Double Full Subsets By m Of Z

¹H. Khosravi* and ²H. Golmakani

^{1,2}Department Of Mathematics, Faculty Of Science, Mashhad Branch, Islamic Azad University, Mashhad, 91735-413, Iran

Email: Khosravi@mshdiau.ac.ir, H.golmakani@mshdiau.ac.ir, Hmohmmadin@math.birjand.edu

(Received on: 18-09-11; Accepted on: 02-10-11)

ABSTRACT

Let A be a subset of Z such that $A = A^+ \cup A^-$, where $A^+ = \{a_1, ..., a_k\}$, $A^- = \{-a_k, ..., -a_1\} = \{b_k, ..., b_1\}$ and $a_i \ge 0$, $a_1 < ... < a_k$. We say that A is double full by m if $\sum A^+ = [m]$ and $\sum A^- = [-m]$ for a positive integer m, where $\sum A^+$ is the set of all positive integers and $\sum A^-$ is the set of all negative integers. We show that a set A^+ is full if and only if $a_1 = 1$ and $a_i \le + ... + a_{i-1} + 1$ for each i, $2 \le i \le k$ and A^- is full if and only if $b_1 = -1$ and $b_i \ge b_1 + ... + b_{i-1} - 1$ for each i, $2 \le i \le k$.

We also prove that for each integer $m \notin \{\pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ there is an double full by m set. We also give formula for F(m), the number of m full sets of Z^+ and F(-m), the number of -m full sets of Z.

Keywords: Double Full, Double Full By m, Partition Of Integer

1. INTRODUCTION:

Let n be a positive integer and denote by D (n) and $\sigma(n)$ the set of its positive divisors and the sum of its positive divisors, respectively.

Let A be a subset of Z. Define the sum set of A, dented by $\sum A^{+,-}$

 $\begin{array}{l} \sum A^{+} = \ \{ \ a_{i_{1}} + \cdots + a_{i_{r}} ; a_{i_{1}} < \cdots < a_{i_{r}} \text{ , } 1 \leq r \leq \\ \sum A^{-} = \{ \ b_{i_{1}} + \cdots + b_{i_{r}} ; b_{i_{1}} > \cdots > b_{i_{r}} \text{ , } 1 \leq r \leq k \} \end{array}$

For what positive integer m does there exist a set $A = A^+ \cup A^-$ with $\sum A^+ = [m]$ and $\sum A^- = [-m]$, where $[m] = \{1, ..., m\}$ and $[-m] = \{-1, ..., m\}$?

We show that each integer m $\notin \{\pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ has this property and determine the numbers:

 α (m) = min{|A| : $\sum A^+ = [m]$ }.

 $\beta(\mathbf{m}) = \max\{|\mathbf{A}| : \sum \mathbf{A}^+ = [\mathbf{m}]\}.$

 $L(m) = \min \{ \max A^+ : \sum A^+ = [m] \}.$

U (m) =max {max A^+ : $\sum A^+ = [m]$ }.

We define α (-m), β (-m), L (-m) and U (-m) similar as above.

Example 1: If m=1, then $A=\{1\}$ is 1 full subset of Z^+ .

Example 2: If m=3, then A= $\{1, 2\}$ is 3 full subset of Z⁺, because (i) $a_1=1$ and $\sum A= [3]$, (ii) $a_2=2 \le a_1+1=2$

Example 3: If m=-6 then A= $\{-1, -2, -3\}$ is -6 full subset of Z⁻, because (i) $a_1=-1$ and $\sum A= [-6]$, (ii) $a_2=-2 \ge a_1-1=-1-1$ and $a_3=-3 \ge a_1+a_2-1=-4$.

Example 4: If $A = \{\pm 1, \pm 2\}$, then A is double full subset of Z, because $A^{-} = \{-2, -1\}$ is -3 full subset of Z⁻ and $A^{+} = \{1, 2\}$ is 3 full subset of Z⁺, this means that A is double full by 3.

Corresponding author: ¹H. Khosravi, *E-mail: Khosravi@mshdiau.ac.ir International Journal of Mathematical Archive- 2 (10), Oct. – 2011

2. THE RESULTS:

Definition 1: Let m be a positive integer. A subset $A=A^+ \cup A^-$ of Z is called double full by m if $\sum A^+ = [m]$ and $\sum A^- = [-m]$. A is called double full if it is double full by m for some positive integer m.

Theorem 1: A subset $A=A^+ \cup A^-$ of Z where $A^+ = \{a_1, ..., a_k\}, A^- = \{-a_k, ..., a_1\} = \{b_k, ..., b_1\}$ with $a_1 < ... < a_k$.

