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ABSTRACT 
In this paper we introduce and study the concept of ideals of finite 𝛤𝛤-near rings, co-fuzzy ideals of finite 𝛤𝛤-near rings 
and related theorems. We prove intersection of two co-fuzzy ideals is always a co-fuzzy ideal but union of two co-fuzzy 
ideals need not be a co-fuzzy ideal of finite 𝛤𝛤-near ring and it is explained by a suitable example. We also introduce 
homomorphic image and homomorphic pre image of co-fuzzy ideals of finite 𝛤𝛤-near rings and related theorems.  
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1. INTRODUCTION 
 
The fuzzy set theory was developed by Zadeh.L.A. [12] in 1965. The fuzzification of algebraic structure was 
introduced by Rosenfield.A[7] and he introduced the notation of fuzzy of subgroups in 1971. Swamy K.L.N and 
Swamy U.M [8] studied fuzzy prime ideals [4,6] Later Satyanarayana. Bh [9] defined Γ-near rings and also he studied 
ideal theory in    Γ-near rings. The notation of fuzzy ideals and its properties were applied to various areas like semi 
groups [11, 10, 5] and semi rings [1,2]  Jun.Y.B [3] considered the fuzzification of ideals of Γ-near rings and 
investigated the related properties. 
 
In this paper, we have defined co-fuzzy ideal concept of finite Γ−near ring with less than or equal and maximum 
conditions and also investigated several properties with the new definitions. Throughout this chapter N stands for zero 
symmetric finite Γ− near ring. 
 
2. PRELIMINARIES 
 
In this section we recall some of the fundamental definitions, which are necessary for this paper.  
 
Definition 2.1:  A triplet �N , +,∙�  is said to be a near ring if  

1. �N , +�  is a group 

2. �N ,∙� is a semi-group 
3. (𝑎𝑎 + 𝑏𝑏) ∙ 𝑐𝑐 = 𝑎𝑎 ∙ 𝑐𝑐 + 𝑏𝑏 ∙ 𝑐𝑐  (Right distribution law)  ∀ 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈ N . 

 
Definition 2.2: A near ring �N , +,∙�   is said to be finite near ring if N  has finite  number of elements.  
 
Definition 2.3: Let N  be a non-empty finite set. If 

1. �N , +� is a group. (Not necessarily abelian group) 
2. Γ is the set of binary operations on N such that �N , +, α �  is a near ring. Where 𝛼𝛼 ∈ Γ. 
3. 𝑎𝑎𝛼𝛼(𝑏𝑏𝑏𝑏𝑐𝑐) = (𝑎𝑎𝛼𝛼𝑏𝑏)𝑏𝑏𝑐𝑐,∀ 𝑎𝑎, 𝑏𝑏, 𝑐𝑐 ∈  N  and 𝛼𝛼,𝑏𝑏 ∈ Γ.  Then �N , +, Γ� is called finite Γ-near ring. 
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Definition 2.4: If 𝑋𝑋 be a non empty set and f :𝑋𝑋 → [0 , 1] is a mapping then the pair ( ),X f is called fuzzy set and 

f  is called fuzzy sub set of 𝑋𝑋. 
 
Definition 2.5: Let f  be a fuzzy sub set of the set 𝑋𝑋.Then the set {𝑥𝑥 ∈ 𝑋𝑋 𝑓𝑓(𝑥𝑥)⁄ < 𝑠𝑠} Where 𝑠𝑠 ∈ [0,1] is called level 
sub set of f .It is denoted by 𝑓𝑓𝑠𝑠.This 𝑓𝑓𝑠𝑠 is also 𝑠𝑠-cut of f . 

∴ 𝑓𝑓𝑠𝑠 = {𝑥𝑥 ∈ 𝑋𝑋 𝑓𝑓(𝑥𝑥)⁄ < 𝑠𝑠} 
 
Definition 2.6: Let 𝑓𝑓 and 𝑔𝑔 be two fuzzy sub sets of the set 𝑋𝑋. If  𝑓𝑓(𝑥𝑥) ≤ 𝑔𝑔(𝑥𝑥),   ∀ 𝑥𝑥 ∈ 𝑋𝑋 then 𝑓𝑓 is said to be contained 
in 𝑔𝑔.It is denoted by 𝑓𝑓 ⊆ 𝑔𝑔. 
 
