International Journal of Mathematical Archive-2(10), 2011, Page: 1949-1952 (C) SMA Available online through www.i.jma.info ISSN 2229-5046

Double Full Subsets By m Of Z

${ }^{1}$ H. Khosravi* and ${ }^{\mathbf{2}} \mathbf{H}$. Golmakani

${ }^{1,2}$ Department Of Mathematics, Faculty Of Science, Mashhad Branch, Islamic Azad University, Mashhad, 91735-413, Iran

Email: Khosravi@mshdiau.ac.ir, H.golmakani@mshdiau.ac.ir, Hmohmmadin@math.birjand.edu
(Received on: 18-09-11; Accepted on: 02-10-11)

Abstract

Let A be a subset of Z such that $A=A^{+} \cup A^{-}$, where $A^{+}=\left\{a_{1}, \ldots, a_{k}\right\}, A^{-}=\left\{-a_{k}, \ldots,-a_{l}\right\}=\left\{b_{k}, \ldots, b_{l}\right\}$ and $a_{i} \geq 0, a_{l}<\ldots<a_{k}$. We say that A is double full by m if $\sum A^{+}=[m]$ and $\sum A^{-}=[-m]$ for a positive integer m, where $\sum A^{+}$is the set of all positive integers and $\sum A^{-}$is the set of all negative integers. We show that a set A^{+}is full if and only if $a_{l}=1$ and $a_{i} \leq+$ $\ldots+a_{i-1}+1$ for each $i, 2 \leq i \leq k$ and A^{-}is full if and only if $b_{1}=-1$ and $b_{i} \geq b_{1}+\ldots+b_{i-1}-1$ for each $i, 2 \leq i \leq k$.

We also prove that for each integer $m \notin\{ \pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ there is an double full by m set. We also give formula for $F(m)$, the number of m full sets of Z^{+}and $F(-m)$, the number of $-m$ full sets of Z.

Keywords: Double Full, Double Full By m, Partition Of Integer

1. INTRODUCTION:

Let n be a positive integer and denote by $\mathrm{D}(\mathrm{n})$ and $\sigma(\mathrm{n})$ the set of its positive divisors and the sum of its positive divisors, respectively.

Let A be a subset of Z. Define the sum set of A, dented by $\sum \mathrm{A}^{+,-}$
$\sum A^{+}=\left\{a_{i_{1}}+\cdots+a_{i_{r}}: a_{i_{1}}<\cdots<a_{i_{r}}, 1 \leq r \leq\right.$
$\sum A^{-}=\left\{b_{i_{1}}+\cdots+b_{i_{\mathrm{i}}}: b_{i_{1}}>\cdots>b_{i_{r}}, 1 \leq r \leq k\right\}$
For what positive integer m does there exist a set $\mathrm{A}=\mathrm{A}^{+} \cup \mathrm{A}^{-}$with $\sum \mathrm{A}^{+}=[\mathrm{m}]$ and $\sum \mathrm{A}^{-}=[-\mathrm{m}]$, where $[\mathrm{m}]=\{1, \ldots, \mathrm{~m}\}$ and $[-\mathrm{m}]=\{-1 \ldots-\mathrm{m}\}$?

We show that each integer $\mathrm{m} \notin\{ \pm 2, \pm 4, \pm 5, \pm 8, \pm 9\}$ has this property and determine the numbers:
$\alpha(\mathrm{m})=\min \left\{|\mathrm{A}|: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$.
$\beta(\mathrm{m})=\max \left\{|\mathrm{A}|: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$.
$\mathrm{L}(\mathrm{m})=\min \left\{\operatorname{max~}^{+}: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$.
$\mathrm{U}(\mathrm{m})=\max \left\{\operatorname{max~}^{+}: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$.
We define $\alpha(-m), \beta(-m), L(-m)$ and $U(-m)$ similar as above.
Example 1: If $m=1$, then $A=\{1\}$ is 1 full subset of Z^{+}.
Example 2: If $m=3$, then $A=\{1,2\}$ is 3 full subset of Z^{+}, because (i) $a_{1}=1$ and $\sum A=[3]$, (ii) $a_{2}=2 \leq a_{1}+1=2$
Example 3: If $m=-6$ then $A=\{-1,-2,-3\}$ is -6 full subset of Z^{-}, because (i) $a_{1}=-1$ and $\sum A=[-6]$, (ii) $a_{2}=-2 \geq a_{1}-1=-1-1$ and $a_{3}=-3 \geq a_{1}+a_{2}-1=-4$.

