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ABSTRACT 
The analytic functions of finite quantum systems are considered. The zeros of this functions and their evolution time are 
discussed. As the basis change the quantum state 〉f|  transforms into different quantum state. A brief introduction to 
the Symplectic Transformationsis given. A map between two toruses where the domain and the range of this map are the 
analytic functions on toruses is defined.  
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1. INTRODUCTION 
 
Analytic representations have been considered extensively [1, 2, 3] and used in various places in quantum mechanics. 
The analytic Bargmann function [4, 5, 6, 7, 8, 9, 10] is the most famous one. Ref [12] has considered analytic 
representations of finite quantum systems on a torus. The analytic function has exactlyN zeros. Ref [13] has studied the 
motion of the zeros. In some cases, N of the zeros follow the same path and in other cases each zero follow its own path. 
A unitary transformation is equivalent to a change of basis. Symplectic Transformations play an important role in 
quantum optics, where they are related to the concept of squeezing, in superconductivity, in the theory of accelerated 
observers , etc. We try to discuss how to define a map from torus to another such that the domain of this mapis the zeros 
of an analytic function in the first torus and the range is the zeros of analytic function in the second torus. The open 
problem is how to define the map. 
 
2. ZEROS OF ANALYTIC REPRESENTATION OF FINITE QUANTUM SYSTEMS  

 
Let H be a Hilbert space with dimension N and let 〉〉 mm PX |,|  be the position states and momentum states 
respectively(𝑚𝑚 ∈ 𝑍𝑍𝑁𝑁) where: 
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The position and momentum operators are defined as: 
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respectively. 
 
We study an arbitrary normalized state |F 〉 : 
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Following ref [12, 13] we introduce the analytic representations of finite quantum systems on a torus.We represent the 
state |F 〉  of Eq.(4), with the analytic function f(z): 
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which satisfy quasi-periodic condition: 

2 = ( )f z N f zπ +
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where 3ϑ  is Theta function and  it is defined as: 
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The analytic function )(zf  is defined on a cell 0 0 1 1[ , 2 ) [ , 2 )x x N x x Nπ π+ × +  (on a torus)  

The sum of the zeros nz  of analytic function )(zf  is: 
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 where rl,  are integers. 
Ref.[12, 13] has constructed the function )(zf  from its zeros nZ as following: 
 
Let nZ  be the zeros of the analytic function )(zf  and suppose that this zeros satisfy the relation(8) then the analytic 

function )(zf  is defined as: 
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where l  is the integer relationof Eq.(8) and q  is a constant calculated from the normalization condition. 
 
We consider the state | (0) = (0)| ;mF F X m〉 〉∑ at 0=t . Using the Hamiltonian H , the state | (0)F 〉  evolves at 
time t  
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Numerically, we calculate the zeros nz  of ).(zf  
 
Ref.[13] has discussed the Periodic finite quantum systems. In some cases d  of the zeros follow the same path. We say 
that this path has multiplicity d . 
 
3. THE CHANGE OF THE BASIS 
 
The unitary transformation is one-to-one function between two Helbert spaces. Let A  be a Hermitean matrix, and let 
U  be a unitary transformation. It is will known that the matrix †UAU  is Hermation and has the same of eigenvalues of 
A . A unitary transformation is equivalent to a change of basis. It is a transformation that transforms one basis into 

another. As a unitary transformation we consider the Symplectic transformations U . 
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3.1  Symplectic transformations 
 
3.1.1 Symplectic transformations in the harmonic oscillator phase-space 
 
An important class of transformations in the harmonic oscillator case is the Bogoliubov 
Transformations: 

𝑋𝑋 ′ = 𝑘𝑘𝑋𝑋 + 𝜆𝜆𝜆𝜆        𝜆𝜆′ = 𝜇𝜇𝑋𝑋 + 𝜈𝜈𝜆𝜆            𝜅𝜅𝜈𝜈 − 𝜆𝜆𝜆𝜆 = 1 
which preserve the commutation relations: 

[𝑋𝑋′,𝜆𝜆′] = [𝑋𝑋,𝜆𝜆] = 1𝑖𝑖 
 
They are associated with the symplectic group which has three 𝑋𝑋2,𝜆𝜆2,𝑋𝑋𝜆𝜆. 
 
