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ABSTRACT

We consider equilibrium Strategic behaviour in single server markovian queueing system with partial breakdown,
total breakdown and delayed repair. In a case of partial breakdown, the system may become defective at any time
whether server is busy or idle. When server breaks down then srevice rate decreases without stopping the service
completely, service continues at a slower rate. After total breakdown, system goes to repair process. Repair process
doesn't start immediately due to non availability of repair facility. Then system consider a delayed repair time .Based
on natural reward cost structure and the information of system, arriving customers can decide whether to enter or balk
the system. We derive the equilibrium balking strategies and expected social benefits per unit time for the customer in
the fully observable, almost observable, fully unobservable and almost unobservable case. Here we investigate Steady-
state distribution and the mean sojourn time of the arriving customer by using the probability generating function.

Keyword: Equilibrium Strategy, Delayed Repair, Markovian Queue, Partially Breakdown, Queueing Theory,
Unobservable Queue.

1. INTRODUCTION

In the field of queueing theory study of customer behavior is a very active research area in many different directions.
There are many possibilities and parameters for determining strategic behavior between customers and service
providers. Naor[24] is the first who described the effect of information on customer behavior strategy in M/M/1
queueing model. Naor[24] studied the markovian queueing model in which newly arriving customer observes the
number of customers and makes his decision whether to join or balk the system in observable case. Edelson and
Hildebrand [19] considered a corresponding unobservable case in Naor's model by assuming that arriving customers
have no information about number of customers. Hassin and Haviv[26] studied with equilibrium threshold strategies in
queueing model with priorities. Hassin and Haviv[26] studied the equilibrium behaviour of customers of queueing
system. We studied the fundamental results about various systems after server break down but continue to provide a
service of customer at a slower rate than normal working rate. Partial breakdown can happen at any state either server
busy or idle. Second state is total breakdown state in which server stops customer service completely. Third state is
delayed repair state in which after total breakdown system goes to repair state which causes delay in service.

The aim of our paper is to investigate the equilibrium threshold strategy in four cases with regard to the level of
information available to arriving customer.
1. Fully observable case : An arriving customer observe both queue length and state of server
2. Almost observable case: An arriving customer only observe the number of customer and does not know to the
state of server.
3. Almost unobservable case: An arriving customer can only observe the state of server and is not allowed to
observe the queue length.
4. Fully unobservable case: An arriving customer is not allowed to observe either number of customer or state of
server.
Here we discuss the customer's equilibrium strategy for all customer and investigated the stationary behaviour of
corresponding situation.
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1. BRIEF REVIEW

Burnets and Economou[1] studied a markoviansingle server queueing system with setup time and analyzed the
customer's equilibrium strategy under various level of information. In the queueing literature most of the paper assume
that the server is always available but in real service system, a perfectly reliable server do not actually exist. There are
some papers in the literature working on analysis of strategic behaviour of customers in such kind of queueing system.
Cheng [7] first studied independent breakdown in an unreliable markovian single server queueing system and analyzed
optimal internal pricing and backup capacity of computer system. Chaper and Jondral[6] studied independent
breakdown in observable m/m/1 queue in radio network. Economou and Kanta[4] studied analysis of equilibrium
balking strategies for customer in the observable M/M/1 queue with unreliable server and repair. After that there were
many authors who reconsidered the model of Economou and Kanta[4] and extended their corresponding result. Wang
and Zhang[13] extended this model to the delayed repair situation . The repair process may not be start immediately
due to non-availability of repair facility and therefore system may consider a delayed repair time. The equilibrium
threshold balking and equilibrium social benefits are analyzed in fully and partially observable system for all customer.
There is an increasing number of research papers that deal with the analysis of balking behaviour of customer in M/M/1
gueue Such as Sun Guo & Tian [33], Economou & manou[3], Li & Han[18], Jagannathan[14], Do [8] and Yang[39]
among others.some works have incorporated the vacation, different kind of server vacation such as Guo & Hassin[23] ,
Economou[2] and Li[33]. Similarly Many works have been implemented in working vacation of queue system such as
Zhang [43], Sun & Li [35], Sun [36], sun [37]. It is common in above research studied to assume that server will stop
service completely in the case of server breakdown due to various factors. However in the modern operational system,
there are many situations in a real-world where the server may not stop customer's service completely due to the server
breakdown such kind of server breakdown was called partial breakdown (failure). Gnedenko& Kovalenko [12] who
first introduced the case of partial breakdown (failure) in m/G/1 system with unreliable server after that Sridharm &
Jayshree[31] considered a finite m/m/1 queueing model with normal partial & total failure. Kalidas & Kasturi [16]
introduced the concept of working breakdown. They considered markovian queueing model with working breakdown.
In real life situations such a problem arises from computer based technology, telecommunication, e-commerce and
manufacturing areas. For example, computer is infected by the virus. In that case processing speed of computer
degrades but computer keeps working. Here it should be noted that there are difference between partial breakdown and
working breakdown. In the partial breakdown situation, server doesn't stop customer's service completely .but provide a
service of customers at slower rate than normal processing rate. Partially breakdown can happen at any state either
server busy or idel. But in the working breakdown situation. when server is in the working or operational state then it
may breakdown only.

In real life there are many reason for server failure/breakdown such that a negative customer or disaster. upon arriving
of negative customer , the service of existing customer will be killed . Kim and Li [5] considered and M/G /1queue with
disaster and working breakdown in which the system has main server and redundant server when main server
breakdown then redundant or substitute server provide the service to arriving customer at a slower rate. Doo Lee[9]
studied equilibrium strategies of customer and optimal pricing strategies of server in unobservable queue system with
negative customer and repair. Li [17] considered the equilibrium behaviour of customer in M/M/1 queue with partial
breakdown and immediately repair. In this paper they described the equilibrium strategy only two fully observable case
and fully unobservable case. After that Seline & zaiming [30] studied the strategic behaviour of customer in partially
observable markovian queue with partial breakdown. In this paper they also described strategic behaviour of customer
only two cases almost unobservable and almost observable case. Chen & Zhou [21] analysed the equilibrium behaviour
of customer in m/m/1 queue with setup time, breakdown and immediate repair. After that Xu & Xu [39] studied the
equilibrium is strategic behaviour of customer in m/m/1 queue with partial failure and repair. In such a queueing
system, during the partial failure period, arriving customer is not allowed to enter the system and server provides
service at slower rate instead of stopped serving. In this paper we studied fully observable fully and observable in
partial failure server.

After all related research work, Tian & Wang [27] studied the equilibrium strategy in markovian with negative
customer and working breakdown. In this paper they described the customer beings serve have to leave the system
upon arriving the negative customer. Then server breakdown and server provide a service with slower rate than normal
working rate. Here we study strategic behaviour of customer under different level of system and also study equilibrium
strategy of customer in four cases such as fully observable, almost observable, fully unobservable, almost
unobservable.

