)

<cos «a (w) —isin a, for all z€U,|a| <-—. (1.2)
rf (z) 1+Bz 2p

We denote this class of functions by SB, , (4, B).

By specializing on the values of A, B,« and p, we obtain subclasses of analytic functions that were studied earlier in
literature.
1. SP,,(1,—1) = SB,(a), the class of p-valently a — spiral functions.
2. SP,o(1-2a,—1) = ST, (a), the class of p-valent starlike functions of order « was studied by Hayami and
Owa[7] and Vamshee Krishna et al. [21]
3. SPo(A,B) = ST*(A, B), the subclass of starlike functions was studied by Goel and Mehrok [5] and G.Singh
etal. [4].
4. SP,(1,-1) = SP(a), the class of a —spiral functions introduced by Spacek [20].
5. SPo(1,—1) = ST, the class of starlike functions, studied by Janteng et al. [11].

Definition 1.2: For —1 < B < A <1, afunction f € A, given by (1.1), is said to be p-valently convex a —spiral if it

satisfies the inequality

l[e“'"‘ (1 +M)] < cosa (w) —isin a, for all z€U,la| <
p f (2 14Bz

T

= (1.3)

We denote this class of functions by CVSP, , (A, B).
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By specializing on the values of A, B,« and p, we obtain subclasses of analytic functions that were studied earlier in

literature.
1. CVSB,,(1,—1) = CVSP,(a), the class of p-valently convex a — spiral functions.

2. CVSP,,(1—2a,—1) = CV,(a), the class of p-valent convex functions of order a was studied by Hayami and

Owa [7] and Vamshee Krishna et al. [21].

3. CVSP 4(A,B) = K(A,B), the subclass of convex functions was studied by Goel and Mehrok [5] and G.Singh

etal. [4].

4. CVSP ,(1,-1) = CVSP(a), the class of convex a —spiral functions studied by Vamshee Krishna et al. [22].

5. CVSP 4(1,—-1) = CV, the class of convex functions, studied by Janteng et al. [11].
In order to prove our main results, we shall need the following preliminary lemma.

Let P denote the class of functions p(z) of the form
p(2) =1+cz+ cz% + c32% + -+,

which are analytic in the open unit disk U for which Re{p(2)} > 0.

Lemma 1.3: [19] If the function p € P is given by the series (1.4), then the following sharp estimate holds :
el £2, k=12,

Lemma 1.4: [13, 14] If the function p € P is given by the series (1.4), then

2c, = ct +x(4—c?),

4oy =c +2¢0(4—cP)x — (4 — cP)x? +2(4 — cH(1 — [x]P)y,
for some x, y with |x| < 1,|y| <1 and ¢; € [0,2].

2. MAIN RESULTS ON a- SPIRAL STARLIKE FUNCTION

Theorem 2.1: Let the function f given by (1.1) be in the class SP, , (4, B). Then
2 (A—B)szcosz(a) T m
|ap+1ap 13 = A i2| < f(—; sas g)-

Proof: If f(z) € SB, ,(4, B), then there exist a Schwarz function w(z) € Q such that

e @) _ o
@ cose p(w(2) —isina, z€U
where
1+ Az
¢(2) =15, =1+ @Bz —B(A~-B)z* +B*(A-B)z* + -
=1+ B, z+ Byz*> + B;z% + -

Define the function p,(z) by
p.1(2) = T_rzg =14+cz+cz2+c3z3++, zeU

Since w(z) is a schwarz function, we see that Re(p;(2z)) > 0 and p;(0) = 1.

Define the function h(z) by
_ e_i"’zfl (2)+ipsin af (z)
h(z) = F @eosa , z€U

In view of the equations (2.2), (2.4) and (2.5), we have
h(Z) _ ¢ (p1(z)—1) — ¢( c1z+c2z24c3z3 +.. )

p1(2)+1 2+4c1z+cpz2+c323+
2 3
1 1 cq 2 1 ci 3
=¢|\>c z+—(c ——)z +—(c —c6t+=—)z° +
¢(2 12T\ L 2 2 172 7y
Bycq By cf Baci| 2
=1+—2z [—(c —=)+—=|z
t 2t e—5)

B, _ _13) Bm( _i) Bs_%] 34 ...
+[2(c3 clcz+4 + 2 cy > + p z° +

From (2.5), we have
e zf (z) +ip sin af(z) =p cos a {f(z) x h(2)}.

