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ABSTRACT 
In this paper, we introduce ordered Γ-semihypergroups with involution and weakly prime Γ- hyperideal, 
then we investigate some properties of prime, semiprime and weakly prime Γ-hyperideals in ordered                   
Γ-semihypergroup with involution. Also, we study intra-regular ordered Γ-semihypergroups with involution. 
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1. INTRODUCTION AND PRELIMINARIES 
 
The notion of Γ-semigroup was introduced by Sen [19]. The concept of prime and weakly prime ideal in 
semigroups has been given by Szasz [21], and then Petrich [18] studied these notions for semigroups. Fur- 
thermore, Kehayopulu [10], [11], [12] introduced prime, weakly prime ideals in ordered semigroups (partially 
ordered semigroups) by extending the analogous concepts of ring theory that was given by McCoy [16] and 
Steinfeld [20]. Khan et al [24] studied derivations of 𝜎𝜎-prime rings. 
 
The concept of algebraic hyperstructures was given by Marty [15]. Algebraic hyperstructures are a standard 
generalization of classical algebraic structures. In a classical algebraic structure, the composition of two elements 
is an element, while in an algebraic hyperstructure, the composition of two elements is a set. The first association 
between binary relations and hyperstructures appeared in Nieminem [17]. For comprehensive study on 
semihypergroup by different algebraists, we refer [8], [4], [6], [3] and [1]. Kondo and Lekkoksung [13] studied 
intra-regular ordered Γ-semihypergroups. Later, Tang et al. [22] studied (fuzzy) quasi-Γ-hyperideals in ordered 
Γ-semihypergroups. 
 
Foulis [7] introduced the concept of involution semigroups. Later, Baxter [2] studied rings with proper involution, 
a n d  Drazin [5] studied regular semigroups with involution. Herstein [9] studied ring with involution,  and Wu 
[23] studied intra-regular ordered semigroups with involution.  
 
In this paper, the notion of a weakly prime Γ-hyperideal of a Γ-semihypergroup with involution is introduced. A 
weakly prime Γ-hyperideal of a Γ-semihypergroup is a generalization of a weakly prime ideal of a semigroup, a 
generalization of a weakly prime hyperideal of a semihypergroup and a generalization of a Γ-ideal of a Γ-
semigroup. 
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The notion of ordered Γ-semigroup was introduced by Kwon and Lee [14]. An ordered Γ-semigroup is an 
ordered set (S, ≤) at the same time a Γ-semigroup (S, Γ) such that a ≤ b ⇒ aαx ≤ bαx and xβa ≤ xβb for all a, 
b, x ∈ S and α, β ∈ Γ. 
 
Let S be a non-empty set and let P ∗(S) be the set of all non-empty subsets of S.  A hyperoperation on S is 
a map ◦ : S × S → P ∗(S) and the couple (S, ◦) is called a hypergroupoid. We denote by x ◦ y, the hyperproduct of 
elements x, y of S. 
 
Let A and B be two non-empty subsets of S, then the hyperproduct of A and B is defined as: 
 
A ◦ B = ∪a∈A,b∈B a ◦ b, x ◦ A = {x} ◦ A, A ◦ x = A ◦{x}.  
 
Also, AΓB = ∪{aγb | a ∈ A, b ∈ B and γ ∈ Γ}. 
 
Definition 1.1: [13] A hyperstructure (S, Γ, ≤) is called an ordered Γ-semihypergroup if (S, Γ) is Γ-
semihypergroup and ≤ is a partial order relation on S such that the following condition hold: 
x ≤ y ⇒ aγx ≤ aγy and xγa ≤ yγa, for all x, y, a ∈ S and γ ∈ Γ. 
 
If A and B are non-empty subsets of S, then we say that A ≤ B if for every a ∈ A there exists b ∈ B such that 
a ≤ b. Clearly, every ordered Γ-semigroup is an ordered Γ-semihypergroup. A non-empty subset A of an 
ordered Γ-semihypergroup (S, Γ, ≤) is called a Γ-subsemihypergroup of S if AΓA ⊆ A. 
 
2. ORDERED INVOLUTION Γ- SEMIHYPERGROUPS 
 
Here in this section we define ordered involution Γ-semihypergroup and provided some related properties. 
 