The rest of this paper is organized as follows. In Section Ill, we describe the model description and the reward- cost
structure. In Section 1V and V, we consider the equilibrium threshold strategiesin the fully observable and almost
observable case respectively. Section VI and VII, we determine the equilibrium threshold strategies in the almost
unobservable and fully unobservable case respectively. Conclusion and future research are given in the section VIII.
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111. MODAL DESCRIPTION

In this paper, we consider the M / M /1 queueing system with an infinite waiting queue where customers arrive
according to a Poisson process with intensity A. During normal working rate, the service times are exponentially
distributed with rate u. When partial breakdown occurs in the system then service times are exponentially distributed
with rateu,The service alternates between four state with state space 1={0,1,2,3}. The server has an exponential
lifetime with failure rate or breakdown rate & when he is normal working state (1). In the partial breakdown situation
(2), server doesn't stop customer's service completely but provide a service of customers at slower rate than normal
processing rate andu, < u. Partially breakdown can happen at any state either server busy or idle. In total breakdown
state (3), system doesn’t provide any service to customer. The server has an exponential lifetime with failure rate
&, -The delayed time is exponentially distributed with parameter a.In the delay state, the server doesn’t provide any
type of service to arriving customers and to begin the repair process, server waits for repair facility. The repair time is
exponentially distributed with repair rate 6. In other words, when the server fails, then the repair process doesn’t start
immediately due to non-availability of the repair facility. The repair delayed time is define as the time interval between
the period of server breakdown and the beginning of repair process. We realize that the repair delayed time has two
stages and hence it is not memory less

We describe the state of the system at time t by a pair (L (t), I (t)), where L (t) records the number of customers in the
system and | (t) denotes the state of the server (1: working state, 2: partial breakdown state, 3: delayed period (total
breakdown); 0: under repair). The stochastic process {(L (t), I (t)),>t 0} is a two -dimensional continuous-time
Markov chain

A+t =4 n>0;i=0,1,2,3;-
dn1)(n-11) = W n=1;
An,2)(n-1,2) = Ho» n=0;
A2 = & n = 0;
d02)(n3) = Sos n>0;
An3)n,0) — & n = 0;
401 = 6, n = 0;

The corresponding transition rate diagram is shown in figurel.

We are interested to analyse the behavior of customers when they are allowed to decide whether to join or balk the
system at their arrival instants. Every customer receives a reward of R units in the system after completing their service.
This may reflect his satisfaction or the added value of being served. On the other hand, customers have a waiting cost
of C units per time when they remain in the system including the waiting time in queue and being served. Every
Customer wants to maximize their expected net benefit of service. Their decisions are unchangeable that retrials of
balking customers and reneging of entering customers are not allowed. Each arriving customer can observe the number
of customers.

I{t)=0

I(t)=1

It)=2_

It)=3

Figure-1: transition rate diagram for the equilibrium strategy with partially breakdown, total breakdown and delayed
repair

In fact, the model under consideration can be seen as an M / M /1 queueing system in a random environment. More

specifically, the external environment is an irreducible continuous-time Markov chain on a finite state space

{3, 2, 1, 0}. That is, when the external environment I (t) is in state I, [ =0, 1,2 ,3, the system behaves as an M (A)/ M

(u)/1 queue with arrival intensity A and service rate y;, where uy =pu; = 0 and uy = p, py = po. The infinitesimal

generator (i.e., q -matrix) of the external environment I(t) is given by
-

o O R

& -& o
Flo ¢ -
0 0 g -6
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Let ( o, 1, m,, 3) be the stationary distribution of the external environment, by solving (my, Ty, 75, m3) Q =0,

We have m, = 00 , Ty = fad )
EEpO+Eab +alpb+éépa EE9O+Eal +alpb+éépa
asob $Soa

M2 = w0 +iat rago0+iton , T, | Eob+iad tatob+iEoa

The system is said to be in state (n, 1) if there are n customers in the system and the server is found at state I. Let p (n, I)
be the limiting probability of the system in state (n, 1). That is, p (n, 1) = lime+o P (L (t) =n, I(t) =1), n > 0, if
1=0,1,23.

In the following sections, we will analyse the queues with Partial breakdowns, and consider four information cases in
this paper:

(1) the fully observable case where arriving customers can observe the system state (N(t); I1(t));

(2) the almost observable case where arriving customers can only observe the length of the system N(t);

(3) the almost unobservable case where arriving customers can only observe the server's state I(t);

(4) the fully unobservable case where customers can not observe the system

IV FULLY OBSERVABLE CASE

In this section, we show that there exist equilibrium strategies of threshold type in the fully observable case arriving
customers can observe both the number of customers in the system and the server's state at arrival. A pure threshold
strategies are specified by (n.(0), n.(1), n.(2), n.(3)) such that an arriving customer decides to join the system if the
number of customers upon arrival does not exceed the specified thresholds. and the balking strategy has the form ‘while
arriving at time t, observe (N(t), I(t)); enter if N(t) < n,(I(t)) and balk otherwise’

Let T(n; i) be the expected sojourn time of the arriving customer who finds the system at the system state
(n; 1) (i=0, 1, 2, 3) and decides to enter the queue.

We thus conclude the following results.

Theorem 1: In the fully observable M/M/1 queue with partial breakdowns, there exist a pair of thresholds
(n.(0), n, (1), n.(2), n,(3)), such thatthe strategy ‘observe (N(t), 1(t)) upon arrival, enter if N(t) < n,(I(t)) and balk
otherwise’, and (n,(0), n. (1), n.(2), n.(3)) =([xo].[x1], [x], [x3])

where x; is the unique root of equation

ax+b,c*1 +d;=0,i=1,2,3 (1)
where
a=-C #o+fo+f+ffo(%+$) #of{#—#o+#fo(%+$)} @)
- upotuso+éno (ppotuso+suo)(méo+ino)
1.1
by= _Cuof{u—uo+ufo(zg+;)} @)
(#s‘o+s‘#o)1 L
b, =Cs‘ou{u—uo+ufo(zg+;)} (4)
(H&o+S1o)
by = by = b, ®)
c=—H#O (6)
upo+ugo+so (1 1)
1 11 tpo?E{u—po+udo(z+)}
d=R-C——— -+-) - 0 a 7
! puotugo+Emo (,uo T+t (9 " "‘) (kEo+Er0)? ) o
1 1
u—potuso(z+)
d, =d;- ( ———2¢« 8
2 L c uso+suo ( )
dy=dy -5 (©)
dy=d;—>—= (10)

a
and S(n, i) = an +b,c™*! +d; is a monotone decreasing function of n.

Proof: It is obvious that for an arriving customer based on the reward-cost structure, his expected net reward if he
entersis S(n, i) =R - CT(n, i)

Where T(n, i) denotes his expected mean sojourn time given that he finds the system at state ((N(t), 1(t)) upon his
arrival.
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T(n,0) =5 +T(n, 1) n=0,1,23......
-1, &
T, )=+ T(0, 2)
T(n, 1) =—— + -~ T(n-1,1) +-—"T(n, 2) n=1,23......
u+s  p+é u+é

T(,2) = —— + -2 T¢

rotéo  ro+éo

0,3)

T, 2)=——+—2 T(n-1,2) +—2T(n, 3) n=123......

rotéo  ro+éo

T(n,3) == +T(n, 0)

rotéo

Solving the system of (13) and (14) for n = 0 along with (12) we obtain

1,1
ro+so+E+ESo(5+)
T(0,1) =200 e
uuol+pis‘o+§uo .
_ oGty & |HotSo+S+ES0 ()
T(O, 2) -
unotéo uotéo upotuso+éno

Now,

T(,2)-T(,1)=

From equation (13),

1 1
u=potuso(g+y)
uuotuso+éno

oo+ +E80 (342)+u(uo+E0)T (=1, D+E 0T (n-1,2)