Example 4: If $A=\{ \pm 1, \pm 2\}$, then A is double full subset of Z, because $A^{-}=\{-2,-1\}$ is -3 full subset of Z^{-}and $A^{+}=\{1,2\}$ is 3 full subset of Z^{+}, this means that A is double full by 3 .

2. THE RESULTS:

Definition 1: Let m be a positive integer. A subset $A=A^{+} \cup A^{-}$of Z is called double full by m if $\sum A^{+}=[m]$ and $\sum A^{-}=[-\mathrm{m}]$. A is called double full if it is double full by m for some positive integer m .

Theorem 1:.A subset $A=A^{+} \cup A^{-}$of Z where $A^{+}=\left\{a_{1}, \ldots, a_{k}\right\}, A^{-}=\left\{-a_{k}, \ldots, a_{1}\right\}=\left\{b_{k}, \ldots, b_{1}\right\}$ with $a_{1}<\ldots<a_{k}$.
(i) A^{+}is full if and only if $\mathrm{a}_{1}=1$ and $\mathrm{a}_{\mathrm{i}} \leq \mathrm{a}_{1}+\ldots+\mathrm{a}_{\mathrm{i}-1}+1$ for each $\mathrm{i}, 2 \leq \mathrm{i} \leq \mathrm{k}$ and
(ii) A^{-}is full if and only if $b_{1}=-1$ and $b_{i} \geq b_{1}+\ldots+b_{i-1}-1$ for each $i, 2 \leq i \leq k$.

Proof: Let $A=A^{+} U A^{-}$be double full and $\sum \mathrm{A}^{+}=[\mathrm{m}], \sum \mathrm{A}^{-}=[-\mathrm{m}]$ for a positive integer m .
(i) Its shown in [3].
(ii) Clearly $b_{1}=1$. If $b_{j}>b_{1}+\ldots+b_{j-1}-1$ for some $j, 2 \leq j \leq k$, then $b_{1}+\ldots+b_{j-1}-1$ is not of a sum of distinct elements of A^{-}.

But $-m=b_{1}+\ldots+b_{k} \leq b_{1}+\ldots+b_{j-1}-1 \leq-1$. This contradicts to the fact that $\sum A^{-}=[-m]$.
Conversely, suppose that $b_{1}=-1$ and $b_{i} \geq b_{1}+\ldots+b_{i-1}-1$ for each $i, 2 \leq i \leq k$. We claim that $\sum A^{-}=\left[b_{1}+\ldots+b_{k}\right]$.
We prove this by induction on k. For $\mathrm{k}=1$ the result is obvious. Suppose that the result is true for $\mathrm{k}-1$.
Then $\sum A^{-} \backslash\left\{b_{k}\right\}=\left[b_{1}+\ldots+b_{k-1}\right]$.
Now suppose that $\mathrm{b}_{1}+\ldots+\mathrm{b}_{\mathrm{k}} \leq \mathrm{L} \leq \mathrm{b}_{1}+\ldots+\mathrm{b}_{\mathrm{k}-1}-1$ and write $\mathrm{L}=\mathrm{b}_{\mathrm{k}}+\mathrm{b}$. If $\mathrm{b}=0$, then $\mathrm{L}=\mathrm{b}_{\mathrm{k}} \in \sum \mathrm{A}^{-}$and if $\mathrm{b} \neq 0$, then $\mathrm{b} \in\left[\mathrm{b}_{1}+\ldots+\mathrm{b}_{\mathrm{k}-1}\right]=\sum \mathrm{A}^{-} \backslash\left\{\mathrm{b}_{\mathrm{k}}\right\}$. Thus $\mathrm{L} \in \sum \mathrm{A}^{-}$.

Proposition 1(i): Let $n=p_{1}{ }^{\alpha_{1}} \ldots \mathrm{p}_{\mathrm{r}}{ }^{\alpha_{r}}$, with $\mathrm{p}_{1}<\ldots<\mathrm{p}_{\mathrm{r}}$ primes, be a positive integer. Then $\mathrm{D}(\mathrm{n})=\left\{\mathrm{d} \in \mathrm{Z}^{+}\right.$: dln $\}$is full if and only if $p_{1}=2$ and $p_{i} \leq_{\sigma}\left(p_{1}{ }^{\alpha_{1}} \ldots p_{r}{ }^{\alpha_{r}}\right)+1$ for each $i, 2 \leq i \leq r$, and
(ii) Let $\mathrm{n}=-\mathrm{p}_{1} \ldots \mathrm{p}_{\mathrm{r}}$, with $\mathrm{p}_{1}<\ldots<\mathrm{p}_{\mathrm{r}}$ primes, be a positive integer. Then
$D(n)=\left\{d \in Z^{\prime}: d \ln \right\}$ is full if and only if $p_{1}=2$ and $p_{i} \leq_{\sigma}\left(p_{1}{ }^{\alpha_{1}} \ldots p_{r}{ }^{\alpha_{r}}\right)+1$ for each $i, 2 \leq i \leq r$.

