International Journal of Mathematical Archive-2(10), 2011, Page: 1985-1991 MA Available online through <u>www.ijma.info</u> ISSN 2229 – 5046

i- Regular Generalized Closed sets in Isotonic Spaces

A. Francina Shalini*

Department of Mathematics, Nirmala College for Women, Coimbatore, India

I. Arockiarani

Department of Mathematics, Nirmala College for Women, Coimbatore, India

E-mail: francshalu@gmail.com

(Received on: 31-08-11; Accepted on: 16-09-11)

ABSTRACT

T he purpose of this paper is to define and study i-regular generalized closed sets in isotonic spaces. We also introduce the concept of i-regular generalized - continuous functions and investigate their properties.

*Key Words: i- regular generalized closed sets, i- regular generalized continuous maps, i regular generalized closed maps, T*_{*irg*} *space.*

AMS Classification: 54A05.

1. INTRODUCTION:

Levine [7] initiated the study of g-closed sets, that is, a subset A of a topological space (X, τ) is g-closed if the closure of A is included in every open superset of A.

A function μ from the power set P(X) of a nonempty set X into itself is called a Generalized closure operator (briefly GCO) on X and the pair (X, μ) is said to be Generalized closure space (briefly GCS).

In this paper, we introduce and study the notion of irg - closed sets in isotonic spaces. We define a new class of space namely T_{irg} -space and their properties are studied. Further, we introduce a class of irg- continuous maps and irg- closed maps and their characterizations are obtained.

PRELIMINARIES:

An operator $\mu: P(X) \rightarrow P(X)$ is called grounded if $\mu \phi = \phi$, isotonic if $A \subseteq B \subseteq X$ implies $\mu A \subseteq \mu B$, expansive if $A \subseteq \mu A$ for every $A \subseteq X$, idempotent if $\mu \ \mu A = \mu A$ for every $A \subseteq X$ and additive if $\mu \ (A \cup B) \subseteq \mu A \cup \mu B$ for all subsets A and B of X.

Definitions: 1.1

(i) The space (X, μ) is said to be isotonic if μ is grounded and isotonic.

(ii) The space (X, μ) is said to be a neighborhood space if μ is grounded, expansive and isotonic.

(iii) The space (X, μ) is said to be a closure space if μ is grounded, expansive, and isotonic and idempotent.

(iv) The space (X, μ) is said to be a Cech closure space if μ is grounded, expansive, isotonic and additive.

(v) A subset A of X is said to be closed if $\mu A = A$. It is open if its complement is closed.

(vi) The empty set and the whole space are both open and closed.

Definition: 1.2 An isotonic space (Y, l) is said to be a subspace of (X, μ) if $Y \subseteq X$ and $\mu(A) = \mu(A) \cap Y$ for each subset $A \subseteq Y$. If Y is closed in (X, μ) then the subspace (Y, l) of (X, μ) is said to be closed too.

Definition: 1.3 Let (X, μ) and (Y, l) be isotonic spaces. A map f: $(X, \mu) \rightarrow (Y, l)$ is said to be continuous, if f $(\mu A) \subseteq \mu$ f(A) for every subset $A \subseteq F$.

Corresponding author: A. Francina Shalini, *E-mail: francshalu@gmail.com

Definition: 1.4 Let (X, μ) and (Y, l) be isotonic spaces. A map f: $(X, \mu) \rightarrow (Y, l)$ is said to be closed (resp. open) if f (F) is a closed (resp. open) subset of (Y, l) whenever F is a closed (resp. open) subset of (X, μ) .

