

# i- Regular Generalized Closed sets in Isotonic Spaces

### A. Francina Shalini\*

Department of Mathematics, Nirmala College for Women, Coimbatore, India

## I. Arockiarani

Department of Mathematics, Nirmala College for Women, Coimbatore, India

E-mail: francshalu@gmail.com

(Received on: 31-08-11; Accepted on: 16-09-11)

### **ABSTRACT**

T he purpose of this paper is to define and study i-regular generalized closed sets in isotonic spaces. We also introduce the concept of i-regular generalized - continuous functions and investigate their properties.

**Key Words:** i- regular generalized closed sets, i- regular generalized continuous maps, i regular generalized closed maps,  $T_{irg}$  space.

AMS Classification: 54A05.

#### 1. INTRODUCTION:

Levine [7] initiated the study of g-closed sets, that is, a subset A of a topological space  $(X, \tau)$  is g-closed if the closure of A is included in every open superset of A.

A function  $\mu$  from the power set P(X) of a nonempty set X into itself is called a Generalized closure operator (briefly GCO) on X and the pair  $(X,\mu)$  is said to be Generalized closure space (briefly GCS).

In this paper, we introduce and study the notion of irg - closed sets in isotonic spaces. We define a new class of space namely  $T_{\text{irg}}$  -space and their properties are studied. Further, we introduce a class of irg- continuous maps and irg- closed maps and their characterizations are obtained.

## **PRELIMINARIES:**

An operator  $\mu: P(X) \to P(X)$  is called grounded if  $\mu \phi = \phi$ , isotonic if  $A \subseteq B \subseteq X$  implies  $\mu A \subseteq \mu B$ , expansive if  $A \subseteq \mu A$  for every  $A \subseteq X$ , idempotent if  $\mu \mu A = \mu A$  for every  $A \subseteq X$  and additive if  $\mu (A \cup B) \subseteq \mu A \cup \mu B$  for all subsets A and B of X.

#### **Definitions: 1.1**

- (i) The space  $(X, \mu)$  is said to be isotonic if  $\mu$  is grounded and isotonic.
- (ii) The space  $(X, \mu)$  is said to be a neighborhood space if  $\mu$  is grounded, expansive and isotonic.
- (iii) The space  $(X, \mu)$  is said to be a closure space if  $\mu$  is grounded, expansive, and isotonic and idempotent.
- (iv) The space  $(X, \mu)$  is said to be a Cech closure space if  $\mu$  is grounded, expansive, isotonic and additive.
- (v) A subset A of X is said to be closed if  $\mu A = A$ . It is open if its complement is closed.
- (vi) The empty set and the whole space are both open and closed.

**Definition: 1.2** An isotonic space (Y, l) is said to be a subspace of  $(X, \mu)$  if  $Y \subseteq X$  and  $\mu(A) = \mu(A) \cap Y$  for each subset  $A \subset Y$ . If Y is closed in  $(X, \mu)$  then the subspace (Y, l) of  $(X, \mu)$  is said to be closed too.

**Definition: 1.3** Let  $(X, \mu)$  and (Y, l) be isotonic spaces. A map  $f: (X, \mu) \rightarrow (Y, l)$  is said to be continuous, if  $f(\mu A) \subseteq \mu$  f(A) for every subset  $A \subseteq F$ .

------

**Definition:** 1.4 Let  $(X, \mu)$  and (Y, l) be isotonic spaces. A map  $f: (X, \mu) \rightarrow (Y, l)$  is said to be closed (resp. open) if f(F) is a closed (resp. open) subset of (Y, l) whenever F is a closed (resp. open) subset of  $(X, \mu)$ .