© 2022, IMA. All Rights Reserved
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Replacing f(2), f (z) by their equivalent p —valent expressions and also the equivalent expression for h(z) in (2.6),
we have
e z(pzP~! + Z;’f’zPHTnanz"‘l) +ip sina(zP + Z;’f’szTanz")

— o0 Bicy B1 612 Bzclz 2
= peos af(2 + T puilanz?) x (14 222+ 3 (e - ) + 272

Bi( . _13) Bm( _i) Bs_%] 3 )]
+[2(c3 clcz+4+2 Cy 2+8 z° + .

Upon simplification, we obtain
e (a,112P "t + 2a,,,2P % + 3a, ,32P T3 + )
= pcos a(z? + ap12P* + a, 2Pt +a,52P 3 + )

O e

Equating the coefficients of like powers of zP*1,zP+2 and zP*3 respectively in (2.8), we have
a,.e”" = %pcos a,

2
i Bicy By Bycq
Zap+2€ ia — 11 TpCOS a+ (7 (Cz - 7) + ~ pcos «a,
2
i Bicy By c Byc
3ay43€7% = @4y = PCOS & +apiq (7 (cz - 71) + Tl) pcos a
3 2 3
By c Bycq c B3c
+[7(63—6162+71)+ . (62—71)+—81]pcos a.

After simplifying using (2.3), we obtain

— pla A _B)Cl
Ay =€ 5 Peos @,
e“(A-B)_ .
Ay = (T) [ei*(A — B)c?pcos a + 2¢c, — ¢ — Bctlpcos a,

ia

e . .
T (A — B)[8c; + e?“(A — B)?c}p?cos?(a) — 3(A — B)e“pcos ac}
—3B(A— B)e'*c} + (2 + 4B + 2B?)c} + (6e'“pcos a(A— B) —8 — 8B)c,c,]pcos a.

Substituting the values of a,,,a,, and a, 5 in the second Hankel functional, we have
e?@(A — B)?p?cos’a

@y 11ap13 — af4a] = | [16c3¢; — €% (A — B)?cip*cos’a
—12¢% + (14 B)%c} — 4(1 + B)cyc?]|.

By using the facts |xp +yq| < x|p| + y|q|, where x, y, p and g are real numbers and |e™*|=1, upon
simplification , we obtain

A—B)2p2 co 52
|G 11 @43 — Bz S L5 [1605¢, — (A — B)?cfpPeosia

2.9)
—12¢? + (1 + B)?c{ — 4(1 + B)c,yci]|.
Substituting the values of ¢, and c¢; from Lemma 1.4, we have
(A — B)*p?cos®a
@y 11Gp43 = Ap 12l < 192 l4cy[ef + 2¢1 (4 — ef)x — ¢y (4 — cf)x?
+2(4 - c)(1 - |x|>)y] — (A—B)?ctp?cos?a + (1 + B)?ct
=3[cf + (4 —c})?x +2c2 (4 — cP)x] — 2(1 + B)c}[c? + (4 — cP)x]|.

Assume that ¢; = ¢ and ¢ € [0,2], using triangular inequality and |y| < 1, we have
A — B)?p?cos’a
@y 118,43 — a3i,] < ( 192)2 (110 + 4B + B?|c* + (A — B)?*p?cos?ac*
+](16 + 2B)c?(4 — ¢?)|6 + | (12 — 7¢? — 8¢) (4 — ¢?)|62))

2.2 2
=(AB)1$F(C,6), where §=|x|<1 and

F(c,8) = |10 + 4B + B%|c* + (A — B)?*p?cos?a c* + |[(16 + 2B)c?(4 — c¢®)]|6 + |[(12 — 7c? — 8c) (4 — ¢?)]|62.
(2.10)

Now the function F(c, §) is maximized on the closed square [0,2] x [0,1]. Differentiating F(c, §) in (2.10), partially

with respect to &, we get
2 = |[(16 + 2B)c? (4 — )] | + [(12 — 7¢? — 8c) (4 — )] |(26). 2.11)

© 2022, IMA. All Rights Reserved 11
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For 0 < § <1, and for fixed c with 0 < ¢ < 2, from (2.11) we observe that z—g > 0.