Definition 2.1: An ordered Γ-semihypergroup (S, Γ, ≤) with a unary operation * :  S  → S  is  called  an ordered 
Γ-semihypergroup with involution if 
(i) (x*)* = x 
(ii) (xαy)* = y*αx* 
for all x, y ∈ S and α ∈ Γ. The unary operation * is called an involution.  Furthermore, if for all a, b ∈ S 
with a ≤ b ⇒ a* ≤ b*, then we call * an order preserving involution. 
 
Example 2.2: Consider a set S = {a, b, c} with the set of binary hyperoperations Γ = {α, β, γ} and the order 
” ≤ ” : 
 
 
 
 
 
 

≤:= {(a, a), (b, b), (c, a), (c, b), (c, c)} 
 
We give the covering relation ≺ and the figure of S as follows: 
≺= {(c, a), (c, b)} 

 
Then (S, Γ, ≤) is an ordered Γ-semihypergroup. Now we define the involution * by a* = b (hence b* = a) 
and c* = c. It is easy to check that S is an ordered Γ-semihypergroup with order preserving involution *. 
 
Throughout the paper, we shall denote ordered involution Γ-semihypergroup (S, Γ, ≤, *) by S. 
 

α a b c  β a b c  γ a b c 

a {a, b} S c  a {a, c} S c  a S {a, b} c 

b S {a, b} c  b S {b, c} c  b {a, b} S c 
c c c c  c c c c  c c c c 
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Definition 2.3: A non-empty subset A of an ordered involution Γ-semihypergroup S is called a sub Γ- 
semihypergroup of S if AΓA ⊆ A and A* ⊆ A. 
 
Definition 2.4: A non-empty subset I of an ordered involution Γ-semihypergroup S is called a left (resp., 
right) Γ-hyperideal of S if the following conditions hold: 
(i) IΓS ⊆ I (resp., SΓI ⊆ I), 
(ii) I* ⊆ I, 
(iii) a ∈ I, b ≤ a for b ∈ S ⇒ b ∈ I. 
 
A hyperideal I of S is both a right and left Γ-hyperideal of an ordered involution Γ-semihypergroup S. 
A right, left or Γ-hyperideal I of S is called proper if I≠S.    We  denote  by  L(s), R(s)  and  I(s)  the 
left Γ-hyperideal, right Γ-hyperideal and the Γ-hyperideal generated by s.  Obviously, L(s) = (s ∪ SΓs], 
R(s) = (s ∪ sΓS], I(s) = (s ∪ SΓs ∪ sΓS ∪ SΓsΓS]. 
 
If (S, Γ, ≤) is an ordered Γ-semihypergroup and A ⊆ S, then (A] is the subset of S defined as follows: 
(A] = {s ∈ S : s ≤ a, for some a  ∈ A}. 
 
Definition 2.5: Let S be an ordered involution Γ-semihypergroup and P  ⊆ S. Then P  is called prime if 
A, B ⊆ S, AΓB ⊆ P implies A*⊆ P or B*⊆ P. 
 
Example 2.6: Consider a set H = {a, b, c, d, e} with the set of binary hyperoperations Γ = {β, γ} and the 
order ” ≤ ” : 
 
 
 
 

 
 
 
 

 
≤:= {(a, a), (a, c), (a, d), (b, c), (b, b), (b, d), (c, c), (d, d), (e, e)} 

 
We give the covering relation ≺ and the figure of H as follows: 

≺= {(a, c), (a, d), (b, c), (b, d)} 
 

 
Then (S, Γ, ≤) is an ordered Γ-semihypergroup. Now we define the involution * by a*  = a,  b*  = b,  c*  = d (hence 
d* = c) and e* = e. It is easy to check that H is an ordered involution Γ-semihypergroup with order 
preserving involution *. Here {e} and {a, b, c, d, e} are prime. 
 
Definition 2.7: Let S  be an ordered involution Γ-semihypergroup and P⊆S.  Then P is called semiprime if 
for any subset A of S, AΓA ⊆ P implies A* ⊆ P. 
 