**Definition: 1.5** Let Let  $(X, \mu)$  and (Y, l) be isotonic spaces. A map  $f: (X, \mu) \to (Y, l)$  is said to be closure preserving if  $\mu$   $f(A) \subseteq l$  f(A) for all  $A \subseteq P(X)$ 

**Definition: 1.6** The product of a family  $\{(X_{\alpha}, \mu_{\alpha}) ; \alpha \in I\}$  of isotonic spaces denoted by  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$  is the isotonic

space  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$  where  $\prod_{\alpha \in I} X_{\alpha}$  denotes the Cartesian product of sets  $X_{\alpha}$ ,  $\alpha \in I$  and  $\mu$  is isotonic operator generated

by the projections  $\pi_{\alpha}: \prod_{\alpha \in I} (X_{\alpha}, \ \mu_{\alpha}) \to (X_{\alpha}, \ \mu_{\alpha})$  ,  $\alpha \in I$  i.e defined by  $\mu$  (A) =  $\prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}$  (A) for each A  $\subseteq \prod_{\alpha \in I} X_{\alpha}$ 

Clearly, if  $\{(X\alpha, \mu_{\alpha}): \alpha \in I\}$  is a family of isotonic spaces, then the projection map  $\pi_{\beta}: \prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha}) \to (X_{\beta}, \mu_{\beta})$  is

closed and continuous for every  $\beta \in I$ .

**Proposition: 1.7** Let  $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$  be a family of isotonic spaces, let  $\beta \in I$  and  $F \subseteq X_{\beta}$ . Then F is a closed subset of  $(X_{\beta}, \mu_{\beta})$  if and only if  $F \times \prod_{\alpha \in I \atop \alpha \in I} X_{\alpha}$  is a closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ .

**Proof:** Let  $\beta \in I$  and let F be a closed subset of  $(X_{\beta}, \mu_{\beta})$ . Since  $\pi_{\beta}$  is closure preserving,  $\pi_{\beta}^{-1}(F)$  is a closed subset of  $(X_{\alpha}, \mu_{\alpha})$ . But  $\pi_{\beta}^{-1}(F) = F \times \prod_{\alpha \neq \beta \atop \alpha \neq \beta} X_{\alpha}$ 

Hence F x 
$$\prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$$
 is a closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ .

Conversely, let F x  $\prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$  is a closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ . Since  $\pi_{\beta}$  is closed,  $\pi_{\beta}$  (F x  $\prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$ ) = F is a closed subset of  $\prod_{\alpha \in I} (X_{\beta}, \mu_{\beta})$ .

**Proposition:** 1.8 Let  $\{(X_{\alpha}, \mu_{\alpha}) : \alpha \in I\}$  be a family of isotonic spaces, let  $\beta \in I$  and  $G \subseteq X_{\beta}$ . Then G is a open subset of  $(X_{\beta}, \mu_{\beta})$  if and only if  $G \times \prod_{\alpha \in \beta} X_{\alpha}$  is an open subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ .

#### 2. i-REGULAR GENERALIZED - CLOSED SETS:

**Definition: 2.1** Let  $(X, \mu)$  be an isotonic space. A subset  $A \subseteq X$  is called a i-regular generalized closed (briefly irg – closed) set, if  $\mu A \subseteq G$  whenever G is a regular open subset of  $(X, \mu)$  with  $A \subseteq G$ . A subset A of X is called a i-regular generalized open set (briefly irg –open) if its complement is a irg- closed subset.

**Proposition: 2.2** Every closed set is irg - closed.

**Proof:** Let G be a regular -open subset of  $(X, \mu)$  such that  $A \subseteq G$ . Since A is a closed set, we have  $\mu A = A \subseteq G$ . Therefore A is irg-closed.

The converse need not true as seen in the following example:

**Example: 2.3** Let  $X = \{a, b\}$  and define an isotonic operator  $\mu$  on X by  $\mu \phi = \phi$ ,  $\mu \{a\} = \mu \{b\} = \mu X = X$ . Then  $\{a\}$  is irg - closed but it is not closed.

**Proposition:** 2.4 Let  $(X, \mu)$  be an isotonic and let  $\mu$  be additive. If A and B are irg - closed subsets of  $(X, \mu)$ , then  $A \cup B$  is also irg - closed.