Consequently, F(c,§) isan increasing function of § and hence cannot have maximum value at any point in the interior
of the closed square [0,2] x [0,1]. Moreover, for fixed ¢ € [0,2], we have
0r£16a<x1F(c, 8) =F(c,1) = G(c). (2.12)

Upon simplifying the relation (2.10) and (2.12), we obtain
G(c) = (A—B)?*p%cos?a c* + (1+ B)%c* +8c3 + | (24 + 8B)|c? — 32c + 48. (2.13)

Differentiation yields :
G'(c) = (A — B)?*p?cos®a(4c®) + (1 + B)?(4c®) + 24c? + 2|(24 + 8B)|c — 32. (2.14)

From the expression (2.14), we observe that G'(c¢) < 0 from all values of ¢ in the interval 0 < ¢ < 2 and for a fixed

valued of a with (% <a< %)

Therefore, G(c) is a monotonically decreasing function of ¢ in the interval [0,2]. So, that its maximum value occurs at ¢ =

0. From (2.13), we get
max G (0) = 48. (2.15)
0<c<2

After simplifying the expressions (2.9) and (2.15) we obtain
|16¢5¢; — (A — B)?ctp?cos?a — 12¢2 + (1 + B)%ct — 4(1 + B)c,c?| < 48. (2.16)

Upon simplifying the expressions (2.9) and (2.16), we get
A—B)2p2 2
|Gy 41043 — 2| < LD, (2.17)

Choosing ¢; = ¢ =0 and selecting x = —1 in Lemma 1.3, we find that ¢, = —2 and c; = 0. Substituting these
values in (2.16), it is observed that equality is attained which shows that our result is sharp. This completes the proof.

Choosing A = 1,B = —1, Theorem 2.1 gives the following result.

Corollary 2.2: If £(2) € SP, () (% <a< %) then [a, 1 a,,3 — a2,2| < p?cos?(a).

Choosing A=1-28 (0 < <1),B=-1,a =0 Theorem 2.1 gives the following result.

Corollary 2.3: If £(2) € ST, (8) (o <p<(p- %)) then [a,,1@y43 — @2,2] < (0 — B)%

Choosing p = 1, = 0 Theorem 2.1 gives the following result.

_p\2
Corollary 2.4: If f(z) € ST*(4,B)(—1 < B < A < 1), then |a,a, — a?| < 4221 43) -

Choosing A = 1,B = —1, and p = 1 Theorem 2.1 gives the following result.
Corollary 25 If f(z) € SP(a) and for (= < a < %) then |a,a, — a3| < cos?(a).
Choosing A =1,B=—1,p=1 and a = 0 Theorem 2.1 gives the following result.
Corollary 2.6: If f(z) € ST, then |aya, — a3| < 1.

This inequality is sharp and coincides with that of Janteng, Halim and Darus [11].

3. MAIN RESULTS ON a- SPIRAL CONVEX FUNCTION

Theorem 3.1: Let the function f* given by (1.1) be in the class CVSPE, , (A, B). Then
|y 11043 — a;2)+2| <
p*(4=B)2cos2(@)[6—(1+B)(p2 +4p+7)+3(A—B)pcos a]?+48(p+1)(p+3)A(4,B) (3.1)
12(p+1)(p+2)2(p+3)A(A.B)

© 2022, IMA. All Rights Reserved 12
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where
A(A,B) =2(p* +4p + 7) + (A — B)?(p? + 4p + 1p?cos?(a) + 6(A — B)pcos(a)(1 + B)
—4(1+B)(p* +4p+1)— (p*> +4p + 7)(B?> + 4B + 3).