Definition 2.7: Let 𝑓𝑓 and 𝑔𝑔 be two fuzzy sub sets of the set 𝑋𝑋.Then their intersection and union are denoted by 𝑓𝑓 ∩ 𝑔𝑔 
and 𝑓𝑓 ∪ 𝑔𝑔 respectively and defined as follows, 

(𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥)  = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)},  ∀𝑥𝑥 ∈ 𝑋𝑋. 
and  

(𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥)  = 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)},   ∀𝑥𝑥 ∈ 𝑋𝑋. 
 
Definition 2.8: Let 𝑀𝑀1 and 𝑀𝑀2 be two non empty sets and 𝜇𝜇:𝑀𝑀1 → 𝑀𝑀2 is a mapping. If 𝑓𝑓 is a fuzzy sub set of 𝑀𝑀1 then 
𝑔𝑔 be a fuzzy sub set of  𝑀𝑀2 defined by  
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Where 𝜇𝜇−1(𝑦𝑦)  =  {𝑥𝑥 ∈ 𝑀𝑀1 𝜇𝜇(𝑥𝑥)⁄ = 𝑦𝑦} 
 
If 𝑔𝑔 is a fuzzy sub set of  𝑀𝑀2 then 𝑓𝑓 be a fuzzy sub set of  𝑀𝑀1 defined by 

𝑓𝑓(𝑥𝑥) = 𝑔𝑔�𝜇𝜇(𝑥𝑥)� , ∀ 𝑥𝑥 ∈ 𝑀𝑀1. 
 
Definition 2.9: For any sub set 𝐴𝐴 of the set 𝑋𝑋, the co-fuzzy  characteristic set 𝛿𝛿𝐴𝐴 is defined as follows,  

𝛿𝛿𝐴𝐴(𝑥𝑥)  =  �0   𝑀𝑀𝑓𝑓 𝑥𝑥 ∈ 𝐴𝐴
1  𝑀𝑀𝑓𝑓 𝑥𝑥 ∉ 𝐴𝐴

� 

    
3. CO - FUZZY IDEALS OF FINITE 𝚪𝚪-NEAR RINGS 
 
In this section we define ideals and co-fuzzy ideals of a finite Γ-near rings. We prove the intersection of two co-fuzzy 
ideals of a finite Γ-near ring is always a co-fuzzy ideal. But, the union of two co-fuzzy ideals of a finite Γ-near ring 
need not be a co-fuzzy ideal and it is explained by a suitable example. We also prove some of related theorems on 
ideals and co-fuzzy ideals of a finite Γ-near rings.   
 
Definition 3.1: A sub set 𝑆𝑆 of a finite Γ-near ring �N , +, Γ� is said to be a left ideal of N  if  

1. 𝑥𝑥 + 𝑦𝑦 ∈ 𝑆𝑆,                        ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 
2. 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆,                ∀ 𝑥𝑥 ∈ 𝑆𝑆 and 𝑦𝑦 ∈ N  
3. 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏)− 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆,  ∀ 𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ. 

 
Definition 3.2: A sub set 𝑆𝑆 of a finite Γ-near ring �N , +, Γ� is said to be a right ideal of N  if  

1. 𝑥𝑥 + 𝑦𝑦 ∈ 𝑆𝑆,           ∀ 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆 
2. 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆,   ∀ 𝑥𝑥 ∈ 𝑆𝑆 and 𝑦𝑦 ∈ N  
3. 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆,              ∀ 𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎 ∈ N and 𝛼𝛼 ∈ Γ. 

 
Definition 3.3: A sub set 𝑆𝑆 of a finite Γ-near ring �N , +, Γ� is said to be an ideal of N if  

1. 𝑥𝑥 + 𝑦𝑦 ∈ 𝑆𝑆,                        ∀ 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆 
2. 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆,                ∀ 𝑥𝑥 ∈ 𝑆𝑆 and 𝑦𝑦 ∈ N  
3. 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆,  ∀ 𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ. 
4. 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆,                          ∀ 𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ. 