(i) A^+ is full if and only if $a_1=1$ and $a_i \le a_1+\ldots+a_{i-1}+1$ for each i, $2\le i\le k$ and

(ii) A⁻ is full if and only if $b_1=-1$ and $b_i \ge b_1+\ldots+b_{i-1}-1$ for each i, $2\le i\le k$.

Proof: Let $A=A^+ \cup A^-$ be double full and $\sum A^+ = [m], \sum A^- = [-m]$ for a positive integer m.

(i) Its shown in [3].

(ii) Clearly $b_1=1$. If $b_j > b_1+...+b_{j-1}-1$ for some $j, 2 \le j \le k$, then $b_1+...+b_{j-1}-1$ is not of a sum of distinct elements of A⁻.

But $-m = b_1 + \ldots + b_k \le b_1 + \ldots + b_{j-1} - 1 \le -1$. This contradicts to the fact that $\sum A^- = [-m]$.

Conversely, suppose that $b_1 = -1$ and $b_i \ge b_1 + \dots + b_{i-1} - 1$ for each i, $2 \le i \le k$. We claim that $\sum A^2 = [b_1 + \dots + b_k]$.

We prove this by induction on k. For k=1 the result is obvious. Suppose that the result is true for k-1. Then $\sum A^{-1} \{b_k\} = [b_1 + ... + b_{k-1}]$.

Now suppose that $b_1 + ... + b_k \le L \le b_1 + ... + b_{k-1} - 1$ and write $L = b_k + b$. If b = 0, then $L = b_k \bigoplus \Delta^-$ and if $b \ne 0$, then $b \models [b_1 + ... + b_{k-1}] = \sum \Delta^- \setminus \{b_k\}$. Thus $L \models \sum \Delta^-$.

Proposition 1(i): Let $n = p_1^{\alpha_1} \dots p_r^{\alpha_r}$, with $p_1 < \dots < p_r$ primes, be a positive integer. Then D (n) = {d $\subseteq Z^+$: dln} is full if and only if $p_1=2$ and $p_i \leq_{\sigma} (p_1^{\alpha_1} \dots p_r^{\alpha_r}) + 1$ for each i, $2 \leq i \leq r$, and

(ii) Let $n=-p_1...p_r$, with $p_1<...<p_r$ primes, be a positive integer. Then

D (n) = { $d \in \mathbb{Z}^-$: dln} is full if and only if $p_i=2$ and $p_i \leq_{\sigma} (p_1^{\alpha_1} \dots p_r^{\alpha_r}) +1$ for each i, $2 \leq i \leq r$.

Proof (i): If D (n) is m full, then $m =_{\sigma} (n)$. since $p_1^{\alpha_1} \dots p_r^{\alpha_r} | n$ and $p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}} \neq n$.

We have $_{\sigma} (p_1^{\alpha_1} ... p_{i-1}^{\alpha_{i-1}}) < _{\sigma}(n).$

Hence $\sigma(p_1^{\alpha_1}...p_{i-1}^{\alpha_{i-1}}) + 1$ is a member of $[\sigma(n)]$. Thus if

 $p_i >_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}})+1$ for some i, then the member $_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}})+1$ is a member of $[_{\sigma}(n)]$ which is not a sum of distinct elements of D(n). On the other hand, if the condition $p_i <_{\sigma} (p_1^{\alpha_1} \dots p_{i-1}^{\alpha_{i-1}})+1$ for each i, $2 \le i \le r$, is satisfied, then using an argument similar to the one used in theorem 1, we can inductively prove that each element of $[_{\sigma}(n)]$ can be written as a sum of distinct elements of D(n).

(ii) This part proved just like as part (i).

Definition 2: Define F (m) is number of m full sets of Z^+ and F (-m) is the number of -m full sets of Z^- .

Theorem 2: Let m be a positive integer. There is a set A such that $\sum A^+ = [m]$ and $\sum A^- = [-m]$ if and only if $m \neq \{2,4,5,8,9\}$.

Proof: Its shown in [3].

Example 5 D: (6) = {1, 2, 3, 6} is 12 full subset of Z^+ , because (i) $P_1=2$ and (ii) $3 \le \sigma(2) + 1$.

Example 6 D: (-6) = {-6,-3,-2,-1} is -12 full subset of Z⁻, because (i) $p_1=2$ and (ii) $3 \le \sigma(2)+1$ or $-3 \ge -\sigma(2)-1$.