Proof: If f(z) € CVSP, (A, B), then there exist a Schwarz function w(z) € Q such that

11 _ia zf” )\] _ ter
. [e (1 + ey )] = cosa ¢p(w(z)) —isina, z€U (3.2)
where
1+ Az ) ) 3
o(z) = 178z 1+(A—-B)z—B(A—B)z*+B“(A—B)z> + -
=14 Byz+ B,z> + B3z3 + Byz* + ---. (3.3)

Define the function p,(z) by

pl(z)=%=1+clz+czzz+c3z3+-~-, z€U (3.4)

Since w(z) is a schwarz function, we see that Re(p,(z)) > 0 and p;(0) = 1. Define the function h(z) by
_ el [fl (z)+zf” (2)]+ipsin afl (z)
h(z) = o5 af @) , z€U (3.5)

In view of the equations (3.2), (3.4) and (3.5), we have
z)—1 c1z+cpz2+czz3 4
h(Z)=¢(p1() )=¢( 1z+cpz%+c3z° + )

p1(2)+1 2+4c1z+cpz2+c323+
2 3
1 1 cq 2 1 ci 3
= —CZ+—(C ——)Z +—(C —CC+—=)z°+ -
¢(2 1= \"2 L 2 g 15720y
Bic B c Byc
=1+ (e ) + 2

3 2 3
e+ D) 122 (e D) e 2]+ e

From (3.5), we have
e @ [f'(z) + zf" (2)] + ipsin af'(z) = pcos a{f'(z) X h(2)}.

Replacing f'(z) and f''(z) by their equivalent p-valent expressions and also the equivalent expression for h(z) in
(3.6), we have

e (pz" ™t + X7 Ina,z" ) + 2(p(p — D277 + X7 In(n — Da,z"?)
+ipsina(pzP~' + Z;’f’zPHTnanz"‘l)

- peos a1+ B ) x {14 0 [0, -D) 8D

Hemaer ) e (o) el
+[2(63 clcz+4 + > (G275 + p VAL I 4

Equating the coefficients of like powers of z?,zP*1 and zP*2 respectively in (3.7), we have
. Bic
(P + Dayse™™ =p——pcos a,

. Bic By ct\ B,c?
2(p +2Day 67" = (p+ Dayyq Tpcos a+p > G ——=]+ pcos «a,

. B;c B c?\ B,c?
3(p + 3)ay,ze7@ = (p +2)a,,, %pcos a+ @+ 1Da,y (71 (Cz — —1> + 2 1>pcos o

B 3 B 2 Bsc3}
+p [71 (63 —cicy + %) + 2261 (cz - %1) + —3861] pcos a.

After simplifying using (3.3), we obtain
o A= B)cy
TR
e'*(A—B)
2= g +2)

ia

p?cos a,
[ei* (A — B)c?pcos a + 2¢c, — c2(1 + B)]p?cos a,

Qi3 = BH T3 (A — B)[8c; + e?“(A — B)*c}p?cos? (a)

—3(A - B)e“pcos ac}(1+ B) +2(1 + B)%c} + 6e*pcos a(A — B)c,c, — 8cic,(1
+ B)]p%cos a.

© 2022, IMA. All Rights Reserved 13
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Substituting the values of a,,4,a,,, and a,,5 in the second Hankel functional and applying the same procedure as
described in Theorem 2.1, upon simplification, we have
) | < p*cos?(a)(A — B)?
1t =0l = 03 D + 2720 + 9)

[[(p +2)%c1c5 — cfcy (1 + B)(p + 2)?
“a 2 2 E _ 2 2
+ 2 p+2)(1+B) +4(A B)cic,(p + 2)*pcos a

_%(A — B)ctpcos a(1+ B)(p + 2)?
(A - B)?

+T
3 . , 3 2 492 00 o2

_E(p +1)(p+3)ct(1 +B) _E(A —B)*(p+ D(p + 3)cip*cos*(a)

2
%)
citpreos*(@)(p +2)* =3+ D + by

3 3
+chzcz(1 +B)(p+Dp@+3)+ §(A —B)ct (1 + B)pcos a(p+ 1)(p +3)
—%(p + 1)(p + 3)(A — B)ctcypcos a]|. (3.8)
The above expression is equivalent to

p4cosz (c)z)(A—B)Z

2 2 4
oDws e |dycic3 + dycic; +dscy + dact| (3.9)

lay 11043 — a;2)+2| <
where
dy = (p +2)*

3 3
d, =—(1+B)(p + 2)? +Z(1+B)(p2 +4p+3)+Z(A—B)pcos a
3
dy = =7 (p* +4p +3)