**Proof:** Let G be a regular open subset of  $(X, \mu)$  such that  $A \cup B \subseteq G$ , then  $A \subseteq G$  and  $B \subseteq G$ . Since A and B are irg - closed, we have  $\mu$   $(A) \subseteq G$ , and  $\mu$   $(B) \subseteq G$ , Consequently,  $\mu$   $(A \cup B) = \mu(A) \cup \mu(B) \subseteq G$ . Therefore  $A \cup B$  is irg - closed.

**Remark:** The intersection of two irg- closed sets need not be irg - closed as can be seen by the following example.

**Example: 2.5** Let  $X = \{1,2,3\}$  and define an isotonic operator  $\mu$  on X by  $\mu\phi = \phi$ ,  $\mu\{1\} = \{1,2\}$ ;  $\mu\{2\} = \mu$   $\{3\} = \mu$   $\{2,3\} = \{2,3\}$ ;  $\mu\{1,2\} = \mu$   $\{1,3\} = \mu$   $\{1,3\} = \mu$   $\{1,4\} = \{1,4\}$  and  $\{1,4\} = \{1,4\}$  which is not irg - closed.

**Proposition: 2.6** Let  $(X, \mu)$  be an isotonic space. If A is irg - closed and F is regular closed in  $(X, \mu)$ , then  $A \cap F$  is irg- closed.

**Proof:** Let G be a regular open subset of  $(X, \mu)$  such that  $A \cap F \subseteq G$ , Then  $A \subseteq G \cup (X-F)$  and so, Since A is irg- closed,  $\mu(A) \subseteq G \cup (X-F)$ , Then  $\mu(A) \cap F \subseteq G$ ,  $\mu(A \cap F) \subseteq G$ . Therefore  $A \cap F$  is irg - closed.

**Proposition: 2.7** Let (Y, l) be a closed subspace of  $(X, \mu)$ . If F is a irg - closed subset of (Y, l), then F is a irg - closed subset of  $(X, \mu)$ .

**Proof:** Let G be regular open set of  $(X, \mu)$  such that  $F \subseteq G$ . Since F is irg - closed and  $G \cap F$  is regular open  $\mu$   $(F) \cap Y \subseteq G$ , But Y is closed subset of  $(X, \mu)$  and  $\mu$   $(F) \subseteq G$ , where G is a regular open set. Therefore F is a irg- closed set of  $(X, \mu)$ .

The following statement is obvious

**Proposition: 2.8** Let  $(X, \mu)$  be an isotonic space and let  $A \subseteq X$ . If A is both regular open and irg - closed then A is closed.

**Proposition: 2.9** Let  $(X, \mu)$  be an isotonic space and let k be idempotent. If A is a irg- closed subset of  $(X, \mu)$  such that  $A \subseteq B \subseteq \mu$  (A), then B is a irg - closed subset of  $(X, \mu)$ .

**Proof:** Let G be a regular open subset of  $(X, \mu)$  such that  $B \subseteq G$ . Then  $A \subseteq G$ , Since A is irg - closed,  $\mu(A) \subseteq G$ . As G is idempotent,  $\mu(B) \subseteq \mu(\mu(A)) = \mu(A) \subseteq G$ , Hence B is irg - closed. Since  $(X, \mu)$  is grounded, expansive, isotonic and idempotent. It now becomes a closure space.

**Proposition: 2.10** Let  $(X, \mu)$  be an isotonic space and let  $A \subseteq X$ . If A is irg - closed, then  $\mu(A) - A$  has no non empty regular closed subset.

**Proof:** Suppose that A is irg- closed. Let F be a regular - closed set of  $\mu$  (A) – A. Then  $F \subseteq \mu$  (A)  $\cap$  (X– A), so  $A \subseteq X$ -F. Consequently, since A is irg – closed  $F \subseteq X$ -  $\mu$  (A), Since  $F \subseteq \mu$  (A),  $F \subseteq (X - \mu(A)) \cap \mu(A) = \emptyset$ ,

thus  $F = \phi$ . Therefore  $\mu$  (A) – A contains no non empty regular closed subset.