Proof (i): If D (n) is m full, then $m=\sigma(n)$. since $p_{1}{ }^{\alpha_{1}} \ldots p_{r}{ }^{\alpha_{r}} \mid n$ and $p_{1}{ }^{\alpha_{1}} \ldots p_{i-1}{ }^{\alpha_{i-1}} \neq n$.

We have ${ }_{\sigma}\left(p_{1}{ }^{\alpha_{1}} \ldots p_{i-1}{ }^{\alpha_{i-1}}\right)<\sigma^{(n)}$.
Hence $\sigma\left(p_{1}{ }^{\alpha_{1}} \ldots \mathrm{p}_{\mathrm{i}-1}{ }^{\alpha_{i-1}}\right)+1$ is a member of $[\sigma(\mathrm{n})]$. Thus if
$p_{i}>_{\sigma}\left(p_{1}{ }^{\alpha_{1}} \ldots p_{i-1}{ }^{\alpha_{i-1}}\right)+1$ for some i, then the member $\sigma\left(p_{1}{ }^{\alpha_{1}} \ldots p_{i-1}{ }^{\alpha_{i-1}}\right)+1$ is a member of $[\sigma(n)]$ which is not a sum of distinct elements of $D(n)$. On the other hand, if the condition $p_{i}<\sigma\left(p_{1}{ }^{\alpha_{1}} \ldots p_{i-1}{ }^{\alpha_{i-1}}\right)+1$ for each $i, 2 \leq i \leq r$, is satisfied, then using an argument similar to the one used in theorem 1 , we can inductively prove that each element of $[\sigma(\mathrm{n})]$ can be written as a sum of distinct elements of $D(n)$.
(ii) This part proved just like as part (i).

Definition 2: Define $F(m)$ is number of m full sets of Z^{+}and $F(-m)$ is the number of $-m$ full sets of Z^{-}.
Theorem 2: Let m be a positive integer. There is a set A such that $\sum \mathrm{A}^{+}=[\mathrm{m}]$ and $\sum \mathrm{A}^{-}=[-\mathrm{m}]$ if and only if $m \neq\{2,4,5,8,9\}$.

Proof: Its shown in [3].
Example 5 D: (6) $=\{1,2,3,6\}$ is 12 full subset of Z^{+}, because (i) $P_{1}=2$ and (ii) $3 \leq \sigma(2)+1$.
Example 6 D: $(-6)=\{-6,-3,-2,-1\}$ is -12 full subset of Z^{-}, because (i) $p_{1}=2$ and (ii) $3 \leq \sigma(2)+1$ or $-3 \geq-\sigma(2)-1$.
Example 7: For $m=12$ and $m=-12$ note that $A^{+}=D(6)=\{1,2,3,6\}$ and $A^{-}=D(-6)=\{-6,-3,-2,-1\}$ are 12 full and -12 full subsets of Z , respectively. Therefore, $\mathrm{A}=\mathrm{A}^{+} \mathrm{UA}^{-}$is double full by 12 set of Z .

Theorem 3 (i): If $\alpha(\mathrm{m})=\min \left\{|\mathrm{A}|: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}, \beta(\mathrm{m})=\max \left\{|\mathrm{A}|: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$. Then
$\alpha(m)=\left[\log _{2}(m+1)\right]$,
$\beta(m)=\max \left\{\mathrm{l}: \frac{\mathrm{l}(\mathrm{l}+1)}{2} \leq \mathrm{m}\right\}$.
(ii) If $\mathrm{m} \neq\{2,4,5,8,9,14\}$ and $\mathrm{L}(\mathrm{m})=\min \left\{\max \mathrm{A}: \sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$. and $\mathrm{m}=\frac{\mathrm{n}(\mathrm{n}+1)}{2}+\mathrm{r}$, where $\mathrm{r}=0,1, \ldots, \mathrm{n}$, then
$L(m)=\left\{\begin{array}{rr}n & r=0 \\ n+1 \\ n+2 & 1 \leq r \leq n-2 \\ 1 \leq r=n-1 \text { or } n\end{array}\right.$
(iii) If $\mathrm{n} \geq 20$ and $\mathrm{U}(\mathrm{m})=\max \left\{\max A\right.$: then $\left.\sum \mathrm{A}^{+}=[\mathrm{m}]\right\}$, then $\mathrm{U}(\mathrm{m})=\left[\frac{\mathrm{m}}{2}\right]$.