Definition 2.8: Let S be an ordered involution Γ-semihypergroup and P ⊆ S.  Then P  is called weakly prime 
if for Γ-hyperideals A, B of S such that AΓB ⊆ P implies A* ⊆ P or B* ⊆ P. 
 

β a b c d e  γ a b c d e 

a a a a a e  a a a a a e 
b a a a a e  b a a a a e 
c a a a {a, b} e  c a a {a, b} a e 

d a a {a, b} a e  d a a a {a, b} e 

e e e e e e  e e e e e e 
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We start with the following Lemma which is trivial and is essential for proving subsequent results. 
 
Lemma 2.9: Suppose t h a t  S is an ordered involution Γ-semihypergroup.  Then we have the following: 

(i) A ⊆ (A] for any A ⊆ S. 
(ii) (A] ⊆ (B] for any A ⊆ B ⊆ S. (iii)(A]Γ(B] ⊆ (AΓB] for all A, B ⊆ S. 
(iv) ((A]] ⊆ (A] for all A ⊆ S. 
(v) For any right (left, two-sided) Γ-hyperideal I of S, (I] = I. 
(vi) If I and J are Γ-hyperideals of S, then (IΓJ] and I ∩ J are also Γ-hyperideals of S. 
(vii) For any s ∈ S, (SΓsΓS] is a Γ-hyperideal of S. 

 
Lemma 2.10: Suppose t hat  S is an ordered involution Γ-semihypergroup such that the involution * admits 
order. Then we have: 
(i) (bΓSΓa]* = (a*ΓSΓb*] for any a, b ∈ S. 
(ii) (SΓaΓS]* = (SΓa*ΓS] for any a ∈ S. 
(iii) I* is a Γ-hyperideal of S for any Γ-hyperideal I of S. 

 
Proof: 
(i)  Suppose that x  ∈  (bΓSΓa]*.    As  x*  ∈  (bΓSΓa],  x*  ≤  bαsβa  for  s  ∈  S  and  α, β  ∈  Γ.    Then x ≤ 
(bαsβa)* = a*βs*αb* ⊆ a*ΓSΓb* since * is an order preserving involution. So, x ∈ (a*ΓSΓb*] and therefore, 
we obtain (bΓSΓa]* ⊆ (a*ΓSΓb*]. Furthermore, if x ∈ (a*ΓSΓb*], then x ≤ a*αsβb* for some  s ∈ S  and α, 
β  ∈ Γ.  So,  x*  ≤ bαs*βa ⊆ bΓSΓa since a*αsβb*  = (bγs*δa)*  for α, β, γ, δ  ∈ Γ.  This shows that x* ∈ (bΓSΓa] 
and x ∈ (bΓSΓa]*. So, (a*ΓSΓb*] ⊆ (bΓSΓa]*. Hence, (bΓSΓa]* = (a*ΓSΓb*]. 
(ii) The proof is similar to (i). 
(iii) Suppose that I is a Γ-hyperideal of S. As SΓI ⊆ I, we obtain (SΓI)* ⊆ I*. So, I*ΓS* ⊆ 
I*. As * is an involution on S, (s*)*  = s for every s ∈ S, and so S*  = S.  Therefore, I*ΓS ⊆ I*.  In the 
same way as IΓS ⊆ I, we obtain SΓI* ⊆ I*. Suppose that a ∈ I*, and b ≤ a, then b* ≤ a*. Since a* ∈ I 
and I is a Γ-hyperideal.  Therefore, b* ∈ I, and so b ∈ I* and hence I* is a Γ-hyperideal of S.  
 
Theorem 2.11: Suppose that S is an ordered Γ-semihypergroup such that S admits an order preserving 
involution 
*. A Γ-hyperideal of S is prime if and only if it is both weakly prime and semiprime. Furthermore, if S is 
commutative, then the prime and weakly prime Γ-hyperideals coincide. 
 