Following ref.[11] we introduce the Symplectic transformations U in the NN ZZ ×  phase-space of a finite quantum 
system. We consider the unitary transformations: 

' † 1= = (2 ),X UXU X Zκ λψ κλ−  
' † 1= = (2 ),Z UZU X Zµ νψ µν−                                                                        (11) 

Here: 
2 2 2exp , exp , ( ) expi p i x i aX Z a i
N N N
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     − − −
= = =     

     
                                            (12) 

where px,  are the position and momentum operators and νµκλ ,,,  are integers in NZ  obey the relation: 
=1( ( )).mod Nκν λµ−                                                                        (13) 

When N is a power of a prime p then 𝑍𝑍(𝑝𝑝𝑛𝑛 )is a Galois field.  
 
We call Galois quantum systems those with a dimension that is a power of a prime. 
 
𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛 ) × 𝐺𝐺𝐺𝐺(𝑝𝑝𝑛𝑛 )  is a finite geometry. This is a geometrical structure with strong mathematical properties. For 
example, transformations like dilations, contractions, discrete rotations, etc. are well defined and form groups. 
 
In the case of non-Galois quantum systems (with a dimension that is not a power of a prime), the phase-space is a set of 
points with no geometrical structure. Consequently, the harmonic oscillator phase-space formalism, which is a set of very 
powerful techniques, can be transferred to other quantum systems, provided that the corresponding phase-space has some 
geometrical structure. In Galois quantum systems the phase-space has a geometrical structure. 
 
By reference to ref.[11] we construct the unitary operator .U We consider a three-dimensional Hilbert space ( =3)N  
and (1, 1 1)U − − , which leads (by definition in Eq.(11)) to the transformations: 

' † 1 1= = ,
2

X UXU XZ ω−  
− 
 

 

' † 1 2= = ( 1).Z UZU X Z ω− −                                                                        (14) 
The operator U is given in a matrix ( , )U i j  and the matrix elements ( , )U i j are given in table 1. 

 
Table-1: The coefficients ( , )U i j  for the transformations of Eq.( 14). 

 0=i  1=i  2=i  
0=j   0.5774   0.2887 + 0.5i  0.5774  

1=j   -0.2887 + 0.5i   0.2887 - 0.5i   0.5774  

2=j  0.5774 0.2887 - 0.5i  -0.2887 + 0.5i 

 
The transformation with operatoreU on the analytic function )(zf : 
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can be expressed as: 
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We denote as nz  the zeros of function )(zf  in Eq.(15) and we denote as nη  the zeros of function: 
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The paths of the zeros define completely a finite quantum system. Hence the study of paths of the zeros is equivalent to 
the study of the system. We consider the paths of the zeros of both functions )(zf  and )(zg . 
 
Let 0 1 2( ), ( ), ( )Z t Z t Z t  be the paths of the three zeros of )(zf , and let )(),(),( 210 ttt ηηη be the paths of the three 

zeros of )(zg . We consider the Hamiltonian: 

1 0
= 1 0

0 0 2

i
H i

 
 
 −
 
 
 
 
 
 

                                                                                (18) 

which has the eigenvalues 0,2,2  with period = .O π  We calculate the Hamiltonian †UHU  which has the same 
eigenvalues of .H  We assume that the initial values the zeros of )(zf  are:  

  0 1 2(0) 2 2 , (0) 2.2 2 , (0) 2.3 2.3Z i Z i Z i= + = + = +                                                       (19) 
 
The initial values the zeros of )(zg  are: 

0 1 2(0) 1 1 , (0) 2 3.3 , (0) 3.4 1Z i Z i Z i= + = + = +                                                            (20) 
 
In the case of Eq.(19) we get: 

0 1 1 2 2 0( ) ( ), ( ) ( ), ( ) ( )Z O t Z t Z O t Z t Z O t Z t+ = + = + =                                                    (21) 
 
After period the three zeros follow the same path. In Fig.2 we present the paths of these zeros. 
 
In the case of Eq.(20), after period we found numerically that: 

0 2 2 0( ) ( ), ( ) ( ).Z O t Z t Z O t Z t+ = + =                                                                      (22) 
 
Therefore two of the zeros follow the same path and the third one follows a different path. In Fig.1. we present the paths 
of these zeros.  