T(n1) =

upotuso+éno

And combining equation (15), (16) and (11) in equation (20), then

T(n,2)-T(n, 1) =

1.1
H—potusoGty) P

upotudo+éno  ppotuo+ino

Through iterating (21) and taking account into (19), we get

1

T(n,2)-T(n,1) =

By plugging (22) in (20), we have

1 1
T(n, 1) =
( ) upotuso+éuo

no+Eo+E+E60 (34

1
H—po+uso Gty [ ( 1o
uuotuso+éuo

)

+T(n-1,1) +

upo+ugo+sno

{T(n-1,2)-T(n-1,1)}

)]

0

Through iterating (23) and taking account into (17), we get

uos‘{u—uoﬂtfo(%%)} [ _( I
(rpo+uso+ino)méo+suno)

upo+ugo+sto

)]

T(1)=n uo+§o+§+§fo(§+§) uos‘{u—uows‘o(%%)} +uos‘{u—uo+ufo(%+$)}( Hito )"+1
' puo+ugo+ipo (rpo+pgo+Ero) (1o +EHo) (S0 +SH0)? ppo+uEo+EHo
2 1.1
1 1,1 Kito s‘{u—uo+ufo(5+—)}
—————(up+&+E+ (—+—) - -
##o+#s‘o+s‘#o<’u0 ot S+sbolgty (u§o+no)?
T(2)=n uo+§o+§+§fo(§+§) uos‘{u—uows‘o(%%)} _ s‘ou{u—uoﬂtfo(%%)}( Hito )"+1
' puo+ugo+ipo (rpo+pgo+Eno)(uso+Euo) (S0 +SH0)? ppo+ugo+Eno
2 1,1 1,1
1 11 Ko s‘{#—uo+ﬂs‘o(5+—)} u—po+udo(g+y)
————— (e + &+ &+ (—+—)— o)+ -
##o+#s‘o+s‘#o<’u0 ot S+sbolgHy (u§o+no)? ugo+Ko
T(n,0) and T(n,3) are define by putting this value in equation (11) and (16).
T(n, 0) 1, uo+§o+§+§§o(§+§) uos‘{u—uows‘o(%%)} +uos‘{u—uo+ufo(%+$)}( Hito )"+1
’ o puo+ugo+ipo (rpo+pgo+Epo) (1o +EHo) (S0 +EH0)? ppo+uEo+E Ho
2 1.1
1 1,1 Kito s‘{u—uo+ufo(5+—)}
+————— (g +&+E+ (—+—) - -
##o+#s‘o+s‘#o<’u0 ot S+sbolgHy (u§o+no)?
1.1 #0+§0+§+550(%+$) uos‘{u—uoﬂtfo(%%)} uos‘{u—uoﬂtfo(%%)} Hito n+l
T, 3) ==+ +n + oo ( )
6 «a ppo+ugo+suo (po+uso+smo)mso+Sno) So+sno) Hiotuso+Sio
2 1.1
1 1,1 Kito s‘{u—uo+ufo(g+—)}
————— o+ & +E+ (—+—) - -
##o+#s‘o+s‘#o<’u0 ot sHibolgty (u§o+uo)?

The expected net reward of such a
S(n,i)=R-CT(n, i),
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(11)
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(13)
(14)
(15)
(16)

(17)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)



Dr. R. K. Shrivastava® & Preeti Gautami Dubey”’2 /

Analysis of Equilibrium Strategies in Markovian Queue with partial breakdown, total breakdown and .../ IMA- 12(6), June-2021.

A customer does not enter the system if S(n, i) < 0, otherwise, he enters the queue. We can use (16), (24) and (25) to
obtain that the customer arriving at time t decides to enter if and only if n <ne(i), where (n,(0), n,(1), n.(2), n,(3)) are
obtained by using the unique solution x;of equation (1).

Since 0 <

S(n,1) - S(n-1,1) = - C(T(n,1) - T(n-1,1))
1

=-C———M 141
N Cuuo+us‘o+s‘uo (,uo o +5 445 (0 ta

HHo

<1, S(n,1)<S(n -1, 1) is decreasing in n.
kpotuso+Suo

Whenn=1,S(1,1)<S(0,1)<0,s0S(n,1)<S(n-1,1)<0forn=1,23....

Similarly we can show that S(n, 2) - S(n - 1, 2) <0,

so that S(n, i) - S(n-1,i)<0,s0 S(n,i),i=0,1, 2, 3isamonotone decreasing function.

V. ALMOST OBSERVABLE CASE

1) uos‘{u—uoﬂtfo(%%)}
(uSo+$uo)

~(e))

In this section, we focus on the almost observable case, where a customer can only observe the number of customers
present and cannot know the state of the server at their arrival instant. We seek equilibrium threshold for the customers.
Thus, the customers follow the same threshold strategy ne.

Taking ne(0) = ne(1) = ne(2) = ne(3) = ne, we get stationary distribution of the corresponding Markov chain with
process{(N(t), J()), t >0 }.

We have the following result

Theorem 2: Consider the M/M/1 queue with partial breakdowns where all customers use the same threshold for
entrance ne, the stationary distribution (P(n, i): (n, i) €{0, 1, ..., ne+ 1} x {0, 1}) is

Where

p(n, 0) =X>_ w;pr, n=0, 1, 2, 3,... n,
p(n, 1) =¥ v;p*, n=0,1,2,3... n,
p(n, 2) =X> ,c;p®, n=0,1,2... ...N;
p(n,3)=X>  u;pr, n=0,1,2,3...n,

p(ne+1,0) = /1#0(#+§)Zi5:o(wi+ui)l)?e+/1#<fo ZiS:O(Ci+Wi+ui)pin

5
C+AEEo Tioglci+vi+witu)p]

. N . B(uuoﬂts‘oﬂtos‘)n
Apo Bimpwitwitu)p; € +480 Xizg(citvi+w+u)p;

. Aé#o+#fo+#of
n n
A Xiogcip; S+ Tizo(citvitwitu)p,

. ##0+#fo+#of . N . N
Ao+ Xi—guip; ¢ +auo Li—g(cituy)p; ¢ +A580 Limg(citvitwitu)p; ©

a(upot+udo+ros)

p(ne+1, 1) =

p(ne+1,2) =

p(ne+1,3) =

i A i=
v =% A+ +po—pop—5) i=1,2.5

v; A .
WiZj (/1+§+,u—,upl-—;) i=1,2...5
L
A+6)p;—2 .
mzmi7%—3 i=12..5
i
a=- [£o{AA+6+@) A+p+8)+20a +A2 p +pup o (A2 +Aa +20 +0a ) A+ po+E0) +roaBE |
wpoA2+Aa +10 +0a)
b= [[2Q+0+a) A +u+E)+A8a +22u A+ po+E0) +uh (A2 +2a +20 +0a ) +A% 1o RA+u+E +6+a)]
- o (A2 +Aa +16 +6a)
_ MA@+ Qtu+)+20a +22u} 422 QA+p+E+0+a) A+ po+E0)+A3 1]
- o (A2 +a +16 +6a)
_ BGAu+EFOFatug+Eg)
T wpo(A2+Aa+A9 +6a)
14
T o (A2 +2a +26 +6a)

Proof: The steady-state balance equations are given below,

(A+0)p (0, 0) = ap (0, 3),

At O)pm0)=Apm —1,0)+ap(n 3),n=12,..n,
0pn,+1,0)=Ap (n,, 0)+apn.+1, 3),
(A+8)p(0,1)=pup(1,1)+6p(,0),