Example 7: For m=12 and m=-12 note that $A^+=D(6)=\{1,2,3,6\}$ and $A^-=D(-6)=\{-6,-3,-2,-1\}$ are 12 full and -12 full subsets of Z, respectively. Therefore, $A=A^+ \cup A^-$ is double full by 12 set of Z.

Theorem 3 (i): If $\alpha(m) = \min\{|A| : \sum A^+ = [m]\}, \beta(m) = \max\{|A| : \sum A^+ = [m]\}$. Then

$$\alpha$$
 (m) = [log₂(m + 1)],
 β (m) = max{l: $\frac{l(l+1)}{2} \le m$ }

(ii) If $m \neq \{2,4,5,8,9,14\}$ and $L(m) = \min\{\max A : \sum A^+ = [m]\}$.and $m = \frac{n(n+1)}{2} + r$, where r = 0,1,...,n, then

$$L(m) = \begin{cases} n & r = 0 \\ n+1 & 1 \le r \le n-2 \\ n+2 & 1 \le r = n-1 \text{ or } n \end{cases}$$

(iii) If $n \ge 20$ and U (m) = max {max A: then $\sum A^+ = [m]$ }, then U (m) = $[\frac{m}{2}]$.

Proof: Its shown in [2].

Theorem 4: Let m be a positive integer and F(m, i) denote the number of m full sets A with max A=i, where $L(m) \le i \le U(m)$, then

$$F(m, i) = \sum_{j=L \ (m-i)}^{\min \{U(m-i), i-1\}} F(m-i, j)$$

Proof: Its shown in [3].

Example 8:.By definition for L (m) and U (m), in [1]. We have

m	1	3	6	7	10	11	12	13	14	15	16	17	18	19	20
L(m)	1	2	3	4	4	5	5	6	7	5	6	6	6	7	7
U(m)	1	2	3	4	4	5	6	7	7	8	6	7	8	9	10

Theorem 5 (i): Let me be a positive integer and denote the number of m full sets A by F (m). Then

 $F\left(m,i\right) = \sum_{j=L\left(m\right)}^{U\left(m\right)} F\left(m,i\right)$

(ii) F(m) = F(-m)

Proof (i): Its shown in [3].

(ii) Its obvious by definition.

Corollary 1: By theorem 5, the number of double full by m sets of Z are $2\sum_{j=L \ (m)}^{U(m)} F(m, i)$.

Example 9: By definition of F (m), the first few values of F (m) are

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
F(m)	1	0	1	0	0	1	1	0	0	1	1	2	2	1	2	1	2	3	4	5

Example 10: For evaluate F(21) by using theorem 4 and theorem 5, we have

$$F(21) = \sum_{j=L(21)}^{U(21)} F(21, i) = \sum_{i=6}^{12} F(21, i) = F(21, 6) + F(21, 7) + \dots + F(21, 12)$$

= F(15,5)+F(13,6)+F(13,7)+F(12,5)+F(12,6)+F(11,5)+F(10,4)=7.

This means that, there are the seven 21 full sets are

 $\{1,2,3,4,5,6\},\{1,2,4,6,8\},\{1,2,3,7,8\},\{1,2,4,5,9\},\{1,2,3,6,9\},\{1,2,3,5,10\},\{1,2,3,4,11\}$

Example 11: For evaluate F (-6), by using theorem 4 and theorem 5, we have

F (-6) =F (6), so by theorem 5, we have © 2011, IJMA. All Rights Reserved

$$F(6) = \sum_{j=L(6)}^{U(6)} F(6, i) = \sum_{i=3}^{3} F(6, i)$$
$$= \sum_{j=L(6-3)}^{\min\{U(6-3), 3-1\}} F(6-3, j) = \sum_{j=2}^{2} F(3, j) = F(3, 2) = \sum_{j=L(3-2)}^{\min\{U(1), 1\}} F(1, j) = \sum_{i=1}^{1} F(1, 1) = 1$$

This means that, there is a -6 full set such that define as follows; $A = \{-1, -2, -3\}$

Example 12: The number of double full by 6 sets of Z is one and define as follows; $A = \{\pm 1, \pm 2, \pm 3\}$.

3. ACKNOWLEDGMENTS:

The authors thank the research council of Mashhad Branch, (Islamic Azad University) for support.

4. REFERENCES:

- [1] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2011.
- [2] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409–1418.
- [3] L. Naranjani and M. Mirzavaziri, Full subsets of N, Journal of integer sequences, Vol.14 (2011), Article 11.5.3.