Definition: 1.5 Let Let (X, μ) and (Y, l) be isotonic spaces. A map f: $(X, \mu) \rightarrow (Y, l)$ is said to be closure preserving if μ f(A) $\subseteq l$ f(A) for all A $\subseteq P(X)$

Definition: 1.6 The product of a family $\{(X_{\alpha}, \mu_{\alpha}); \alpha \in I\}$ of isotonic spaces denoted by $\prod_{\alpha, \beta} (X_{\alpha}, \mu_{\alpha})$ is the isotonic

space $\prod_{\alpha} (X_{\alpha}, \mu_{\alpha})$ where $\prod_{\alpha} X_{\alpha}$ denotes the Cartesian product of sets X_{α} , $\alpha \in I$ and μ is isotonic operator generated

by the projections $\pi_{\alpha} : \prod_{\alpha} (X_{\alpha}, \mu_{\alpha}) \to (X_{\alpha}, \mu_{\alpha})$, $\alpha \in I$ i.e defined by $\mu(A) = \prod_{\alpha} \mu_{\alpha} \pi_{\alpha}(A)$ for each $A \subseteq \prod X_{\alpha}$

Clearly, if $\{(X\alpha, \mu_{\alpha}): \alpha \in I\}$ is a family of isotonic spaces, then the projection map $\pi_{\beta}: \prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha}) \to (X_{\beta}, \mu_{\beta})$ is

closed and continuous for every $\beta \in I$.

Proposition: 1.7 Let $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$ be a family of isotonic spaces, let $\beta \in I$ and $F \subseteq X_{\beta}$. Then F is a closed subset of (X_{β}, μ_{β}) if and only if F x $\prod_{\substack{\alpha \in \beta \\ \alpha \neq \beta}} X_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$.

Proof: Let $\beta \in I$ and let F be a closed subset of (X_{β}, μ_{β}) . Since π_{β} is closure preserving, $\pi_{\beta}^{-1}(F)$ is a closed subset of $\prod_{\alpha, \mu, \alpha, \beta} (X_{\alpha}, \mu_{\alpha})$. But $\pi_{\beta}^{-1}(F) = F \times \prod_{\alpha} X_{\alpha}$

 $\alpha \in I$

$$\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$$

Hence F x $\prod_{\substack{\alpha\neq\beta\\\alpha\in I}} X_{\alpha}$ is a closed subset of $\prod_{\alpha\in I} (X_{\alpha}, \mu_{\alpha})$.

Conversely, let F x $\prod_{\substack{\alpha \neq \beta \\ \alpha \neq l}} X_{\alpha}$ is a closed subset of $\prod_{\substack{\alpha \in I \\ \alpha \neq l}} (X_{\alpha}, \mu_{\alpha})$. Since π_{β} is closed, $\pi_{\beta} (Fx \prod_{\substack{\alpha \neq \beta \\ \alpha \neq l}} X_{\alpha}) = F$ is a closed subset of $\prod_{\alpha \in I} (X_{\beta}, \mu_{\beta})$.

Proposition: 1.8 Let $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$ be a family of isotonic spaces, let $\beta \in I$ and $G \subseteq X_{\beta}$. Then G is a open subset of (X_{β}, μ_{β}) if and only if G x $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an open subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$.

2. i-REGULAR GENERALIZED - CLOSED SETS:

Definition: 2.1 Let (X, μ) be an isotonic space. A subset $A \subseteq X$ is called a i-regular generalized closed (briefly irg – closed) set, if $\mu A \subseteq G$ whenever G is a regular open subset of (X, μ) with $A \subseteq G$. A subset A of X is called a i-regular generalized open set (briefly irg – open) if its complement is a irg- closed subset.

Proposition: 2.2 Every closed set is irg - closed.

Proof: Let G be a regular -open subset of (X, μ) such that $A \subseteq G$. Since A is a closed set, we have $\mu A = A \subseteq G$. Therefore A is irg-closed.

The converse need not true as seen in the following example:

Example: 2.3 Let $X = \{a, b\}$ and define an isotonic operator μ on X by $\mu \phi = \phi$, $\mu \{a\} = \mu \{b\} = \mu X = X$. Then $\{a\}$ is irg - closed but it is not closed.

Proposition: 2.4 Let (X, μ) be an isotonic and let μ be additive. If A and B are irg - closed subsets of (X, μ) , then $A \cup B$ is also irg - closed.