Proof: Let I be a prime hyperideal of S. Then it is obviously weakly prime and semiprime. 
Conversely, let P be an ideal of S which is weakly prime and semiprime. Suppose aαb ⊆ P for α ∈ Γ, we need to 
prove that a* ∈ P or b* ∈ P . By Lemma 2.9, (bΓSΓa]Γ(bΓSΓa] ⊆ (SΓaΓbΓS] ⊆ (SΓP ΓS] ⊆ (P ] = P . 
So, P is semiprime and it follows that (bΓSΓa]* ⊆ P . Now we have 
(SΓa*ΓS]Γ(SΓb*ΓS]⊆(SΓa*ΓSΓSΓb*ΓS] 

⊆ (SΓ(a*ΓSΓb*)ΓS] 
= (SΓ((SΓb*)*Γa)*ΓS] 
= (SΓ(bΓSΓa)*ΓS] 
⊆ (SΓ(bΓSΓa]*ΓS] 
⊆ (SΓP ΓS] 
⊆ P. 

 
We note that (SΓa*ΓS], (SΓb*ΓS] are Γ-hyperideals, and P is weakly prime. So (SΓa*ΓS]* ⊆ P  or 
(SΓb*ΓS]* ⊆ P . Hence, by Lemma 2.10, (SΓaΓS] ⊆ P or (SΓbΓS] ⊆ P . Now to show that P is prime, we 
simply need to prove that if (SΓaΓS] ⊆ P  then a* ∈ P .  The other statement can be proved similarly.  If (SΓaΓS] 
⊆ P, then we have 
I(a)ΓI(a)ΓI(a) = (a ∪ SΓa ∪ aΓS ∪ SΓaΓS]3 ⊆ ((a ∪ SΓa ∪ aΓS ∪ SΓaΓS)3] ⊆ (SΓ(a ∪ SΓa ∪ aΓS ∪ 
SΓaΓS)ΓS] ⊆ (SΓaΓS] ⊆ P . So, I(a)Γ(I(a)ΓI(a)] = (I(a)]Γ(I(a)ΓI(a)] ⊆ ((I(a))3] ⊆ (P ] = P 
by Lemma 2.10.   We know that P is weakly prime and I(a), (I(a)ΓI(a)] are hyperideals. This implies that 
(I(a))* ⊆ P or (I(a)ΓI(a)]* ⊆ P . Let (I(a))* ⊆ P .  Therefore, a*  ∈ (I(a))*  ⊆ P .   
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Again, let (I(a)ΓI(a)]* ⊆ P. So  a*γa* ⊆ (I(a)ΓI(a))* ⊆ (I(a)ΓI(a)]* ⊆ P for γ ∈ Γ since  aγa ⊆ I(a)ΓI(a) 
and  so a = (a*)* ∈ P since P is semiprime. Now P is a hyperideal shows that aγa ⊆ P , therefore, a* ∈ P as P is 
semiprime. Now we prove the last statement. Suppose P is a hyperideal of S. If P is prime then clearly P 
is weakly prime. 
 
Conversely, Suppose that P is weakly prime. Let aγb ⊆ P or γ ∈ Γ. As S is commutative, we obtain I(a)ΓI(b) 
= (a ∪ SΓa ∪ aΓS ∪ SΓaΓS]Γ(b ∪ SΓb ∪ bΓS ∪ SΓbΓS] ⊆ ((a ∪ SΓa ∪ aΓS ∪ SΓaΓS]Γ(b ∪ SΓb ∪ bΓS ∪ 
SΓbΓS)] ⊆ (aαb ∪ SΓaβb] for α, β ∈ Γ. We note that (aαb ∪ SΓaβb] ⊆ (P ] = P  for α, β ∈ Γ.  Therefore, 
I(a)ΓI(b) ⊆ P, and so we obtain (I(a))* ⊆ P  or (I(b))* ⊆ P  since P  is weakly prime.  Hence a* ∈ P or b* ∈ 
P  and it follows that P is prime.  
 
Proposition 2.12: Suppose that S is an ordered Γ-semihypergroup with order preserving involution *. Then 
the following statements are equivalent. 
(i) (A*ΓA*] = A for any Γ-hyperideal A of S. 
(ii) A* ∩ B* = (AΓB] for any Γ-hyperideals A, B of S. 
(iii) I(a) ∩ I(b) = ((I(a))*Γ(I(b))*]  for  any  a, b ∈ S. 
(iv) I(a) = (I(a*)ΓI(a*)] for any a ∈ S. 
(v) a ∈ (SΓa*ΓSΓa*ΓS] for  any a ∈ S. 