1 3 1
d, = E(l +B)?(p*+4p+7)— §(A —B)(1 + B)pcos a — E(A — B)?*p?cos’a(p®* +4p + 1)

Substituting the values of ¢, and c; from Lemma (1.4) in the right hand side of (3.9), we have
|dicic3 + dycicy +dscs +dyct| =

|dicy X i{cf +2¢ (4 —cP)x — (4 = cf)x* +2(4 = D) — |x[))y} + dycf (3.10)
X %{cl2 +x(4—cf}+ds x i{cl2 + x(4 — )} + dycf|.
After simplifying, we get
4|dycic5 + dycic, +dycd +duct| =
[(dy +2d, + d3 + 4dy)ct + 2d,c; (4 — c})y (3.11)
+2(dy +dy +d3)cf (4 — ) |x| — {(dy + d3)cf + 2dicy — 4d3}(4 — cf)|x|?y].

Substituting the values of d,, d,,d; and d,, we obtain
1 1
d; +2d, +d; + 4d, =Z(p2 +4p+7)+ (1+B)(p? +4p + 1)+Z(1+B)2(p2 +4p +7)
—%B(A — B)pcos a — i (A — B)?(p? + 4p + Dp?cos?a, (3.12)

d+dy+dy =7 (@p? +4p+7) — 7 (L+B)(p? +4p +7) + (A — B)pcos a, (3.13)

(dy + d3)cf + 2dyc; — 4d3 = i(p2 +4p+ e +2(* +4p + 4y + 3% +4p +3).  (3.14)

Consider
P> +4p +7)c2 +8(p? +4p + 4)cy + 12(p? + 4p + 3)
8(p% +4p + 4) 12(p? + 4p + 3)
p>+4p+7 at p*+4p+7
4P +4p+4))° 162 +4p+4) 120 +4p +3)
{Cl+ (p2+4p+7)} Tt (P Ap+)

=@*+4p+7)x|ct+

=@*+4p+7)x

© 2022, IMA. All Rights Reserved 14
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Upon simplification, the above expression can also be expressed as
(P* +4p + 7)cf +8(p* +4p + 4)c; +12(p* + 4p +3)

2
42 +4p+4)° (2/p*+8p3 +18p? +8p + 1
YU @t +ap+7) (P> +4p +7)

={p*+4p+7)x

(P +4p + 7)cf + 80 +4p + 4)c; + 12(p% + 4p + 3)
4P *+4p+4) 2/p*+8p3+18p2 +8p+1

=@*+4p+7)x

%)

YUl 2+ 4p+7) (P2 +4p+7)
[ 4(pP+ap+a)  2ypi+8p3+18p2+8p+1
X|et { (p2+4p+7) (p2+4p+7) }]'(3'15)

Since ¢; €[0,2], using the result (¢; + a)(c; + b) = (¢ —a)(c; — b), where a,b > 0 in the right-hand side of
(3.15), upon simplification, we obtain

P2 +4p+7)c + 8> +4p +4)c, + 12(p? +4p +3) =

(p% +4p + 7)c? — 8(p? + 4p + 4)cy + 12(p? + 4p + 3). (3.16)

From the relations (3.14) and (3.16), we obtain
—4(d, +d3)c? + 2dyc; — 4dy < —{(p? +4p + 7)c} — 8(p? +4p + 4)c; + 12(p? + 4p + 3)}. (3.17)

Substituting the calculated values from (3.13) and (3.17) in the right-hand side of the relation (3.12), we get
16|d,c,c3 + dycic, + dycs + dyct]
< HP*+4p+7)+4(1+B)P*>+4p+ 1)+ (1 + B> +4p+7)
—6B(A — B)pcos a — (A — B)*(p? + 4p + 1)p®cos?a)ct + 8(p? + 4p + 4)c; (4 — c})y
+2[(P*+4p +7)— (1 +B)(p?> +4p + 7) + 3(A — B)pcos alc?(4 — c?)|x|
+[(p? +4p + 7)c} — 8(p? + 4p + 4)c; + 12(p? + 4p + 3)]1(4 — cP)|x|?*y|. (3.18)