At p+&) p(n, 1) = up(n+1, 1)+ Apn —1,1)+60 p(n, 0),n =1,2,....n, ,
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(29)
(30)
(31)
(32)

(33)
(34)
(35)

(36)

(37)
(38)
(39)
(40)
(41)
(42)
(43)
(44)

(45)
(46)
(47)
(48)
(49)
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(u+$)p(ne+1, 1)=2rp(n,, 1) + 6 p(n.+1, 0) (50)
(At o) PO, 2) = o p(1, 2) +£p(0, 1), (51)
(M pg + o) p, 2) =Ap(n —1 2) + o p(n +1,2) +Ep(n, 1), n=1.2,...n, (52)
(o +$o) P(ne+1, 2) =L p(n,, 2) + $p(n,+1, 1) (53)
(+a)p(0,3)=¢ p(0, 2), (54)
(A a@)p(n,3)=Apn -1,3)+& p(n, 2), n=12,...n, (55)
ap(n,+1, 3)=2Arp(n, , 3) + o p(n.+1, 2), (56)
Starting with n = 0 and summing each of these balance equations over i, i =0, 1, 2, 3, Then
ppm+1, D+tuypm+1,2)=Apn,3)+Apn,2)+Apm,1)+Ap [, 0),0<n<n,. (57)

Find the value of p (n, 0), p (n, 1), p (", 3) and p (n+1, 1) in terms of p (n, 2) then put into equation (57), we have
) Uofd(A+ 0+ )X+ p+ &) + 20a + A2} ]
upo(A% + da + 260 + 0a) p (n+ 2,2) Figtg (02 + A + 20 + 00) O+ 1y + &) + g 0O p(n+1,2)
{/1(/1 +0+a)A+u+8+A0a+ 2u3A+ po+ &) + pA(A% + Aa + 16 + Ha)] (,2)
+2%2u,2A+u+ &+ 60+ a) pin,
“MAA+0+a)A+u+8E)+0a+ 22w+ 22QA+pu+E+0+a)A+ g+ &)+ 3uylptn —1,2)
+23@A+pu+éE+0+a+py+&)pn—22)—A*p(n—-32)=0
xo+ax*+ bx3+ cx?+ dx+e =0
which is a fifth -order difference equation with solution p;(i = 1, 2, 3, 4, 5) and a, b, ¢, d, e are define in equations
(40)-(44) Therefore, we can set:

p(n, 2) =X> ,c;pt n=0,1,2............... Ne
where ¢;, i =1, 2, 3, 4,5 are constants to be determined. By plugging (31) in (52),
p(n, 1) =2, v;p* n=0,1,2,3............ Ne

Again, by plugging (30) in (49), we get:
p(n, 0)=Y> ow;pr n=0,2,3............ Ne

Again, by plugging (29)in (46), we get:
P(n,3) =X o u;p'n=0,1,2,.............. Ne
Where v;, w; and u; are described in equations (37)-(39)
p(n,+1, 0), p(n,+1, 1), p(n,+1, 2) and p(n,+1, 3) are described in equations (33)-(36)

From equation (45), (48), (51) and (54)

o~ o )e =0 (58)
So(i—u)mmuo —uopi—%)i=o (59)
(/1+s‘+u upl——)(/1+s‘o+uo ~ Hopi — p‘)l=0 (60)
{(/1+a)(/1+9——)(/1+s‘+u upi =) (A4 &+ 1o —hopi—7) —&ofei = 0 (61)

Lemma 1: Consider the almost observable case where all customers use the same threshold for entrance n,, the net
reward of a joining customer that finds n customers is
(TM,2) = T D) g cipl 5T wipl +G+0) Sy uip!
ZiS:O(c itvitwitu)plt
(T(ne+1 2)—T(ne+1, 1))(1# Zl 0CiP; E+A§’ Zl olcitvi+w;+u; )pl e)6a+

2 G 40 +E0) T iup)p] e fo (ki 55 ¢ pre

9(6’ a)[l(##0+§“0+‘“§0) Zl ouipP; e]‘”‘ff (Mzi)lf olci+vi+w; +ul)pl

[ (up 0 +ew 0 +18 o +ar0) Ti_owi+up[  +A(EEoa+Eoad +§ab +£§00) Bi_g(citvi+witup] |+
A8 B3 vip] ¢ +Ap (ado+080+a8) T3 g cip] C+[A0 (o +mo+ugo) Ti_guip] €]

S(n)= R-C [T(n, 1) + ], n=20,12..n, (62)

S(m, +1)=R-C|T(n, +1,1) + (63)

Proof: The expected utility of a joining customer that finds n customers is S(n) = R- CT(n), where T(n) denotes his
mean sojourn time given that he finds n customers in the system.

Let p(I = ilL = n) be the probability that the server at state i when he observes n customers upon his arrival.
Conditioning on the state of the server,

T(n)=T(n, 0) p(I =0lL =n)+ T(n, 1) p(I = 1L =n)+ T(n, 2) p(1 = 2|L = n)+ T(n, 3) p(I = 3|L = n)

T(n)=T(n, 1) + (T(n, 2) - T(n, 1))p(I = 2L = n) +5 p(I = 0L = n) + G +)p(1 = 3|L = n).

T(n, 2) and T(n, 1) are given in equation (24) and (25).
© 2021, IIMA. All Rights Reserved 7
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By using PASTA property, the probability that there are n customers in the system given that the server is found at state
iis

i _ AP(n,i) _
p(I=ilL=n) = AP (1,0)+2P (n,1)+2P (n,2)+2P (1,3) 1=0.2,3

1 1.1
(T(n,2) = T, 1)) g cipft +5 Zimg wip] +(G+2) g uip]'

T(n) = T(n’ 1) I Z?:o(ci+vi+wi+ui)pi” (64)
(T(ne+1,2)- T(ne+1,1))(Ap Bigcip] € +AE B3z o(ci+v+wi+u)p; ¢ )0a +
a n a3+a 2 n
Ao+ o+ug o) T owitup] e +ango oyt T5 ciple
/1 1 5 n a3+ad +02_ 5 n
Gt )[A(uuo+snotuso) Tiguip; 4480 (— 7 ) Eiio(citvitwitu)p; ©
T(n, + 1)=T(n, + 1,1) + et umotiuo o) ourl "It 0 (65)

(@A (up o +Eu o +ug o +apt o) Ti—owi+udp] ¢ +A(§Eoa+Egad +iad +££00) X7_o(ci+vi+w;+u;)p] €|+
Ao B3 vip ¢+ (@ §o+080+ad) Ni_g cip] ¢ +[A0 (u o +Emo+uE0) Ti_guip; ¢

It should be noted that a customer does not enter the system even if he finds no customers in front of him if S(0) <0,
otherwise, he enters the queue.