 
Proof: (i) ⇒ (ii). As A*,  B* are Γ-hyperideals,  by our assumption and Lemma 2.9,  we obtain (AΓB] ⊆ 
(AΓS] ⊆ (A] = ((A*ΓA*]] = (A*ΓA*] ⊆ (A*] = A*. In a similar fashion, we have  (AΓB] ⊆ (SΓB] ⊆ (B] = 
((B*ΓB*]] = (B*ΓB*] ⊆ (B*] = B*.   So  (AΓB] ⊆ A* ∩ B*.   Moreover,  A* ∩ B*  is  a  hyperideal  shows  that 
A* ∩ B* = ((A* ∩ B*)*Γ(A* ∩ B*)*] = ((A ∩ B)Γ(A ∩ B)] ⊆ (AΓB]. Thus we obtain  (AΓB] ⊆ A* ∩ B*  and 
A* ∩ B* ⊆ (AΓB]. Hence A* ∩ B* = (AΓB]. 
(ii) ⇒ (iii).  By Lemma 2.10, we have (I(a))*  and (I(b))*  are Γ-hyperideals.  Hence follows the result. 
(iii) ⇒ (iv). As I(a) = ((I(a))*Γ(I(a))*] by our assumption, we simply need to show that (I(a))* = 
I(a*). Obviously a* ∈ (I(a))*. Therefore, I(a*) ⊆ (I(a))* since (I(a))* is a Γ-hyperideal. Now suppose that x ∈ 
(I(a))*. We have x* ∈ I(a) = (a ∪ aΓS ∪ SΓa ∪ SΓaΓS]. This shows that x* ≤ a or x* ≤ aαv or x* ≤ 
vαa or x*  ≤ vαaβw  for  some  v, w  ∈ S  and  α, β  ∈ Γ.  So,  x ≤ a*  or  x ≤ v*αa*  ⊆ SΓa*  or  x ≤ a*αv*  ⊆ a*ΓS  
or x* ≤ w*αa*βv* ⊆ SΓa*ΓS for  some  v*, w*  ∈ S  and  α, β  ∈ Γ,  and  so  x ∈ (a*]  or  x ∈ (SΓa*]  or  x ∈ (a*ΓS] 
or x ∈ (SΓa*ΓS]. So, x ∈ (a*] ∪ (SΓa*] ∪ (a*ΓS] ∪ (SΓa*ΓS] ⊆ (a* ∪ SΓa* ∪ a*ΓS ∪ SΓa*ΓS] = I(a*). 
This implies (I(a))* ⊆ I(a*). Hence (I(a))* = I(a*). 
(iv) ⇒ (v). For this, we show  (1)  I(a) = ((I(a*)6ΓI(a)],  and  (2)  ((I(a*))6  ΓI(a)] ⊆ (SΓa*ΓSΓa*ΓS].  
This will imply that a ∈ I(a) ⊆ (SΓa*ΓSΓa*ΓS]. 
 
(1) By Lemma 2.9, and our assumption, we obtain I(a) = (I(a*)ΓI(a*)] = ((I(a)ΓI(a)]Γ(I(a)ΓI(a)]] 
⊆ ((I(a)ΓI(a)ΓI(a)ΓI(a)]] = (I(a)ΓI(a)ΓI(a)ΓI(a)].  

Moreover, 
(I(a)ΓI(a)ΓI(a)ΓI(a)] = ((I(a*)ΓI(a*)]Γ(I(a*)ΓI(a*)]Γ(I(a*)ΓI(a*)]Γ(I(a)] 

⊆((I(a*))6ΓI(a)] 
⊆ (SΓI(a)]ΓI(a) ⊆ (I(a)] 
= I(a) such that I(a) ⊆ ((I(a*))6ΓI(a)] ⊆ I(a). So, I(a) = ((I(a*))6ΓI(a)]. 