© 2011, IJMA. All Rights Reserved

Proof: Let G be a regular open subset of (X, μ) such that $A \cup B \subseteq G$, then $A \subseteq G$ and $B \subseteq G$. Since A and B are irg - closed, we have μ (A) \subseteq G, and μ (B) \subseteq G, Consequently, μ (A \cup B) = μ (A) $\cup \mu$ (B) \subseteq G. Therefore A \cup B is irg - closed.

Remark: The intersection of two irg- closed sets need not be irg - closed as can be seen by the following example.

Example: 2.5 Let $X = \{1,2,3\}$ and define an isotonic operator μ on X by $\mu\phi = \phi$, $\mu\{1\} = \{1,2\}$; $\mu\{2\} = \mu\{3\} = \mu\{2,3\} = \{2,3\}$; $\mu\{1,2\} = \mu\{1,3\} = \mu X = X$. If $A = \{1,2\}$ and $B = \{1,3\}$ are irg closed, then $\{1,2\} \cap \{1,3\} = \{1\}$ which is not irg - closed.

Proposition: 2.6 Let (X, μ) be an isotonic space. If A is irg - closed and F is regular closed in (X, μ) , then $A \cap F$ is irg- closed.

Proof: Let G be a regular open subset of (X, μ) such that $A \cap F \subseteq G$, Then $A \subseteq G \cup (X-F)$.and so, Since A is irg- closed, $\mu(A) \subseteq G \cup (X-F)$, Then $\mu(A) \cap F \subseteq G$, $\mu(A \cap F) \subseteq G$. Therefore $A \cap F$ is irg - closed.

Proposition: 2.7 Let (Y, l) be a closed subspace of (X, μ) . If F is a irg - closed subset of (Y, l), then F is a irg - closed subset of (X, μ) .

Proof: Let G be regular open set of (X, μ) such that $F \subseteq G$. Since F is irg - closed and $G \cap F$ is regular open $\mu(F) \cap Y \subseteq G$, But Y is closed subset of (X, μ) and $\mu(F) \subseteq G$, where G is a regular open set. Therefore F is a irg- closed set of (X, μ) .

The following statement is obvious

Proposition: 2.8 Let (X, μ) be an isotonic space and let $A \subseteq X$. If A is both regular open and irg - closed then A is closed.

Proposition: 2.9 Let (X, μ) be an isotonic space and let k be idempotent. If A is a irg- closed subset of (X, μ) such that $A \subseteq B \subseteq \mu$ (A), then B is a irg - closed subset of (X, μ) .

Proof: Let G be a regular open subset of (X, μ) such that $B \subseteq G$. Then $A \subseteq G$, Since A is irg - closed, $\mu(A) \subseteq G$. As G is idempotent, $\mu(B) \subseteq \mu(\mu(A)) = \mu(A) \subseteq G$, Hence B is irg - closed. Since (X, μ) is grounded, expansive, isotonic and idempotent. It now becomes a closure space.

Proposition: 2.10 Let (X, μ) be an isotonic space and let $A \subseteq X$. If A is irg - closed, then $\mu(A) - A$ has no non empty regular closed subset.

Proof: Suppose that A is irg- closed. Let F be a regular - closed set of μ (A) – A. Then F $\subseteq \mu$ (A) \cap (X– A), so A \subseteq X-F. Consequently, since A is irg – closed F \subseteq X- μ (A), Since F $\subseteq \mu$ (A), F \subseteq (X- μ (A)) $\cap \mu$ (A) = ϕ ,

thus $F = \phi$. Therefore $\mu(A) - A$ contains no non empty regular closed subset.

Proposition: 2.11. Let (X, μ) be an isotonic space. A set $A \subseteq X$ is irg- open if and only if $F \subseteq X - \mu$ (X-A) whenever F is regular closed subset of (X, μ) with $F \subseteq A$.