 
 

Figure-1: The path of the zeros z0(t), z _1(t), z _2(t) for the system of Eq.(19)with the Hamiltonian of Eq.(18). 
 
Another example is the Hamiltonian of Eq.(18) and zeros with the initial values: 

0 1 2(0) 1.4 3.4 , (0) 1.7 2.5 , (0) 3.4 0.6Z i Z i Z i= + = + = +                                                    (23) 

and the initial values of zeros of )(zg  are: 

0 1 2(0) 0.8 3.9 , (0) 2 0.36 , (0) 3.7 2.3Z i Z i Z i= + = + = +                                                    (24) 
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The period is = .O π  
 
In the case of Eq.(23) after period the zeros obey the relation: 

0 2 2 1 1 0( ) ( ), ( ) ( ), ( ) ( )Z O t Z t Z O t Z t Z O t Z t+ = + = + =                                                    (25) 
 
Here the three zeros follow the same path. In Fig.2. we present the paths of these zeros. 

 
 

Figure-2: The path of the zeros of the function g(z) where the initial values of these zeros aregiven in Eq.(20) with the 
Hamiltonian †UUH where H of Eq.(18). 

 

 
 

Figure-3: The path of the zeros z_0(t), z _1(t), z _2(t) for the system of Eq.(23) with the Hamiltonian of Eq.(18). 
 

 
Figure-4: The path of the zeros of the function g(z) where the initial values of these zeros are given in Eq.(24)) with 

†UUH where  H of Eq.(18). 
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In the case of Eq.(24) we found numerically that each zero follows a different path. 
 
In Fig.4. we present the paths of these zeros. 
 
A unitary transformation is equivalent to a change of basis. As the basis changes, the quantum state 〉f|  transforms into 
different quantum state. 
 
Let U  be an arbitrary unitary transformation. We can define a map from torus 1T  into another torus 2T  

1 2:G T T→                                                                                          (26) 
 as following: 
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 where )(zf  is the analytic function in Eq.(15). It is seen that this map is one-to-one and on to. 
 
Let us try define another map from torus 1T  into 2T  

1 2:W T T→                                                                                          (28) 
such that: 

( )=n nW Z η                                                                                          (29) 

Where nZ  are the zeros of )(zf  and nη  are the zeros of )(zg . The domain of this map is the zeros of function 

)(zf  and the range is the zeros of function ).(zg  This map is not one-to-one, it is enough to give the following 
example to show that. Let = (1, 1, 1)U U − −  in Eq.(14). We assume that the initial zeros of )(zf  are: 

0 1 2(0) (0) (0) 2.1708 2.1708 .Z Z Z i= = = +                                                               (30)  
 
In this case the three zeros are identical, we can say that they are one zero. 
 
The initial values of the zeros of )(zg  are: 

0 1 2(0) 1 1 , (0) 2 3.34 , (0) 3.34 2Z i Z i Z i= + = + = +                                                         (31) 

In Fig.5 we present the zeros of )(zf  (circles), and the zeros of )(zg  (triangles).  Let nZ  be the zeros of the 

analytic function )(zf  in Eq.(15) and nη  be the zeros of the analytic function )(zg  in Eq.(17). 
Let  

1 2:W T T→                                                                                          (32) 

 be a map from torus 1T  into another 2T  such that: 

( )= .n nW Z η                                                                                            (33) 
What is the definition of that map? 

 
Figure-5: The zeros of the function f(z)) (circle)where initial values of these zeros are given in Eq.(30). The zeros of the 
function g(z)) (circle) where initial values of these zeros are given in Eq.(30)) 
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4  CONCLUSION 
 
We briefly discussed the analytic representation of finite quantum systems. We reviewed briefly the zeros of analytic 
theta function and their time evolution. Ref [11, 12] has studied analytic representations of finite quantum systems on a 
torus. The analytic function representing a quantum state has exactly N zeros which define uniquely the quantum state. 
Ref [13] has studied the motion of the N zeros on the torus.In some cases d  of the zeros follow the same path and in 
other cases each zero follow its own path. 
 
A unitary transformation is equivalent to a change of basis.As an example on the unitary transformation, we introduced 
the Symplectic transformations. We try to discuss how to define a map from torus to another such that the domain and the 
range is the zeros of analytic functions. The open problem is  how to construct the map. We gave several examples to 
demonstrate these ideas. 
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