Next, we describe the equilibrium balking pure threshold strategies in the partially observable case by assuming
S(0) > 0. We have the following result.
Let
(T(M2) = T D) g cipl 3T wipl +G+0) Sy uip!
ZiS:O(ci+vi+wi+ui)pi”
(T(n,2)—T(n,1))(Ap ZiS:O cipin_1+l§’ ZiS:O(ci+vi+wi+ui)pin_1)6a+
a — a3+ab +62 —
SR G o+ro+uE0) Tio(witup M HAn o (o ) I g cipl
O(L D) AGuuo+o o) Bguipl a8 0 (N 55 cptvrtw ol )
[ (e o+ép o+ug o tapo) Ti_gwitup!~ +2(E§oa+éoad +iad +££060) Ni_oei+vitw+up! |+
n—1

FApoBa T2 vipR T HAu (afo+0€0+a8) IP_gcipT T +[A0 (up o +Epo+uE o) Ti_ouip]

,n=0,1.2,.. (66)

f(n)= R-C|T(n,1) +

fo(n) =R-C|T(n, 1) +

(67)
By definition f;(n) = S(n),n =0, 1, 2....n, and f;(n, + 1) =S(n, + 1)

Moreover, fi(n) >f,(n),n=0,1,.....

Theorem 3: For the sequences (fi(n), n > 0) and (f2(n), n > 0), Then there exist finite non-negative integers n; < ny
such that

; f1(0), f1(2), f1(2) ........ fi(ny) >0, fi(ny; +1)<0 (68)
an

f(ny + 1), fa(ny),...... fo(n, +2) f,(n, +1) <0, f,(n;)>0 (69)
Or

L(ny + 1), R(ny), finy —1), ...... f2(1), f,(0) <0 (70)

In the partially observable M/M/1 queue with redundant server with breakdowns and delayed repairs the pure threshold
strategies of the form “While arriving at time t, observe N(t); enter if N(t) <n,.-1 and balk otherwise‘.

For n,e{n;,n;, + 1, ... ....ny} are equilibrium strategies.

Proof: if we assume that S(0) > 0 then We have f;(0) > 0 and lim,,_,., f; (n) = —o0, so if n;; is the subscript of the first
negativeterm of the sequence (f;(n)), we have that for the finite number n; the condition (68) holds.

On the other hand, fy(n) > f,(n), n =0, 1, . . . . In particular we conclude that fy(ny) < fi(ny) < 0. Now, we begin to
gobackwards, starting from the subscript n;;, towards 0 and we let n, — 1 be the subscript of the first positive term of
the sequence (f,(n)). Then we have (69). If all the terms of (f,(n)) going backwards from n; to 0 are non-positive we
have (70).

Now we can establish the existence of equilibrium threshold policies in the partially observable case.

In this model we consider an arrival customer assume that all other customers follow the same threshold strategy
‘while arriving at time t, observe N(t), enter if N(t) <n, and balk otherwise*. for some fixed r n,e{n,,n; + 1, .......ny}

If the tagged customer finds n< n, customers in front of him and decides to enter, his expected benefit is equal to
fi(n) > 0 because of (66) and (68). So in this case the customer prefers to enter.

© 2021, IIMA. All Rights Reserved 8
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If the tagged customer finds n = n, 4+ 1 customers in front of him and decides to enter, his expected benefit is equal to
f2(n,) <0 because of (67), (69) or (70). So in this case the customer prefers to balk.

Therefore we conclude that customer follow the equilibrium threshold strategiesn, = n;,n; + 1, ... ... ny.

The social benefits per unit time when all the customers follow the equilibrium threshold strategies n,given in theorm 3
equals

SBao =R (1' p(ne)) - CZZE:O np(n)
Where p(n,) =p(n, + 1,0)+ p(n, + 1,1) + p(n, + 1,2) + p(n, + 1,3)

p(n) = p(n, 0) + p(n, 1) + p(n, 2) + p(n, 3)

VI. THE ALMOST UNOBSERVABLE CASE

We now proceed to the almost unobservable case with partial breakdown where the arriving customers observe the
state of the server upon arrival, but not the queue size. From a methodological point of view, the almost unobservable
case is interesting. In the almost unobservable case, a mixed strategy is specified by a vector of joining probabilities
(90: 91,92+ 93)s q;€ [0, 1], where g;denotes the joining probability of a customer if the server is found at state i upon
arrival, i =0, 1, 2,3.

Clearly, the new queue is equivalent to the original queue except that the arrival intensity A should be replaced by Ag;
when the server is found at state i. The mixed strategy has the form ‘while arriving at time t, observe 1 (t), enter with
probabilityg; when I(t) =i’. Let p(n, i) be the stationary distribution of the corresponding system.

Lemma 2: For the M / M /1 queue with partial breakdowns, total breakdown and delayed repairs for the almost
unobservable case, the stability holds if u > Aq,and o > 1q,

Proof: The steady-state balance equations are given below,

(Aot 0) p (0, 0) = ap (0, 3), (71)
(Agot 0)p(m,0)=2ge p(n—1,0)+ap(n,3), nx>1, (72)
(rq1+€) p (0, 1) = p (1, 1) +6p(0, 0), (73)
(Aqi+u+$) p(n, 1) = up(n+1, 1) + Ag; p(n -1, 1) + 6 p(n, 0), n=1, (74)
(Aq2+$0) PO, 2) = 1o (1, 2) +$p(0, 1), (75)
(Agztig +$o) p(n, 2) =g, p(n —1,2) + o p(n +1,2) +$p(n, 1), n >1. (76)
(Aqz+a) p(0,3) =&, p(0, 2) (77)
(Agz+a) p(n, 3) =g p(n —1, 3) +§o p(n, 2), n>1 (78)
Starting with n = 0 and summing each of these balance equations over i, i =0, 1, 2, 3, Then
ppm+ 1L, D) +uypm+1,2)=2gs3 p(n,3)+2q, p(n,2) +2q; p (0, 1) +2g0 p (n, 0),n >0. (79)

Clearly, 27— op(n,i) =m;, i =0, 1, 2. By summing (79) overall n, we arrive at
p(my —p (0, 1)) +py (m —p (0, 2)) = Agsm3 + Ay + AqiTy + AqoTrg ) = A, that is,
up (0, 1) + po p (0, 2) + Aqomo + Agsms = (1 — Aq1)my + (Mo — Aq2)T, (80)

Since all states are communicating, from the theory of recurrent events, all the probabilities p (n, i) (n>0,i =0, 1, 3)
are either all positive or, alternatively, all equal to zero. This property is crucial for our analysis.

If the Markov chain {(L (), I (1)), t >0} is ergodic (positive recurrent), then all the probabilities p (n, i) (h >0,i=0, 1,
3) are positive.

Thus p (0, 2) >0 and p (0, 3) > 0 we have u > Aq; and (u, > 1q,), all the probabilities P(n, i) are positive (and sum to
one) from the ergodicity theory. The system is stable

Define the partial generating functions as G; (z) = Yo, p(n,i) z",|z|<1,i=0,1,2, 3.
For Equations (71) — (73) and (77), (78), multiplying both sides by z" and summing overall n for state i, note that A
should be replaced by Ag; for state i, then

(Aqo(1 —2) +6) Gy (2) = aG; (2) (81)
Aq3(1 —2) + a)G3 (2) =46, (2) (82)

© 2021, IIMA. All Rights Reserved 9
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For Equations (74) and (76), multiplying both sides by z"*! and summing overall n for state i, note that A should be

replaced by Aq; for state i, then
{(Aq1z — (1 — 2) +§2} Gy (2) - 02Gy(2) = (z-1) u p(0,1)
{(M2z — u)(1 — 2) + &2} G, (2) - §2G1(2) = (z-1)uep(0,2)
1 (G, (2) p(0,2))+p(Gs (2) —p (0, 3)) = Aq3 2G5 (2) + Mg, 2G, (z) + Aq; 2G,y (2) + Mg 2Gy (2).
(1 —2q12)G,(2) + (1o — A922) G, (2) = up (0, 1)+ po p (0, 2) + Aqo2Gy (2) + Aq32G5(2)