Proof: Suppose that A is irg- open and F be a regular closed subset of (X, μ) such that $F \subseteq A$. Then X-A $\subseteq X - F$. But X-A is irg- closed and X-F is regular open. It follows that μ (X-A) $\subseteq X - F$. (i.e) $F \subseteq X - \mu$ (X-A).

Conversely, Let G be a regular open subset of (X, μ) such that X-A \subseteq G. Then X-G \subseteq A. Therefore X-U $\subseteq \mu$ (X-A). Consequently, μ (X-A) \subseteq G. Hence X- A is irg- closed and so A is irg- open.

Remark: 2.12 The union of two irg- open sets need not be irg- open.

Proposition: 2.13 Let (X, μ) be an isotonic space. If A and B are irg- open of (X, μ) , then $A \cap B$ is irg – open.

Proof: Let F be a regular closed subset of (X, μ) such that $F \subseteq A \cap B$. Then $X - (A \cap B) \subseteq X - F$.

Consequently, $(X-A) \cup (X-B) \subseteq X - F$. By proposition 2.4, $(X-A) \cup (X-B)$ is irg – closed. Thus, $\mu [(X-A) \cup (X-B)] \subseteq X - F$. Hence $F \subseteq X - \mu [(X-A) \cup (X-B)] \subseteq X - \mu (X - (A \cap B))$, By proposition 2.11, $A \cap B$ is irg – open.

Proposition: 2.14 Let (X, μ) be an isotonic space. If A is irg- open subsets of (X, μ) , then X = G whenever G is regular open and $(X - \mu (X - A)) \cup (X - A) \subseteq G$.

Proof: Suppose that A is irg – open. Let G be a regular open subset of (X, μ) such that $(X - \mu (X - A)) \cup (X - A) \subseteq G$. Then $X - G \subseteq X - [(X - \mu (X - A)) \cup (X - A)]$. Therefore $X - G \subseteq \mu (X - A) \cap A$ or equivalently, $X - G \subseteq \mu (X - A) - A$ (X- A). But X – G is regular closed and X – A is irg – closed. Then by proposition 2.10, X – G = ϕ . Consequently X = G.

Proposition: 2.15 Let (X, μ) be an isotonic space and let $A \subseteq X$. If A is irg - closed, then $\mu(A) - A$ is irg- open.

Proof: Suppose that A is irg - open. Let F be a regular - closed set of (X, μ) such that $F \subseteq \mu(A) - A$. By proposition 2.10 F = ϕ , and hence F \subseteq X - μ [(X- μ (A- A)). By proposition 2.11 μ (A) – A is irg – open.

Proposition: 2.16 Let $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$ be a family of isotonic spaces, let $\beta \in I$ and $G \subseteq X_{\beta}$. Then G is a irg - open subset of (X_{β}, μ_{β}) if and only if $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \neq i}} X_{\alpha}$ is a irg- open subset of $\prod_{\alpha \neq i} (X_{\alpha}, \mu_{\alpha})$.

Proof: Let F be a regular closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ such that $F \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$, Then $\pi_{\beta}(F) \subseteq G$. Since $\pi_{\beta}(F)$ is

regular closed and G is irg - open in (X_{β}, μ_{β}) ,

$$\pi_{\beta}(F) \subseteq X_{\beta} - \mu_{\beta} (X_{\beta}-G). \text{ Therefore } F \subseteq \pi_{\beta}^{-1}(X_{\beta} - \mu_{\beta} (X_{\beta}-G)) = \prod_{\alpha \in I} X_{\alpha} - \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha} (\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\alpha \notin \beta \atop \alpha \in I} X_{\alpha}), \text{ hence } G \times \prod_{\alpha \notin \beta} X_{\alpha} \text{ is a irg- open subset of } \prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha}).$$

Conversely, Let F be a regular closed subset of (X_{β},μ_{β}) such that $F \subseteq G$. Then $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$).

since
$$F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$$
 is regular closed and $G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is irg- open in $\prod_{\substack{\alpha \in I \\ \alpha \in I}} (X_{\alpha}, \mu_{\alpha})$.
 $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq \prod_{\alpha \in I} X_{\alpha} - \prod_{\substack{\alpha \in I \\ \alpha \in I}} \mu_{\alpha} \pi_{\alpha} (\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha})$.