Choosing ¢; = ¢ € [0,2], applying triangle inequality and using |y| < 1, and also replacing |x| by & in the right hand
side of (3.18), it reduces to

16|d ¢ c5 + dycic, +dsct + dyct|
SH@P*+4p+7)+4(1+B)P*> +4p+ 1D+ (1+ B> +4p+7)
—6B(A — B)pcos a — (A — B)?(p? + 4p + Dp?cos?a}ct + 8(p? + 4p + 4)c; (4 — ¢?)
+2[(p*> +4p+7) — (1 + B)(p? + 4p + 7) + 3(A — B)pcos a]c?(4 — c})s
+[(p? + 4p + 7)c? — 8(p? + 4p + 4)c; + 12(p? + 4p + 3)1(4 — ¢#)6?]
=F(c6), for 0<6=|x]| <1

(3.19)

We assume that the upper bound for (3.19) occurs at an interior point of the set {5,¢):§ € [0,1] and ¢ € [0,2]}.

Differentiating F(c, §) in (3.19) partially with respect to &, we get
z—g ={2(*+4p+7)— (1 +B)(p*+4p+7) + 3(A— B)pcos a}c?(4—c?) (3.20)
+{2(p% + 4p + 7)c? — 8(p% + 4p + 4)c + 12(p? + 4p + 3)}(4 — ¢?)4.

For 0 < & <1, and for fixed c with 0 < ¢ < 2 and (% <a< %),from (3.20) we observe that z—g > 0.

Consequently, F(c,§) isan increasing function of § and hence cannot have maximum value at any point in the interior
of the closed square [0,2] x [0,1]. Moreover, for fixed ¢ € [0,2], we have
Or%a}lF(c, 8) =F(c,1) = G(c). (3.21)

Upon simplifying the relation (3.19) and (3.21), we obtain
Gle)=[{-2p*+4p+7)+4(1 +B)(p* +4p+ 1) + (p* +4p + 7)(B* + 4B + 3)
—6(A — B)pcos a(1+ B) — (A —B)?(p? + 4p + 1)p*cos?a}]c* (3.22)
+[48 —8(1 + B)(p? + 4p + 7) + 24(A — B)pcos a]c? +48(p + 1)(p + 3)
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Differentiation yields:
G'(©)=[{-2p*+4p+7)+4(1+B)(P*+4p+ 1)+ (p* +4p + 7)(B* + 4B + 3)
—6(A — B)pcos a(1+ B) — (A — B)?(p? + 4p + 1)p?cos?a}](4c?) (3.23)
+[48 — 8(1 + B)(p? + 4p + 7) + 24(A — B)pcos a](2¢).

G'()=[{—2@*+4p+7)+4(1+B)(®P*> +4p + 1) + 12(p* + 4p + 7)(B? + 4B + 3)
—(A - B)pcos a(1+ B) —(A— B)?(p? + 4p + 1)p?cos?a}](12c?) (3.24)
+[48 — 8(1 + B)(p? + 4p + 7) + 24(A — B)pcos a](2).
The maximum of minimum value of G(c) is obtained for the values of G'(c) = 0. From the expression (3.23), we get
G')=[{-2*+4p+7)+4(1 +B)(p*+4p+ 1) + (p* +4p + 7)(B  + 4B + 3)
—6(A — B)pcos a(1+ B) — (A — B)?(p? + 4p + 1)p?cos?a}](4c?) (3.25)
+[48 — 8(1 + B)(p? + 4p + 7) + 24(A — B)pcos a](2c) = 0.

We now discuss the following cases.
Case-1: If ¢ = 0, then from (3.24), we obtain
T
G'"(c)=96 —16(1+B)(p* +4p +7) + 48(A — B)pcos a > 0 because |a| < 7
Therefore, by the second derivative test, G(c) has a minimum value at ¢ = 0, which is ruled out.
Case-2: If ¢ # 0, then from (3.25), we obtain

o2 = 4(6—(14+B)(p%+4p+7)+3(A—B)pcos a)
- A(AB)

(3.26)

where
A(A,B) =2(p* +4p + 7) + (A — B)?(p? + 4p + Dp?cos?(a) + 6(A — B)pcos(a)(1 + B)
—4(1+B)(p*+4p+1)— (p* +4p+ 7)(B*> + 4B + 3)

Using the value of ¢? in (3.24), after simplifying, we get
Vs
G'"(c)=—(192-32(1+ B)(p*> +4p +7) + 96(A — B)pcos a) <0 because |a| < 7
From the second derivative test, G(c) has a maximum value at c, where c? is given by (3.26).