From equations (81) and (82)
_  [A2(1-2)%q043+2(1-2)(aqo+043)+8a
GZ - GO{ (lfo }

Put value of G, in equation (84), we have
{(AM2z — o) (1 — 2) + §zHA*(1 — 2)2qoq3 + A(1 — 2)(aqy + 0q3) + 0a} - EaéyzG, (z) = (z-1)ueagop(0,2)

Solve the equation (83) and (88), then
Gy = (z—Dup (0,1)za¢ §o+(z—Duoadop (0.2){Aq1z—p)(1-2)+{z}

Where o
Q@) =-[{(Aq1Z2 — W(Aqzz — o) (1 — 2) + (\q1z — Wz&o + (Ag2Zz — Uy)zE} * {/12 1- Z)ZQOQB
+A(1 = 2)(aqy + 0q3) + 0a} + 22§&{A* (1 — 2)*qoq; + A(1 — 2)(aqo + 6q3)}]

Lemma 2:1 the function Q(z) has a unique root g in (0, 1).

Proof: If 0 < g;< 1, Q(0) = -uuy{A*qeqs + A(aq, + 0q3) + 6a} < 0 and

QM) ={ (1 = 29100 + (o — 142) — 266 (L +2)} a6 > 0
Q(z) has a roots lie (0, 1), clearly ué + poé > g1y + 1q,¢

u Mo 3 a2 ; _ _
if o> 20 2> 1 and QG = Aq1(° ql)aBSO(Iqu—q3—0)

P Mo Ho Ho
Slmllarly,f >H/1 >1andQ( )

Then function Q(z) has a unique root g in (0, 1).

Putz=ginQ(z)and g, =q; = q; = q3 = 0 now
- lupe(1 —g) —ugéo — Eguplad =0

g __ M

Uitg + 1o + g

The numerator of (89) must equal zero when z = g. then

up(o 1)_ /JOP(O Z)W(g)
98
put this value in equation (80),we have
P(0,2) = gé{(p—2q1)m1+(o—Agq2)m2—Aqomo—Aq3m3 }
g uo—row(9)

where ¢(9) = {(Aq19 — (1 — g9) + &g}

Since G;(1) =m;, by differentiating (81) — (86) with respect to z and setting z = 1, then
Gy (1)=Agqymo+aGs(1)
aGé(l) = Agzms + §0Ga(1)
§Gy (1) = 60Gy(1) = Bmy +my(Aq; —p —§) —up(0,1)
$0G2(1) =$Gy (1) = &my +ma(Aqy — o —$o) — o P(0,2) , , ,
UG (1) + oGy (1)) = AqoTo + Aq1 7y + AT, + AgsTrs + AqoGo(1) + Aq1G1 (1) +Aq, G, (1) +Aq3G5(1)

Now solving these equations
uéo€m1—poma—§om2)—uoéo(u—2q1)p(0,2)+o (#0+50)M127T2+/150 (e —2q1+8)(qomo+q2m2+q3m3)+A§ (Lo—2q2)(qomo+q3m3)
_2%q093m0¢0

Go(1) = «
o(d) 0{(1-Aq1)¢0+(uo—292)§—A¢ £ (12+12))
lfo[qoﬂo+q1ﬂ1+q3ﬂ3+ﬂoﬂz+ aiin 0+(q0 Q3){7Tz(#0+Mz—f1§o)+s‘ﬂ1+?\q3ﬂ3}]

+(uo—292){(o~Aq2)ma—Em 1+uop (0,2)[1o 2228 £ (L+12);
{(=2q 80 +(ro-A02)¢ 2§ £ (L2+12)}

G (1) =

© 2021, IIMA. All Rights Reserved
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Azqznof Azqzn3f 12 3
_u(Emy— poma—Eom2)—po(—2q1)p (0,2)+ (-2 Aq2ma+(o+§0)Aq1m2+4E (qomo+q2ma +qams)+— g4 2324 =013 3t

G,(1)= 93
2() {(=2qD80+(wo-Aq2)§ 2§ £0 (L2+12)} 3)
G3(1)=
o my—pomz—§om2)—rosow—1q1)p(0,2)+o (mo+$0)Aq1m2+A§ S0 (qomo+qzm2+q3m3)+(—Aq1)Aq2m280+Aq3m3{§0 (W—2q1)+¢ (wo—2q2)}
+lzq%noffo
8
(94)

a{(u—2q1)¢0+(uo-Aq2)E—2¢ £ (LL+L2 )}

a

The quantity G; (1) can be considered as the contribution of state i to the mean queue length. Intuitively, since all the
three states are communicating, the accumulation of customers in one state will influence all the three states.

By using PASTA property, the probability that there are n customers in the system given that the server is found at state
iis
P(n||) :M— M, n>0,i=0,1,2 3.

Sroop(ui) om ,
o N _ I2omp(al) _ G . _
Let L (qo, q1, G2, 93) = Zir-onp(nli) = =222 = 2022120, 1, 2.3
Lo(90,91,92,93) =
pad (82— poéo—€§)+é0 o+é0)Aq1ab +A§0 (u—Aq1+£)(qo&0 +q20a+q3éa)
2 2
FAE2(10202)(qo 80 +q3fa) - 10100 _ 9@—2g0){(w=A91)§a8 +(u9~142)€0a8 ~ Aqo£0E0 ~Aq3éEoa )
£62((u-2qDE0+(uo-Aq2)§ —2§ o (L +12); 02(g¢ 0 () —Aq )0 +1o—2q2)E ~2¢ £0 (L+2);)

9§ {o—2q2-450 (‘IOTO+‘L_3)}{(#_A‘11)§“9 +(o-2q2)§0ab —Aqoé0§6 —Aq3§§oa }
ab (98— ()N (u—2q 10 +1o—2q2)E ~2£ £o (L+12))

L1(40,91,92,93) = —

pad (§2— oo —£8)+(no+E0)2q1§0a8 +(u—2q1)Aq2€0 a6 +

22 2
AE£0(q080 +920a+q38a) +A2§ 20 (qf +qF)+ 10134840

Ly(q0,91,92,93) = _
2(d0: 91,42, 95) £0a0 ((u—2q1)E0+(uo—2q2)§ —2 &0 (L+12))

9§ (u=2q1){(u—2q1)§ab +(uo—2q2)§oab —Aqo§0§0 —Aq3ééoa}
€060 (g€ @ (9} (—2q1)E0 +Uo—242)E—28 £ (L+L3))

nad (§2=puo§0—¢6)+(o+§0)2q180a0 +(u—2q1)Aq280a6 +4%q0%¢ 2 &0
L 01,0, G2)= +2££0(q0¢0 +q20a +q3a)+Aq3da{fou—2q91)+¢(uo—2q2)}
3(d0. 41, 42, 93) £a2((u-AqE0+(o~Aq2)E —A¢ £ (L+L2))
9(u—2q1){(u—21q1)§ab +(uo—2q2)§oab —Aqo§0§0 —Aq3éspa}
a? (g€~ (@M (u—2qDE0+po—142)E 2 £o(L+13))