 
(2) As (I(a))3 ⊆ (SΓaΓ] by Theorem 2.11,  we  obtain  (I(a))5 = (I(a))3ΓI(a)ΓI(a) ⊆ (SΓaΓS]Γ(a ∪ 
aΓS ∪ SΓa ∪ SΓaΓS]Γ(S] ⊆ (SΓaΓSΓ(a ∪ aΓS ∪ SΓa ∪ SΓaΓS)ΓS]. Obviously, SΓ(a ∪ aΓS ∪ SΓa ∪ 
SΓaΓS)ΓS ⊆ SΓaΓS, and so, (SΓaΓSΓ(a ∪ aΓS ∪ SΓa ∪ SΓaΓS)ΓS] ⊆ (SΓaΓSΓSΓaΓS] ⊆ 
(SΓaΓSΓaΓS]. So, (I(a))5 ⊆ (SΓaΓSΓaΓS] and therefore, (I(a*))5 ⊆ (SΓa*ΓSΓa*ΓS]. ‘  
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We have 
((I(a*))6ΓI(a)]   ⊆  ((SΓa*ΓSΓa*ΓS]ΓI(a*)ΓI(a)] 
⊆ ((SΓa*ΓSΓa*ΓS]Γ(S]] 
⊆ (SΓa*ΓSΓa*ΓSΓS] 
⊆  (SΓa*ΓSΓa*ΓS] 
 
Therefore,  ((I(a*))6ΓI(a)]  ⊆ (SΓa*ΓSΓa*ΓS]. 
(v) ⇒  (i).   Let  x   ∈  (A*ΓA*].  Then  x  ≤  yαz   for  some  y, z ∈ A*   and  α  ∈ Γ.   By  our  assumption, y 
∈ (SΓy*ΓSΓy*ΓS], then y ≤ u1αy*βu2γy*δu3  for  some  ui ∈S,  i = 1, 2, 3  and  α, β, γ, δ  ∈ Γ.  In  a similar 
fashion, z ≤ v1αz*βv2γz*δv3 for some vi ∈ S, i = 1, 2, 3 and α, β, γ, δ∈Γ. Therefore,                                              
yαz ≤ u1βy*γu2δy*θu3λv1µz*νv2γ2z*γ1v3 ⊆ SΓy*ΓS ⊆ SΓAΓS ⊆ A for α, β, γ, δ, θ, λ, µ, ν, γ1, γ2 ∈ Γ. So, x ∈ 
(A] since x ≤ yαz, and so (A*ΓA*] ⊆ (A] = A. If x ∈ A, then we obtain x ≤ w1αx*βw2γx*δw3 for some 
wi ∈ S, i = 1, 2, 3 and α, β, γ, δ ∈ Γ since x ∈ (SΓx*ΓSΓx*ΓS]. It is now obvious that w1αx*βw2 ∈ A* and 
x*αw3 ∈ A* as A*  is an ordered Γ-hyperideal of S by Lemma 2.10.  So x ≤ w1αx*βw2γx*λw3 ⊆ A*ΓA* for α, β, 
γ, λ ∈ Γ and so A ⊆ (AΓA*].  Hence A = (A*ΓA*].  
 
Theorem 2.13: Suppose that S is an ordered Γ-semihypergroup having order preserving involution *. The 
Γ- hyperideals of S are weakly prime if and only if A۸ = (AΓA] for any Γ-hyperideal A of S and any two       
Γ-hyperideals are comparable under the inclusion relation. 
 
Proof: Let the Γ-hyperideals of S be weakly prime. Suppose that A, B are any Γ-hyperideals of S. As B* is a Γ-
hyperideal and (AΓB*] is weakly prime. Thus AΓB* ⊆ (AΓB*] shows that A*⊆ (AΓB*] or B⊆(AΓB*]. If 
A* ⊆ (AΓB*], then A* ⊆ (SΓB*] ⊆ (B*] = B* and so (A*)* ⊆ (B*)*. This means A ⊆ B. If B ⊆ (AΓB*], 
then B ⊆ (AΓS] ⊆ (A] = A. It now follows that A and B are comparable.  We claim A* = (AΓA].  As 
(AΓA] is weakly prime and AΓA ⊆ (AΓA], we obtain A* ⊆ (AΓA]. Also, suppose that x∈(AΓA].  
Then x ≤ a1αa2 ⊆ AΓA for some a1, a2 ∈ A and α ∈ Γ. As A* ⊆ (AΓA], we obtain a* ≤ u1αv1 ⊆ AΓA 
and  a* ≤ u2βv2 ⊆ AΓA for some u1, u2, v1, v2 ∈ A and α, β ∈ Γ. Thus a1 ≤ (u1αv1)* and a2 ≤ (u2βv2)*. 
 