Proof: Its shown in [2].
Theorem 4:.Let m be a positive integer and $\mathrm{F}(\mathrm{m}, \mathrm{i})$ denote the number of m full sets A with max $\mathrm{A}=\mathrm{i}$, where $L(m) \leq i \leq U(m)$, then
$F(m, i)=\sum_{j=L(m-i)}^{\min \{U(m-i), i-1\}} F(m-i, j)$
Proof: Its shown in [3].
Example 8:.By definition for $L(m)$ and $U(m)$, in [1]. We have

m	1	3	6	7	10	11	12	13	14	15	16	17	18	19	20
$\mathrm{~L}(\mathrm{~m})$	1	2	3	4	4	5	5	6	7	5	6	6	6	7	7
$\mathrm{U}(\mathrm{m})$	1	2	3	4	4	5	6	7	7	8	6	7	8	9	10

Theorem 5 (i): Let me be a positive integer and denote the number of m full sets A by F (m). Then
$\mathrm{F}(\mathrm{m}, \mathrm{i})=\sum_{\mathrm{j}=\mathrm{L}(\mathrm{m})}^{\mathrm{U}(\mathrm{m})} \mathrm{F}(\mathrm{m}, \mathrm{i})$
(ii) $\mathrm{F}(\mathrm{m})=\mathrm{F}(-\mathrm{m})$

Proof (i): Its shown in [3].
(ii) Its obvious by definition.

Corollary 1: By theorem 5, the number of double full by m sets of Z are $2 \sum_{j=L(m)}^{U(m)} F(m, i)$.
Example 9: By definition of F (m), the first few values of F (m) are

m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
$\mathrm{~F}(\mathrm{~m})$	1	0	1	0	0	1	1	0	0	1	1	2	2	1	2	1	2	3	4	5

Example 10: For evaluate $\mathrm{F}(21)$ by using theorem 4 and theorem 5 , we have

$$
\begin{aligned}
\mathrm{F}(21)=\sum_{\mathrm{j}=\mathrm{L}(21)}^{\mathrm{U}(21)} \mathrm{F}(21, \mathrm{i}) & =\sum_{\mathrm{i}=6}^{12} \mathrm{~F}(21, \mathrm{i})=\mathrm{F}(21,6)+\mathrm{F}(21,7)+\cdots+\mathrm{F}(21,12) \\
& =\mathrm{F}(15,5)+\mathrm{F}(13,6)+\mathrm{F}(13,7)+\mathrm{F}(12,5)+\mathrm{F}(12,6)+\mathrm{F}(11,5)+\mathrm{F}(10,4)=7 .
\end{aligned}
$$

This means that, there are the seven 21 full sets are
$\{1,2,3,4,5,6\},\{1,2,4,6,8\},\{1,2,3,7,8\},\{1,2,4,5,9\},\{1,2,3,6,9\},\{1,2,3,5,10\},\{1,2,3,4,11\}$
Example 11: For evaluate F (-6), by using theorem 4 and theorem 5 , we have
$\mathrm{F}(-6)=\mathrm{F}(6)$, so by theorem 5, we have

$$
\begin{aligned}
F(6) & =\sum_{j=L(6)}^{U(6)} F(6, i)=\sum_{i=3}^{3} F(6, i) \\
& =\sum_{j=L(6-3)}^{\min \{U(6-3), 3-1\}} F(6-3, j)=\sum_{j=2}^{2} F(3, j)=F(3,2)=\sum_{j=L(3-2)}^{\min \{U(1), 1\}} F(1, j)=\sum_{1}^{1} F(1,1)=1
\end{aligned}
$$

This means that, there is a -6 full set such that define as follows; $\mathrm{A}=\{-1,-2,-3\}$
Example 12: The number of double full by 6 sets of Z is one and define as follows; $A=\{ \pm 1, \pm 2, \pm 3\}$.

3. ACKNOWLEDGMENTS:

The authors thank the research council of Mashhad Branch, (Islamic Azad University) for support.

4. REFERENCES:

[1] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences, 2011.
[2] M. B. Nathanson, Inverse theorems for subset sums, Trans. Amer. Math. Soc. 347 (1995), 1409-1418.
[3] L. Naranjani and M. Mirzavaziri, Full subsets of N, Journal of integer sequences, Vol. 14 (2011), Article 11.5.3.