**Proposition: 2.11.** Let  $(X, \mu)$  be an isotonic space. A set  $A \subseteq X$  is irg- open if and only if  $F \subseteq X - \mu$  (X-A) whenever F is regular closed subset of  $(X, \mu)$  with  $F \subseteq A$ .

**Proof:** Suppose that A is irg- open and F be a regular closed subset of  $(X, \mu)$  such that  $F \subseteq A$ . Then  $X-A \subseteq X$  –F. But X- A is irg- closed and X-F is regular open. It follows that  $\mu(X-A) \subseteq X$  –F. (i.e)  $F \subseteq X$ -  $\mu(X-A)$ .

Conversely, Let G be a regular open subset of  $(X, \mu)$  such that  $X-A \subseteq G$ . Then  $X-G \subseteq A$ . Therefore  $X-U \subseteq \mu$  (X-A). Consequently,  $\mu$   $(X-A) \subseteq G$ . Hence X-A is irg- closed and so A is irg- open.

Remark: 2.12 The union of two irg- open sets need not be irg- open.

**Proposition:** 2.13 Let  $(X, \mu)$  be an isotonic space. If A and B are irg- open of  $(X, \mu)$ , then  $A \cap B$  is irg – open.

**Proof:** Let F be a regular closed subset of  $(X, \mu)$  such that  $F \subseteq A \cap B$ . Then  $X - (A \cap B) \subseteq X - F$ .

Consequently,  $(X-A) \cup (X-B) \subseteq X - F$ . By proposition 2.4,  $(X-A) \cup (X-B)$  is irg – closed. Thus,  $\mu$  [ $(X-A) \cup (X-B)$ ]  $\subseteq X - F$ . Hence  $F \subseteq X - \mu$  [ $(X-A) \cup (X-B)$ ]  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq X - \mu$  ( $(X-A) \cup (X-B)$ )  $\subseteq$ 

**Proposition: 2.14** Let  $(X, \mu)$  be an isotonic space. If A is irg- open subsets of  $(X, \mu)$ , then X = G whenever G is regular open and  $(X - \mu (X - A)) \cup (X - A) \subseteq G$ .

**Proof:** Suppose that A is irg – open. Let G be a regular open subset of  $(X, \mu)$  such that  $(X - \mu (X - A)) \cup (X - A) \subseteq G$ . Then  $X - G \subseteq X$ -[ $(X - \mu (X - A)) \cup (X - A)$ ]. Therefore  $X - G \subseteq \mu (X - A) \cap A$  or equivalently,  $X - G \subseteq \mu (X - A) - (X - A)$ . But X - G is regular closed and X - A is irg – closed. Then by proposition 2.10,  $X - G = \phi$ . Consequently X = G.

**Proposition: 2.15** Let  $(X, \mu)$  be an isotonic space and let  $A \subseteq X$ . If A is irg - closed, then  $\mu(A) - A$  is irg- open.

**Proof:** Suppose that A is irg - open. Let F be a regular - closed set of  $(X, \mu)$  such that  $F \subseteq \mu(A) - A$ . By proposition 2.10  $F = \emptyset$ , and hence  $F \subseteq X - \mu(X - \mu(A - A))$ . By proposition 2.11  $\mu(A) - A$  is irg - open.

**Proposition: 2.16** Let  $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$  be a family of isotonic spaces, let  $\beta \in I$  and  $G \subseteq X_{\beta}$ . Then G is a irg - open subset of  $(X_{\beta}, \mu_{\beta})$  if and only if  $G \times \prod_{\alpha \neq \beta \atop \alpha \neq \beta} X_{\alpha}$  is a irg- open subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ .

**Proof:** Let F be a regular closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ . such that  $F \subseteq G \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ , Then  $\pi_{\beta}(F) \subseteq G$ . Since  $\pi_{\beta}(F)$  is

regular closed and G is irg - open in  $(X_{\beta}, \mu_{\beta})$ ,

$$\pi_{\beta}(F) \subseteq X_{\beta} - \mu_{\beta} \ (X_{\beta}\text{-}G). \ \text{Therefore} \ F \subseteq \pi_{\beta}^{-1}(X_{\beta} - \mu_{\beta} \ (X_{\beta}\text{-}G)) = \prod_{\alpha \in I} \quad X_{\alpha} - \prod_{\alpha \in I} \quad \mu_{\alpha} \pi_{\alpha}(\prod_{\alpha \in I} \quad X_{\alpha} - G \times \prod_{\alpha \notin \beta} X_{\alpha}), \ \text{hence} \ G \times \prod_{\alpha \notin \beta} X_{\alpha} \text{ is a irg- open subset of} \prod_{\alpha \in I} \quad (X_{\alpha}, \mu_{\alpha}).$$

Conversely, Let F be a regular closed subset of (  $X_{\beta}$ , $\mu_{\beta}$ ) such that  $F \subseteq G$ . Then  $F \times \prod_{\alpha \in A \atop \alpha \in I} X_{\alpha} \subseteq G \times \prod_{\alpha \in A \atop \alpha \in I} X_{\alpha}$ ).

since 
$$F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$$
 is regular closed and  $G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$  is irg- open in  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ . 
$$F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \subseteq \prod_{\alpha \in I} X_{\alpha} - \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha} (\prod_{\alpha \in I} X_{\alpha} - G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}).$$

Therefore

$$\prod_{\alpha \in I} \ \mu_{\alpha} \pi_{\alpha}(X_{\beta} \text{ - } G) \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \text{ )} \subseteq \prod_{\alpha \in I} \ X_{\alpha} \text{ - } F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \text{ = } (X_{\beta} \text{ - } F) \prod_{\alpha \in I} \ X_{\alpha}$$

Consequently,  $\mu_{\beta}(X_{\beta} - G) \subseteq X_{\beta} - F$  implies  $F \subseteq X_{\beta} - \mu_{\beta}(X_{\beta} - G)$ . Hence G is an irg - open subset of  $(X_{\beta}, \mu_{\beta})$ .

**Proposition: 2.17** Let  $\{(X_{\alpha}, \mu_{\alpha}) : \alpha \in I\}$  be a family of isotonic spaces, let  $\beta \in I$  and  $F \subseteq X_{\beta}$ . Then F is a irg-closed subset of  $(X_{\beta}, \mu_{\beta})$  if and only if  $F \times \prod_{\alpha \in I} X_{\alpha}$  is a irg-closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ .

**Proof:** Let F be a irg- closed subset of (
$$X_{\beta},\mu_{\beta}$$
). Then  $X_{\beta}$  -F is an irg - open subset of ( $X_{\beta},\mu_{\beta}$ ). By proposition 2.16, ( $X_{\beta}$  -F)  $\times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} = \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$  is an irg - open subset of  $\prod_{\alpha \in I} (X_{\alpha},\mu_{\alpha})$ . Hence  $F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha}$  is an irg - closed subset of  $\prod_{\alpha \in I} (X_{\alpha},\mu_{\alpha})$ .

Conversely, let G be a regular open subset of  $(X_{\beta},\mu_{\beta})$  such that  $F \subseteq G$ ,

$$\text{Then } F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \subseteq G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \text{ . Since } F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \text{ is } \text{ irg closed and } G \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\alpha} \text{ is regular open in } \prod_{\alpha \in I} \ (X_{\alpha}, \mu_{\alpha}),$$

$$\prod_{\alpha \in I} \ \mu_{\alpha} \pi_{\alpha}(F \times \prod_{\alpha \neq \beta \atop \alpha \in I} X_{\beta}) \subseteq G \times \prod_{\alpha \in I} \ X_{\alpha} \ . \\ Consequently, \ \mu_{\beta}(F) \subseteq G. \ Therefore, F \ is \ a \ irg - closed \ subset \ of \ (X_{\beta}, \mu_{\beta}).$$