α∈I

Therefore

$$\prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha} (X_{\beta} - G) \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}) \subseteq \prod_{\alpha \in I} X_{\alpha} - F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} = (X_{\beta} - F) \prod_{\alpha \in I} X_{\alpha}$$

Consequently, $\mu_{\beta}(X_{\beta} - G) \subseteq X_{\beta} - F$ implies $F \subseteq X_{\beta} - \mu_{\beta}(X_{\beta} - G)$. Hence G is an irg - open subset of (X_{β}, μ_{β}) .

Proposition: 2.17 Let $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$ be a family of isotonic spaces, let $\beta \in I$ and $F \subseteq X_{\beta}$. Then F is a irg- closed subset of (X_{β},μ_{β}) if and only if $F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ is a irg - closed subset of $\prod_{\alpha \in I} (X_{\alpha},\mu_{\alpha})$.

Proof: Let F be a irg- closed subset of (X_{β},μ_{β}) . Then X_{β} - F is an irg - open subset of (X_{β},μ_{β}) . By proposition 2.16, $(X_{\beta} - F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} = \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}^{-} F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}^{-}$ is an irg - open subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$. Hence $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}^{-}$ is an irg - closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$. subset of \prod $(X_{\alpha}, \mu_{\alpha}).$

Conversely, let G be a regular open subset of (X_{β},μ_{β}) such that $F \subseteq G$,

Then
$$F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha} \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$$
. Since $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is regular open in $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$.

 $\prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha} (F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\beta}) \subseteq G \times \prod_{\alpha \in I} X_{\alpha} \text{.Consequently, } \mu_{\beta}(F) \subseteq G. \text{ Therefore, F is a irg - closed subset of } (X_{\beta}, \mu_{\beta}).$

Proposition: 2.18 Let $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$ be a family of isotonic spaces, For each $\beta \in I$ and let $\pi_{\beta}: \prod_{\alpha \in I} X_{\alpha} \to X_{\beta}$ be a

projection map. Then

α∈I

(i) If F is an irg closed subset of Π (X_α, μ_α), then π_β(F) is an irg-closed subset of (X_β, μ_β).
(ii) If F is an irg closed subset of (X_β,μ_β), then π_β⁻¹(F) is an irg closed subset of Π (X_α, μ_α),

Proof: (i) Let F be an irg closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ and let G be a regular open subset of (X_{β}, μ_{β}) such that π_{β} (F) \subseteq G. Then F $\subseteq \pi_{\beta}^{-1}(G) = G \times \prod_{\alpha \in I} X_{\alpha}$. Since F is an irg closed and $G \times \prod_{\alpha \in I} X_{\beta}$ is regular open, $\prod_{\alpha \in I} \mu_{\alpha}\pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\alpha}$. Consequently $\mu_{\beta}\pi_{\beta}(F) \subseteq G$. Hence $\pi_{\beta}(F)$ is an irg closed subset of (X_{β}, μ_{β}) .

(ii) Let F be an irg closed subset of (X_{β},μ_{β}) , Then $\pi_{\beta}^{-1}(F) = F \times \prod_{\alpha \neq \beta} X_{\alpha}$

Therefore, we have, $F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an irg closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$. Therefore, $\pi_{\beta}^{-1}(F)$ is an irg closed subset of $\prod (X_{\alpha}, \mu_{\alpha})$.

Definition: 2.19 An isotonic space (X, μ) is said to be a T_{irg} -space if every irg closed subset of (X, μ) is closed.