From the expression (3.22), we have G-maximum value at c?, after simplifying it is given by
16[6—(1+B)(p2 +4p+7)+3(A—B)pcos a]?>+48(p+1)(p+3)A(4,B)
12 (p+1)(@+2)2(p+3)A(A,B)

Orgcas)%(;(c) = (3.27)

where
A(A,B) =2(p* +4p + 7) + (A — B)?(p? + 4p + Dp?cos?(a) + 6(A — B)pcos(a)(1 + B)
—4(1+B)(p*+4p+1)— (p*> +4p+ 7)(B* + 4B +3)

Considering only the maximum value of G(c) at ¢, where c? is given by (3.26). From the expression (3.19) and (3.27),
upon simplification , we obtain
— 2 _ 2
|d1C1C3 +d261262 +d3622 +d4cf| < [6—(14+B)(p*+4p+7)+3(A—B)pcos a]“+48(p+1)(p+3)A(A,B)

12(p+1)(p+2)%(p+3)A(A,B)

(3.28)

From the expression (3.9) and (3.28), after simplifying, we get
lay 11043 — a;2)+2| <
p*(A-B)%cos2(a)[6—(1+B)(p2 +4p+7)+3(A—B)pcos a]*+48(p+1)(p+3)A(A,B) (3.29)
12(p+1)(p+2)2(p+3)A(4,B)

where
A(A,B) =2(p* +4p + 7) + (A — B)?(p? + 4p + Dp?cos?(a) + 6(A — B)pcos(a)(1 + B)
—4(1+B)(p*+4p+1)— (P*>+4p+7)(B*> + 4B +3)

Choosing x = —1 in Lemma 1.3, we find that ¢, = c? — 2 and ¢; = ¢ — 3¢;. The result is sharp for ¢, = c,
c, =c?—2 and c; = c® — 3c where c? is given by (3.26).

This completes the proof.

Choosing A = 1,B = —1, Theorem 3.1 gives the following result.
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. - T
Corollary 3.2: If f(z) € CVSP,(a) (Z <a< Z)' then
lay 1013 — a;2)+2| =
p*(6(1 + 2pcos(a) + p*cos?(a) + (p + 1)(p + 3)(p? +4p + 7 + 2(p? + 4p + Dp?cos?(a))

@+ D@ +2)2@+3){20@*+4p +1) + (p? + 4p + 7)p?sec?(a)}

Choosing A =1-28(0 < <1),B=-1,a =0 Theorem 3.1 gives the following result.

Corollary 3.3: If £(2) € CV, (B) (o <p<(p- %)) then
lay 1013 = a;2)+2| =
p*(p — B2[6(p+1—B)* + (p+ D(p + ){2B(B — 2p)(p* + 4p + 1) + (2p* + 8p® + 3p* + 4p + 7)}]
@+ D@ +2)?@+3)[2B(B —2p)(p? +4p + 1) + (2p* + 8p3 + 3p? + 4p + 7)] '

Choosing p = 1, = 0 Theorem 3.1 gives the following result.

Corollary 3.4: If f(z) e K(A,B)(—1<B <A <1), then
(A—B)?[16]| — A + 2B* + AB| — |A —5B|* — 12|A — 5B| — 36
576 | — A% +2B? + AB|— |A—-5B| -2

laza, — af| <

Choosing A = 1,B = —1, and p = 1 Theorem 3.1 gives the following result.

Corollary 3.5: If f(z) € CVSP(a) and for (_2—” <a< %) then |a,a, — a3| < %
Choosing A =1,B =—1,p =1 and a@ = 0 Theorem 3.1 gives the following result.

Corollary 3.6: If f(2) € CV, then |a,a, — a3| <.

This inequality is sharp and coincides with that of Janteng, Halim and Darus [11].
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