**Proposition: 2.18** Let  $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$  be a family of isotonic spaces, For each  $\beta \in I$  and let  $\pi_{\beta}: \prod_{\alpha \in I} X_{\alpha} \to X_{\beta}$  be a

projection map. Then

- (i) If F is an irg closed subset of  $\prod \ (X_\alpha, \mu_\alpha),$  then  $\pi_\beta(F)$  is an irg- closed subset of  $(X_\beta, \mu_\beta).$
- (ii) If F is an irg closed subset of  $(X_{\beta},\mu_{\beta})$ , then  $\pi_{\beta}^{-1}(F)$  is an irg closed subset of  $\prod_{\alpha} (X_{\alpha},\mu_{\alpha})$ ,

**Proof:** (i) Let F be an irg closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$  and let G be a regular open subset of  $(X_{\beta}, \mu_{\beta})$  such that  $\pi_{\beta}$ 

 $(F) \subseteq G. \text{ Then } F \subseteq \pi_{\beta}^{-1}(G) = G \times \prod_{\alpha \in I} X_{\alpha}. \text{ Since } F \text{ is an irg closed and } G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is } \prod_{\alpha \in I} X_{\beta} \text{ is regular open, } \prod_{\alpha \in I} \mu_{\alpha} \pi_{\alpha}(F) \subseteq G \times \prod_{\alpha \in I} X_{\beta} \text{ is } \prod_{\alpha \in I} X_{\beta}$ 

 $\prod_{\alpha\neq\beta}X_{\alpha}\text{.}Consequently \ \mu_{\beta}\pi_{\beta}(F)\subseteq G\text{. Hence }\pi_{\beta}\left(F\right)\text{ is an irg closed subset of }(X_{\beta},\!\mu_{\beta}).$ 

(ii) Let F be an irg closed subset of  $(X_{\beta},\mu_{\beta})$ , Then  $\pi_{\beta}^{-1}(F) = F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$ 

Therefore, we have,  $F \times \prod_{\alpha \neq \beta} X_{\alpha}$  is an irg closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ . Therefore,  $\pi_{\beta}^{-1}(F)$  is an irg closed subset of

$$\prod_{\alpha \in I} \ (X_{\alpha}, \mu_{\alpha}).$$

**Definition: 2.19** An isotonic space  $(X, \mu)$  is said to be a  $T_{irg}$ -space if every irg closed subset of  $(X, \mu)$  is closed.

**Proposition: 2.20** Let  $(X, \mu)$  be an isotonic space. Then

- (i) If  $(X, \mu)$  is a  $T_{irg}$  -space then every singleton subset of X is either regular closed or open.
- (ii) If every singleton subset of X is a regular closed subset of  $(X, \mu)$ , then  $(X, \mu)$  is a  $T_{irg}$  -space.

**Proof:** (i) Suppose that  $(X, \mu)$  is a  $T_{irg}$  -space. Let  $x \in X$  and assume that  $\{x\}$  is not regular - closed. Then  $X - \{x\}$  is not regular - open. Since X is the only regular - open set which contains  $X - \{x\}$  this implies  $X - \{x\}$  is irg - closed.

Since  $(X, \mu)$  is a  $T_{irg}$ -space, X- $\{x\}$  is closed or equivalently  $\{x\}$  is open.

(ii)Let A be an irg - closed subset of  $(X, \mu)$ . To prove: A is closed. Suppose that  $x \notin A$ . Then  $\{x\} \subseteq X - \{x\}$ . Since A is irg - closed and  $X - \{x\}$  is regular – open,  $\mu(A) \subseteq X - \{x\}$ , (i.e)  $\{x\} \subseteq X - \mu(A)$ . Hence  $x \notin \mu(A)$  and thus  $\mu(A) \subseteq A$ .

Therefore A is closed subset of  $(X,\mu)$ . Hence  $(X,\mu)$  is a  $T_{irg}$ -space.

### 3. i REGULAR GENERALIZED - CONTINUOUS MAPS:

**Definition:** 3.1 Let  $(X, \mu)$  and (Y, l) be an isotonic space. A mapping  $f : (X, \mu) \to (Y, l)$  is said to be irg - continuous, if  $f^{-1}(F)$  is irg - closed set of  $(X, \mu)$  for every closed set F in (Y, l).