Proposition: 2.20 Let (X, μ) be an isotonic space. Then

(i) If (X, μ) is a T_{irg} -space then every singleton subset of X is either regular closed or open.

(ii) If every singleton subset of X is a regular - closed subset of (X, μ) , then (X, μ) is a T_{irg} -space.

Proof: (i) Suppose that (X, μ) is a T_{irg} -space. Let $x \in X$ and assume that $\{x\}$ is not regular - closed. Then $X-\{x\}$ is not regular - open. Since X is the only regular - open set which contains $X-\{x\}$ this implies $X-\{x\}$ is irg - closed.

Since (X, μ) is a T_{irg}-space, X-{x} is closed or equivalently {x} is open.

(ii)Let A be an irg - closed subset of (X, μ) . To prove: A is closed. Suppose that $x \notin A$. Then $\{x\} \subseteq X - \{x\}$. Since A is irg - closed and $X - \{x\}$ is regular – open, $\mu(A) \subseteq X - \{x\}$, (i.e) $\{x\} \subseteq X - \mu$ (A). Hence $x \notin \mu(A)$ and thus $\mu(A) \subseteq A$.

Therefore A is closed subset of (X,μ) . Hence (X,μ) is a T_{irg}-space.

3. i REGULAR GENERALIZED - CONTINUOUS MAPS:

Definition: 3.1 Let (X, μ) and (Y, l) be an isotonic space. A mapping $f : (X, \mu) \to (Y, l)$ is said to be irg - continuous, if $f^{-1}(F)$ is irg - closed set of (X, μ) for every closed set F in (Y, l).

Proposition: 3.2 Every continuous map is irg - continuous.

Proof: Let $f: (X, \mu) \to (Y, l)$ be continuous, Let F be a closed set of (Y, l).Since f is continuous, then $f^{-1}(F)$ is closed set of (X, μ) .Since every closed set is irg - closed of (X, μ) , we have $f^{-1}(F)$ is a irg - closed set of (X, μ) . Therefore f is a irg - continuous map.

Proposition: 3.3 Let (X, μ) be a T_{irg} space and let (Y, l) be an isotonic space. If $f: (X, \mu) \rightarrow (Y, l)$ is said to be regular - continuous, then f is irg- continuous,

Proof: Let F be a closed subset of (Y, l).Since F is regular - continuous, then $f^{-1}(F)$ is regular-closed set of (X, μ). Since (X, μ) is a T_{irq} space, $f^{-1}(F)$ is an irg- closed set of (X, μ). Hence, f is irg - continuous,

The following statement is obvious.

Proposition: 3.4 Let (X, μ) , (Y, l) and (Z, m) be an isotonic spaces. If f: $(X, \mu) \rightarrow (Y, l)$ is irg - continuous and g: $(Y, l) \rightarrow (Z, m)$ is continuous then $g \circ f : (X, \mu) \rightarrow (Z, m)$ is irg - continuous.

Proposition: 3.5 Let (X, μ) , (Z, m) be isotonic spaces and let (Y, l) be a T_{irg} space. If f: $(X, \mu) \rightarrow (Y, l)$ and g: $(Y, l) \rightarrow (Z, m)$ are irg - continuous, then $g \circ f$: $(X, \mu) \rightarrow (Z, m)$ is irg - continuous.

Proof: Let F be a closed subset of (Z, w).Since g is irg - continuous, then $g^{-1}(F)$ is irg - closed set of (Y, l).Since (Y, l) is a T_{irg} space, $g^{-1}(F)$ is a closed set of (Y, l) which implies that $(g \circ f)^{-1}(F)$ is a irg – closed subset of (X, μ). Hence, $g \circ f$ is irg – continuous.

Proposition: 3.6 Let {(X_{α}, μ_{α}): $\alpha \in I$ } and {(Y_{α}, l_{α}): $\alpha \in I$ } be families of isotonic spaces. For each $\alpha \in I$, let $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$ be a map defined by $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha})_{\alpha \in I})$. If $f: \prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$ is irg-

continuous, then f_{α} : $(X_{\alpha}, \mu_{\alpha}) \rightarrow (Y_{\alpha}, l_{\alpha})$ is irg - continuous for each $\alpha \in I$.