If a joining customer finds the server at state i, his mean sojourn time is T(L;(q,91,92,93). 1), T(n, 0) and T(n, 1),
T(n,2) and T(n,3) are given in equation (24)-(27), then
T(L1(q0, 91,92, 93),1) =

Li( ) uo+§o+§+§fo(§+§) uof{u—uoﬂtfo(%%)} uof{u—uoﬂtfo(%%)}( it )Ll(%rqlr%%)r“
1490910 92,93 rpo+uEo+Eng (upo+u&o+Euo) (wéo+éuo) (uEo+Ep0)? upo+ugo+éuo
2 1 1
1 1 1) HHo s‘{u—uo+ufo(5+—)}
———— o+ &+ &+ (—+—) «
##o+#s‘o+s‘#o<’u0 ot S+sbolgHy (§o+no)?
T(L2(q0,91,92,93).2) = - - -
Ly( ) uo+s‘o+s‘+s‘s‘o(5+g) uof{u—uo+ufo(g+;)} _fo#{#—#0+ﬂfo(§+;)}( Hito )Lz(%rqquzr%)“
280,91 92, 93 rpo+uEo+Eng (npo+pgo+Euo) (o +E10) (u&o+Euo)? ppo+uéo+épg
2 1,1 1,1
1 11 Ko s‘{#—uo+ﬂs‘o(5+—)} u—po+uoG+y)
————— (o + &+ &+ (—+—)— ) 4 «
##o+#s‘o+s‘#o<’u0 ot S+sbolgHy (u§o+no)? uéo+iuo
T(Lo(q0,91,92,93).0) = - - -
Lo ) no+éo+E+e€0(3+2) wotfu—uo+uto(5+5)} uof{u—uo+ufo(5+;)}( it )Lo(%rqlr%r%)r“
040,91, 92- 3 rpo+uEo+Eng (upo+u&o+Eno)uéo+Euog) (u&o+Euo)? upo+uo+éuo
2 1 1
1 1 1)Kk s‘{u—uo+ufo(5+—)} 1
————— g+ & +E+ (—+—) ) 4~
##o+#s‘o+s‘#o<’u0 ot sHibolgty (u§o+no)? 0
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T(L3(q0, 91,92, 93):3) =

Ly( ) uo+§o+§+f§o(§+§) uos‘{u—uoﬂtfo(%%)} _s‘ou{u—uows‘o(%%)}( Hito )L3(‘10r‘11r‘12r‘13)+1
380,91 2, q3 npo+ugo+éuo (upo+u&o+Epo)(uEo+Euo) (u&o+Emo)? upo+uéo+éuo
2 1.1
1 11 Ko f{u—uo+ufo(g+—)} 1,1
———— (o + &+ &+ (—+—)— e ) o =
##o+#s‘o+s‘#o<’u0 ot S+sbolgty (u§o+no)? 0 «a

The expected net reward of such a customer is
Si (90, 91,92,93) = R=C T(L; (90,91, 92,93). 1) 1=0,1,2,3

VII. THE FULLY UNOBSERVABLE CASE

In this section, arriving customers can observe neither the state of the server at their arrival instant nor the number of
customers present. A strategy can be described by a fraction q (0 < g < 1), which is the probability of joining, and the
effective arrival rate is g.

To identify the equilibrium strategies of the customers, we should first investigate the stationary distribution of the
system when all customers follow a given strategy g, which can be obtained by lemma 2 By taking qo= q:= ¢,= q3= 0,
we can get the expressions of G; (1) in a way similar to that exhibited in Section VI, Then

2,2,

G, (1) = Moo o) odo G A0)pO2) oo Hodhamy+afolAa +) ot gt (ko ) o) —4-a°rofdo

0 6{(u—20)60+(Guo—10)E —Aq¢ o (5+7)}

ZT[

G (1) = ﬂfo[qﬂo+qﬂ1+qﬂ3+ﬂoﬂz+lq9 0+q(%+$){ﬂz(#o+ﬂq —ls‘o)+s‘ﬂ1+?\qﬂ3}]+(#o—/1q){(#o—ﬂq)ﬂz—s‘m}wop(0,2){#0—/14—Ms‘o(%+$)}

nwe {=10)60+(o-A0)E ¢ £ (3+7))

22q%¢(mo+n3) 1%q%m3¢

Gy(1) = u@my—poma—=§om2)—po(—2a)p(0,2)+ (u—-29)Aqma+(o+{0)Aqmz+Aq§ (mo+ma+m3)+ 7 +—

2 {=20)60+(no-A0)E 4t £ (53+7))
G3(1) =

2,2,
uEo(€m1— uoma—Eoma)—uofo(u—2q)p(0,2)+E0 (uo+E0)Aq ma-+AgE £ (ro+mz +13)+(u—Aq)Aqma€o+Aq w3 {Eo (u—Aq)+§ (o—Aq)}+ 2-LT0EE0

a{(u=29)¢0+(uo~Aq)E~Aq £o(3+7))

Thus, the mean queue length is given by
E (L) = Go(1) +G; (1) +G,(1) +G3(1) =

pEab(&0 + &a + af) — (g + &) — A9) (o0 + & + ad)abé, + Aq (&0 + E&ya + Eab)

(§$00 + §éoa + §ab + §yab)
+(u — A9)Aq&oa{(§o0 + &g + a0)6 + 288,0 + E&pa} + ab (g — AQ{AqEEH (28 + o) + Erab(py — Aq) + aBE?}
+1o (&g B)? +
A2q2E8, Ba+ A2q2E28) (a® + aB + 0) + A&yq(0 + a){ (g + Aq — A&,)Esaf + £2a0 + Agééyal

aB(E6,0 + E8oa + £aB + E0ad) { (1 — A9)E + (o — Aq)E — 2q88, (5 +2)}
_ 98 = AD{(§o + Soa + ab) + (o — AqQ)ab — Aq§§ (6 + W H(u — Aq)§ab + (4o — Aq)§pab — Aqéeé(6 + ) }
af(gé — 9(9))(§600 + §§pa + §ab + &yab) {(u — A& + (uo — 1) — Aq€&, (g + i)}

Therefore, the mean sojourn time of a customer who joins the system can be derived by using Little’s law, then

= E®)
E(W) ==
1E2a8 (E00-+Eoa-+ad) —(uo+£0) (u—1q) (o8 +Ega+ad B o +Aq (€08 +E§ ga+Ead ) (E§00+EEga+Ead +Egaf)

+(u—2q)AqEoa{(Eoh+Epa+af)0+288 00 +EEga+ad (o—Aq){Aqséo (2E+a)+Egab (uo—Aq)+aB &2} +ug(E9ba)?+

E (W) = 22q2880% 00 +22q 28280 (a?+a8+0)+A&0 q (8 +a){(ug+Ag —1£0)Egad +E2ad +Aqé Ega) _

Aqaf (§€06-+§Ega+Ead +E0ad){(u—29)E0+uo—2q)E ~Aq€ &0 (3+7)}
9§ (1=Aq) (508 +E0a+ad) +(uo—Aq)ad —Aq £ o (0+e)}{(u—Aq)éad +(uo—Aq)E0ad — Aqéo (B+a))
Aqaf (g€ —p(9))(§ E08 +EEoa+Ead +E0ad){(u—2q)E0+(uo—Aq)E 198 Eo (3+1))