This shows that x ≤ a1αa2 ≤ (u1βv1)*γ(v1δv2)* ⊆ (AΓA)*Γ(AΓA)* = A*ΓA*ΓA*ΓA* ⊆ A* since A* is a 
hyperideal for α, β, γ, δ ∈ Γ. It follows that x ∈ (A*] = A*. So, (AΓA] ⊆ A*. 
 
Conversely, assume A, B and P are hyperideals of S such that AΓB ⊆ P.   As A* = (AΓA], we  obtain A* ∩ B* 
= (AΓB] by Proposition 2.12.  As A and B are comparable, two cases arise.  If A ⊆ B, then A* ⊆ B*, 
and so, A* = A* ∩ B* = (AΓB] ⊆ (P ] = P  by Proposition 2.12.  Also if B ⊆ A, then B*  ⊆ A*, and so B* 
= A* ∩ B* = (AΓB] ⊆ (P ] = P .  Hence P is weakly prime.  
 
Proposition 2.14: Suppose t h a t  S is an ordered involution Γ-semihypergroup. Then S is intra-regular 
if and only if the Γ-hyperideals of S are semiprime. 
 
Proof: Let I be a Γ-hyperideal of S having sαs ⊆ I for some s ∈ S and α ∈ Γ. As S is intra regular, we 
obtain s* ∈ (SΓsγsΓS] ⊆ (SΓIΓS] ⊆ (I] = I for γ ∈ Γ and therefore I is semiprime. 
 
Conversely, let s ∈ S. It is now obvious that (SΓs*γs*ΓS] is a Γ-hyperideal. Therefore, (sΓs*γs*ΓS] is 
semiprime by our assumption. This shows that sγs = (s*γs*)* ⊆ (SΓs*βs*ΓS] since (s*αs*)β(s*γs*) ⊆ SΓs*δs*ΓS  
⊆  (SΓs*λs*ΓS]  for  α, β, γ, δ, λ  ∈  Γ.   So,  s*  ∈  (SΓs*αs*ΓS]  and  so  s*αs*  ⊆  (SΓs*βs*ΓS]  for α, β ∈ Γ. 
Hence s ∈ (SΓs*αs*ΓS] and it follows that S is intra-regular.  
 
Proposition 2.15: Suppose that S is an ordered involution Γ-semihypergroup. If S is intra-regular, then 
(SΓxαyΓS] = (SΓx*βy*ΓS] for some x, y ∈ S and α, β ∈ Γ. 
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Proof: Suppose that x, y ∈ S.  As S is intra-regular, it follows that 
xαy  ⊆ (SΓ(xβy)*γ(xδy)*ΓS] = (SΓy*γ1x*γ2y*γ3x*ΓS] ⊆ (SΓx*αy*ΓS] 
for α, β, γ, γ1, γ2, γ3 ∈ Γ. Therefore, xαy ≤ u1βx*γy*δu2 for some u1, u2 ∈ S. Therefore, u3αxβyγu4 ≤ 
u3δu1θx*λy*µu2νu4 ⊆ SΓx*αy*ΓS ⊆ (SΓx*αy*ΓS] for any u3, u4 ∈ S  and  α, β, γ, δ, θ, λ ∈ Γ.  This  shows that 
SΓxαyΓS ⊆ (SΓx*αy*Γ],  therefore,  (SΓxαyΓS]  ⊆ ((SΓx*αy*ΓS]]  =  (SΓx*αΓS]  by  Lemma  2.9.  We obtain  
(SΓx*αy*ΓS] ⊆ (SΓxβyΓS].   Hence, (SΓxαyΓS] = (SΓx*βy*ΓS]  for  α, β  ∈ Γ.  
 