Proof: Let $\beta \in I$ and F be a closed subset of (Y_{β}, l_{β}) . Then F x $\prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}$ is a closed subset of $\prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$, Since f is irg -

continuous, $f^{-1}(F \ge \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}) = f_{\beta}^{-1}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ is an irg - closed subset of $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$. By proposition 2.17, $f_{\beta}^{-1}(F)$ is a

irg- closed subset of (X_{β}, μ_{β}) , Hence f_{β} is irg - continuous.

Definition: 3.7 Let (X, μ) and (Y, l) be an isotonic spaces. A map $f : (X, \mu) \to (Y, l)$ is called irg – irresolute if $f^{-1}(F)$ is irg – closed set in (X, μ) for every irg – closed set F in (Y, l).

Definition: 3.8 Let (X, μ) and (Y, l) be isotonic spaces. A map $f : (X, \mu) \rightarrow (Y, l)$ is called irg–closed if f(F) is a irg - closed subset of (Y, l) for every closed set F of (X, μ) .

Proposition: 3.9 Let (X, μ) and (Y, l) be isotonic spaces and let μ be additive. Let A and B be closed subsets of (X, μ) such that $X = A \cup B$. Let $f : (A, \mu_A) \rightarrow (Y, l)$ and $g : (B, \mu_B) \rightarrow (Y, l)$ be irg – continuous maps such that f(x) = g(x) for every $x \in A$ and h(x) = g(x) if $x \in B$. Then h: $(X, \mu) \rightarrow (Y, l)$ is irg – continuous.

Proof: Let F be a closed subset of (Y, l).Clearly $h^{-1}(F) = f^{-1}(F) \cup g^{-1}(F)$ since $f : (A, \mu_A) \to (Y, l)$ and $g : (B, \mu_B) \to (Y, l)$ are irg – continuous, $f^{-1}(F)$ and $g^{-1}(F)$ are irg – closed subset of (A, μ_A) and (B, μ_B) respectively. As A is a closed subset of (X, μ) , $f^{-1}(F)$ is a irg – closed subset of (X, μ) by proposition 2.7 Similarly $g^{-1}(F)$ is a irg – closed subset of (X, μ) . By proposition 2.4, $f^{-1}(F) \cup g^{-1}(F)$ is a irg – closed subset of (X, μ) . Therefore $h^{-1}(F)$ is an irg-closed subset of (X, μ) .

Hence h is irg-continuous.

REFERENCES

[1] C. Boonpok, between closed sets and Generalized closed in closure Spaces, Acta Math Univ, Ostra 16(2008), 3-14

[2] C. Boonpok, Generalized closed sets in čech closed space, Acta math Univ, Apulensis, No-22(2010), 133-140.

[3] C. Boonpok, Generalized closed sets in Isotonic spaces, Int. Journal of Math. Analysis, Vol.5, 2011, no.5, 241-256.

[4] E. Čech, Topological Spaces, Topological papers of Eduard Čech, Academia Prague (1968), 436-472.

[5] J. Chvalina, On homeomorphic topologies and equivalent systems, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976),107-116.

[6] J. Chvalina, Stackbases in power sets of neighbourhood spaces Preserving the continuity of mappings, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XVII, (1981),81-86.

[7] N. Levine: Generalized closed sets in topology, Rend, Circ. Mat .Palermo, 19 (1970), 89-96.

[8] L. Skula: Systeme von stetigen abbildungen. Caech. Math. J. 17. 92. (1967), 45-52.

[9] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci., 305, (2003), 457 – 471.

[10] P. Sundaram and Sheik John. Weakly closed sets and weak continuous maps in topological spaces. In proc. 82nd, volume 49, Indian Sci. cong Calcutta, 1995.