**Proposition: 3.2** Every continuous map is irg - continuous.

**Proof:** Let  $f:(X,\mu)\to (Y,l)$  be continuous, Let F be a closed set of (Y,l). Since f is continuous, then  $f^{-1}(F)$  is closed set of  $(X,\mu)$ . Since every closed set is irg - closed of  $(X,\mu)$ , we have  $f^{-1}(F)$  is a irg - closed set of  $(X,\mu)$ . Therefore f is a irg - continuous map.

**Proposition:** 3.3 Let  $(X, \mu)$  be a  $T_{irg}$  space and let (Y, l) be an isotonic space. If  $f: (X, \mu) \to (Y, l)$  is said to be regular - continuous, then f is irg- continuous,

**Proof:** Let F be a closed subset of (Y, 1). Since F is regular - continuous, then  $f^{-1}(F)$  is regular-closed set of  $(X, \mu)$ . Since  $(X, \mu)$  is a  $T_{iro}$  space,  $f^{-1}(F)$  is an irg-closed set of  $(X, \mu)$ . Hence, f is irg - continuous,

The following statement is obvious.

**Proposition:** 3.4 Let  $(X, \mu)$ , (Y, l) and (Z, m) be an isotonic spaces. If  $f: (X, \mu) \rightarrow (Y, l)$  is irg - continuous and  $g: (Y, l) \rightarrow (Z, m)$  is continuous then  $g \circ f: (X, \mu) \rightarrow (Z, m)$  is irg - continuous.

**Proposition:** 3.5 Let  $(X, \mu)$ , (Z, m) be isotonic spaces and let (Y, l) be a  $T_{irg}$  space. If  $f: (X, \mu) \to (Y, l)$  and  $g: (Y, l) \to (Z, m)$  are irg - continuous, then  $g \circ f: (X, \mu) \to (Z, m)$  is irg - continuous.

**Proof:** Let F be a closed subset of (Z, w). Since g is irg - continuous, then  $g^{-1}(F)$  is irg - closed set of (Y, 1). Since (Y, 1) is a  $T_{irg}$  space,  $g^{-1}(F)$  is a closed set of (Y, 1) which implies that  $(g \circ f)^{-1}(F)$  is a irg - closed subset of  $(X, \mu)$ . Hence,  $g \circ f$  is irg - continuous.

**Proposition:** 3.6 Let  $\{(X_{\alpha}, \mu_{\alpha}): \alpha \in I\}$  and  $\{(Y_{\alpha}, l_{\alpha}): \alpha \in I\}$  be families of isotonic spaces. For each  $\alpha \in I$ , let  $f_{\alpha}: X_{\alpha} \to Y_{\alpha}$  be a map and  $f: \prod_{\alpha \in I} X_{\alpha} \to \prod_{\alpha \in I} Y_{\alpha}$  be a map defined by  $f((x_{\alpha})_{\alpha \in I}) = (f_{\alpha}(x_{\alpha})_{\alpha \in I})$ . If  $f: \prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha}) \to \prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$  is irg-

continuous, then  $\ f_{\alpha}\!\!:$  (  $X_{\alpha}, \mu_{\alpha}$ )  $\to$  (  $Y_{\alpha}, l_{\alpha}$ ) is irg - continuous for each  $\alpha \in I$ .

**Proof:** Let  $\beta \in I$  and F be a closed subset of  $(Y_{\beta}, l_{\beta})$ . Then F x  $\prod_{\alpha \neq \beta \atop \alpha \in I} Y_{\alpha}$  is a closed subset of  $\prod_{\alpha \in I} (Y_{\alpha}, l_{\alpha})$ , Since f is irg -

continuous, 
$$f^{-1}(F \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} Y_{\alpha}) = f_{\beta}^{-1}(F) \times \prod_{\substack{\alpha \neq \beta \\ \alpha \in I}} X_{\alpha}$$
 is an irg - closed subset of  $\prod_{\alpha \in I} (X_{\alpha}, \mu_{\alpha})$ . By proposition 2.17,  $f_{\beta}^{-1}(F)$  is a

irg- closed subset of  $(X_{\beta}, \mu_{\beta})$ , Hence  $f_{\beta}$  is irg - continuous.