Proposition 2.16: Suppose t h a t  S is an ordered Γ-semihypergroup with order preserving involution *.  
If the 
Γ-hyperideals of S are semiprime, then 
(i) I(s) = (SΓsΓS] for any s ∈ S, and 
(ii) I(xαy) = I(x) ∩ I(y) for any x, y ∈ S and α ∈ Γ. 

 
Proof: (i) Suppose tha t s ∈ S. Recall that (SΓsΓS] is a Γ-hyperideal and so is semiprime. Since 
(sαs)α(sαs) = (sαs)2 = s4 ⊆ (SΓsΓS] gives s*αs* = (sαs)* ⊆ (SΓsΓS] for α ∈ Γ. In a similar fashion, s 
∈ (SΓsΓS] so  that I(s) ⊆ (SΓsΓS].  Moreover, (SΓsΓS] ⊆ (s ∪ sΓS ∪ SΓs ∪ SΓsΓS] = I(s).  Hence, 
I(x) = (SΓxΓS]. (ii)As xαy ⊆ I(x)ΓS ⊆ I(x), we obtain I(xαy) ⊆ I(x). Also I(xαy) ⊆ I(y) since 
xαy ⊆ SΓI(y) ⊆ I(y). So,  I(xαy)  ⊆ I(x) ∩ I(y). If z ∈ I(x) ∩ I(y),  then z  ∈ (SΓxΓS] ∩ (SΓyΓS] 
by (i),  and so z ≤ u1αxβu2 and z ≤ v1αyβv2 for some u1, u2, v1, v2 ∈ S and for α, β ∈ Γ.  
 
Recall (yα1v2α2u1α3x)2 = (yα4v2α5u1α6x)α7(yα8v2α9u1α10x) ⊆ (SΓxα11yΓS] = I(xα12y) for α1, α2, α3, α4, α5, α6, 
α7, α8, α9, α10,α11, α12 ∈ Γ and that I(xαy) is semiprime.  So, (yαv2βu1γx)* ⊆ I(xαy).  So, z*αz* ≤ 
(u1αxβu2)*γ(v1αyβv2)* = u*α(yβv2γu1δx)*θv*  ⊆ I(xαy), and so z*αz*  ⊆ (I(xαy)] = I(xαy) for α, β, γ, δ, θ ∈ 
Γ.  This implies that 
z ∈ I(xαy), then I(x) ∩ I(y) ⊆ I(xαy).  
 
Theorem 2.17: Suppose that S is an ordered involution Γ-semihypergroup such that the involution admits 
the order. Then the Γ-hyperideals of S are prime if and only if S is intra-regular and any two Γ-hyperideals 
are comparable under the inclusion relation. 
 
Proof: If the Γ-hyperideals are prime, then they are weakly prime and hence they are comparable by The- 
orem 2.13. Suppose that s ∈ S. Recall that (SΓs*αs*ΓS] is a Γ-hyperideal by Lemma 2.9 and hence prime. So, 
(sαs)α(sαs) = s4 ⊆ (SΓs*αs*ΓS] since (s*)4α(s*)4 ⊆ (SΓs*βs*ΓS] for α, β ∈ Γ.  In a similar fashion, we 
have (s*αs*) = (s*)2 ⊆ (SΓs*αs*ΓS] and s ∈ (SΓs*αs*ΓS]. It follows that S is intra-regular. 
 
Conversely, assume that S is intra-regular and any two Γ-hyperideals are comparable under the  
inclusion relation  ⊆.  Suppose  that T  is  any  Γ-hyperideal  of  S  and  aαb  ⊆ T ,  where  a, b  ∈ S  and  α  ∈ Γ.  
Claim a* ∈ T  or b*  ∈ T .  By Proposition 2.14, I(a) is semiprime.  Thus, we have  aαa ⊆ I(a) implies a* ∈ I(a).   
 
We can similarly  prove  b*  ∈  I(b).    By  our  assumption,  we  obtain  I(a)  ⊆  I(b)  or  I(b)  ⊆  I(a).    
 
If I(a) ⊆ I(b), then a*∈I(a) = I(a) ∩I(b) = I(aαb) ⊆ T   by  Proposition  2.16.  If  I(b) ⊆ I(a),   then  we  
obtain b* ∈ I(b) = I(a) ∩ I(b) = I(aαb) ⊆ T .  
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