Clearly, E (W) is strictly increasing for g, q € [0, 1]. This property is crucial for our analysis. A general balking
strategy in the fully unobservable case is specified by a single joining probability . The case q = 0 corresponds to the
pure strategy ‘to balk’ whereas the case q = 1 corresponds to the pure strategy ‘to join’. Any value of g € (0, 1)
corresponds to a mixed strategy ‘to join with probability q’. We can describe the equilibrium behavior of the customers
in the following theorem. The equilibrium strategies depend on the value of the ratio R /C. Customers have a greater
incentive to enter the system if the value of R/ C is higher.
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Theorem 4: In the fully unobservable M / M /1 queue with partial breakdowns, total breakdowns and delayed repairs,
there exists a unique equilibrium strategy ‘enter with probability g, ’, where q,is specified

( R
| 0, =<EW)ly,

R
Ge={di,  EWlm <5< EW,,
|

R
L L Z>EW)lem

Where g} is the unique root of the equation R-CE(W) = 0 and
(§€00+E0a+£a) (§00+EEoa+iad +§0ad)—(ad)? {uofo+¢ %)

néoa{(€oB+Ega+ad)B+288 00 +EEga} +Eoab (0+a){(no—A80)ép+E2}
gé {00 +Eoa+al)+uoad Hu§ +uodo}

E(W)|,— >
( )lq—O ab (§€00+EEga+Ead +&gad){uéo+Euo} (g-DE&00+Eoa+iab +éoab ) {udo+Euo}
pé2ab ob+&oa+ad)—(uo+E0) (- (Eob+Ea+ab)ad §o+A(§E00+EEga+Eat) (§600 +Ega+Ead +Egad)
+u—29)A80a{(§08+oa+aB)0+288 00 +6€ ga}+ad (uo—A)HAqE §o (2§ +a)+E0ab (uo—A)+ad §*}uo(§ofa )+
E(W)| _ 22660200 +22828 (a2 +ab +6)+A8 (0 +a) (o +A—AEp)E0ad +E2ab +A¢ §pa) _
q=1 Aab (£€00+E Ea+Ead +E0ad){ (-0 +uo—NE—2£ €0 (5+7)}

g W= {00 +§oa+ab)+(uo—D)ab —1§§ o (8 +a) H(p —21)éabd +(ug—2A)§pad — 1§p§ (0 +a) }
Aab (g& <p(g))(§§00+§§0a+§a9+§0a9){(M—A)§0+(uo—l)§—lffo(; ‘1)}

Proof: Based on the reward-cost structure, if a tagged customer decides to enter the system at his arrival instant, his
expected net reward is

1E2ab (§00+§0a-+ad) —(uo+50) (u—1q) €00 +Eoa+ad)adEo+Aq (6600 +E€ga-+iad ) (E0 0+ Ega+Ead +E9ad)
+(u—=2a)Aq §oa{(§0 0 +E0a+ab)0+28£ 00 +5§ g a}+ad (uo—Aq){Aq§éo (28+a)+§0ab (ro—Aa)+aB 2} +ug(§o0a)? +
22q2£80%0a+22q2 280 (a?+aB+0)+AE0q (0 +0a) {(uo+Aq —1E0)Ead +E2ad +Aqé Eg )
Aqaf (§ €00 +EEoa+Ead +E0ad){(u—Aq)E0+(uo~Aq)E~Aqé &0 (5+7))
9§ (u=29){(£08 +£0a+a8) +(0—Aq)ad —Aq £§0 (B+a)}{(u—19)éaf +(uo—Aq)E0ad — Aqéoé (6+a) } (95)
Aqaf (g€ —p(9)) (€08 +EEoa+Ead +E0ad){(u—20)E0 +(uo—Aq)E ~Ag¢ Eo(3+2))

S@@)=R-C

Clearly, S (q) is strictly decreasing for g, g € [0, 1]. In addition,
(§§00+8§0a+éad ) (€00 +E§oa+iad +£9ab)—(a) {uofo+¢}

néoa{(€oB+Eoa+ad)B+28800+EEga} +Egad (0+a){(no—A80)éo+E2}
gé {00 +Eoa+ab)+uoad Hu§ +uopéo}

af (§§o0+ESoa+iab +§oab ) {udo+iuo} (g-DE&00+Eéoa+iab +Eoad){undo+Euo}

EW)lg=0 >

1E2ad (£o8+&oa+ad)—(uo+E0) (u—2) (€08 +Eoa+ab)ab Eo+A(EE 08 +EEga+Eab ) (E€gB+EEga+Eab +Egaf)
+(u—Ag)AE0a {00 +Eoa+aB)o+28800+EE gat+ad (uo—A){Aqé §o RE+a) +Egad (uo—A)+ad E2}+uo(§o0a) %+
22880200 +228280 (a?+ab +0)+AEo (0 +a){(no+A—AE0)Eoad +E2af +AE Epa)
Aab (§€00+EEoa+Ead +E0at){(u—DEo+Guo—1)E 28 o (5+5))
gE (=2){(£00+E0a+a8)+(io—1)a8 —1& (0 +a)}{(n—2)Eab +(uo—A)Eoad — A&pf (B+a) }
Aaf (9§ ~p(9))(E€00+EEoa+Ead +E0ad){(u-A)o+4o—)E 26 &0 (3+7))

E(W)|q=1=

When § < E(W)|,4=0, S (q) is negative for every q. Therefore, the best response of tagged customer is balking.

If § > E(W)|,4=1, then S (g)= S (1) > 0, the expected net benefit of the tagged customer is positive, thus he joins the
system with probability 1.

When E(W) |- < § < E(W)|4=1, there exists a unique root q; of the equation S (q) = 0 in the interval [0, 1].

The social benefit per unit time can now be easily calculated as
1&2ab (o0+Eoa+ad)—(ug+E0)(u—Aq)Gob+Eoa+ad)abEo+Aq (§€00+E8ga+iad ) (S0 0 +E§ga+iad +£pad)
+(u—2q)2q §oal (€0 0+ a+ad)8+28 00 +8 g a}+ad (uo—2a){AqtEo (28+a)+E0ad (ko—Aq)+aBE2 4o (§oba)®+
22q2£80%00 41228280 (a2 +a0 +0)+1E0q(B+a){(1o+Aq —AE0)Egab +E2ad+AqE Ega)
ab (£ €00 +EEoa-+Ead +Ea){(u—2q)E0+(uo—2q)E ~29¢ o (5+7)}
¢ 9= Go0+oa+ad)+(uo—Aq)ad -Aq 5o (B+e)} (i —Aq){ab +(uo—A9)§0ad ~Aqfof (9+e)} (96)
ab (g€~ (9)) E€00+EEoa+Ead +E0ad){ (u—2q )0 +(10~29)E A€ Eo(5+7 )]

SBr,=AqR - C
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V111 CONCLUSION AND FUTURE WORK

In this paper we considered equilibrium Strategic behaviour in single server markovian queueing system with partial
breakdown,total breakdown and delayed repair. We studied the equilibrium balking strategies and expected social
benefits per unit time for the customer in four different case with respect to the level of information provided to
arriving customers . We also discussed the sensitivity of the equilibrium threshold with various parameters in fully and
almost observable queue and sensitivity of the expected sojourn time of customer in almost and fully unobservable
queues. This work can be extended in several different directions. One direction is to study the equilibrium Strategic in
multi-server system. The direct generalization is to concern the optimal price of social planner due to the increased
operating costs caused by switching service rates.
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