**Definition: 3.7** Let  $(X, \mu)$  and (Y, l) be an isotonic spaces. A map  $f : (X, \mu) \to (Y, l)$  is called irg – irresolute if  $f^{1}(F)$  is irg - closed set in  $(X, \mu)$  for every irg - closed set F in (Y, l).

**Definition: 3.8** Let  $(X, \mu)$  and (Y, l) be isotonic spaces. A map  $f: (X, \mu) \to (Y, l)$  is called irg-closed if f(F) is a irg-closed subset of (Y, l) for every closed set F of  $(X, \mu)$ .

**Proposition:** 3.9 Let  $(X, \mu)$  and (Y, l) be isotonic spaces and let  $\mu$  be additive. Let A and B be closed subsets of  $(X, \mu)$  such that  $X = A \cup B$ . Let  $f : (A, \mu_A) \rightarrow (Y, l)$  and  $g : (B, \mu_B) \rightarrow (Y, l)$  be irg – continuous maps such that f(x) = g(x) for every  $x \in A$  and h(x) = g(x) if  $x \in B$ . Then  $h : (X, \mu) \rightarrow (Y, l)$  is irg – continuous.

**Proof:** Let F be a closed subset of (Y, 1). Clearly  $h^{-1}(F) = f^{-1}(F)$  U  $g^{-1}(F)$  since  $f: (A, \mu_A) \to (Y, 1)$  and  $g: (B, \mu_B) \to (Y, 1)$  are irg –continuous,  $f^{-1}(F)$  and  $g^{-1}(F)$  are irg – closed subset of  $(A, \mu_A)$  and  $(B, \mu_B)$  respectively. As A is a closed subset of  $(X, \mu)$ ,  $f^{-1}(F)$  is a irg – closed subset of  $(X, \mu)$  by proposition 2.7 Similarly  $g^{-1}(F)$  is a irg – closed subset of  $(X, \mu)$ . Therefore  $h^{-1}(F)$  is an irg-closed subset of  $(X, \mu)$ .

Hence h is irg-continuous.

# REFERENCES

- [1] C. Boonpok, between closed sets and Generalized closed in closure Spaces, Acta Math Univ, Ostra 16(2008), 3-14
- [2] C. Boonpok, Generalized closed sets in čech closed space, Acta math Univ, Apulensis, No-22(2010), 133-140.
- [3] C. Boonpok, Generalized closed sets in Isotonic spaces, Int. Journal of Math. Analysis, Vol.5, 2011, no.5, 241-256.

### A. Francina Shalini\* et al. / i- Regular Generalized Closed sets in Isotonic Spaces/ IJMA- 2(10), Oct.-2011, Page: 1985-1991

- [4] E. Čech, Topological Spaces, Topological papers of Eduard Čech, Academia Prague (1968), 436-472.
- [5] J. Chvalina, On homeomorphic topologies and equivalent systems, Arch Math.2, Scripta Fac. Sci. Nat. UJEP Brunensis, XII, (1976),107-116.
- [6] J. Chvalina, Stackbases in power sets of neighbourhood spaces Preserving the continuity of mappings, Arch Math.2,Scripta Fac. Sci. Nat. UJEP Brunensis, XVII, (1981),81-86.
- [7] N. Levine: Generalized closed sets in topology, Rend, Circ. Mat .Palermo, 19 (1970), 89-96.
- [8] L. Skula: Systeme von stetigen abbildungen. Caech. Math. J. 17. 92. (1967), 45-52.
- [9] J. Slapal, Closure operations for digital topology, Theoret. Comput. Sci., 305, (2003), 457 471.
- [10] P. Sundaram and Sheik John. Weakly closed sets and weak continuous maps in topological spaces. In proc. 82<sup>nd</sup>, volume 49, Indian Sci. cong Calcutta, 1995.

\*\*\*\*\*\*