 
Definition 3.4: A fuzzy sub set 𝑓𝑓 of a finite Γ-near ring �N , +,Γ� is said to be a co-fuzzy left ideal of N if 

1.  f (𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)}, 
2.   𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥), 
3. . f (𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥), ∀ 𝑥𝑥, 𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N and 𝛼𝛼 ∈ Γ. 
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Definition 3.5: A fuzzy sub set 𝑓𝑓 of a finite Γ-near ring �N , +,Γ� is said to be a co-fuzzy right ideal of N  if 

1. 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)}, 
2. 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥), 
3. 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥),  ∀ 𝑥𝑥,𝑦𝑦,𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ. 

 
Definition 3.6: A fuzzy sub set 𝑓𝑓 of a finite Γ-near ring �N , +, Γ� is said to be a co-fuzzy ideal of N  if  

1. 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)}, 
2. 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥), 
3. 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥), 
4. 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥),  ∀ 𝑥𝑥,𝑦𝑦,𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ. 

 
Definition 3.7: A 𝐿𝐿-fuzzy sub set 𝑓𝑓𝐿𝐿  of a finite Γ-near ring �N , +,Γ� is said to be 𝐿𝐿-fuzzy ideal of N if  

1.  𝑓𝑓𝐿𝐿(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓𝐿𝐿(𝑥𝑥),𝑓𝑓𝐿𝐿(𝑦𝑦)} 
2.  𝑓𝑓𝐿𝐿(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥) 
3.  𝑓𝑓𝐿𝐿(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥) 
4.  𝑓𝑓𝐿𝐿(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓𝐿𝐿(𝑥𝑥)  ∀ 𝑥𝑥,𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N and 𝛼𝛼 ∈ Γ. 

 
Here L is a complete lattice satisfying infinite distribute laws. 
 
Definition 3.8: A finite Γ-near ring �N , +,Γ� is said to be zero symmetric if   0 0 0= = ∀ ∈x x xα α N  
 
Note 3.9: 

1. 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)} 
2. 𝑓𝑓(𝑥𝑥 − 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(−𝑦𝑦)} 
3. 𝑓𝑓(0) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(−𝑥𝑥)} 
4. 𝑓𝑓(0) = 𝑓𝑓(𝑥𝑥𝛼𝛼0) ≤ 𝑓𝑓(𝑥𝑥 ), ,x y∀ ∈N  

 
Example 3.10: Let 𝑆𝑆 = {1,2,3,4} and N = P(S) is the power set of  𝑆𝑆. 
 
Let Γ = {{1}, {2,3}}  

Define 𝑓𝑓: N → [0,1] such that ( )
1
2
1
3

 ≠= 
 =


if A
f A

if A

φ

φ
 

 
Here 𝑓𝑓 is both co-fuzzy left and co-fuzzy right ideal of finite Γ-near ring �N ,∆,Γ�.  
 
Hence 𝑓𝑓 is co-fuzzy ideal of finite Γ-near ring �N ,∆,Γ�.  
 
Example 3.11: Let N  be the set of all 2 × 2 matrices defined over 𝑍𝑍5.Where 𝑍𝑍5 = {0� , 1� , 2� , 3� , 4�} is the set of all 
residue classes modulo 5 and Γ = {1� , 2� , 3�}.Then �N , +,Γ� is finite Γ-near ring. 

Define 𝑓𝑓: N → [0,1] such that ( )
0.3

0 0
0.5

  
=  =   




a b
if A

f A
if other wise

 

Then 𝑓𝑓 is a co-fuzzy right ideal of N. But not co-fuzzy left ideal of N.  

Define 𝑓𝑓: N → [0,1] such that 𝑓𝑓(𝐴𝐴) = �0.2      𝑀𝑀𝑓𝑓 𝐴𝐴 = �0 𝑎𝑎
0 𝑏𝑏�

0.6           𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑀𝑀𝑠𝑠𝑒𝑒
�    

Then 𝑓𝑓 is a co-fuzzy left ideal of N.  But not co-fuzzy right ideal of N.  
 

Now, we prove some important theorems on co-fuzzy ideals. 
 
Theorem 3.12: A fuzzy sub set f  of a finite Γ-near ring �N , +,Γ�  is  a co-fuzzy ideal of N  if and only if for 

each δ ∈ 𝐼𝐼𝐼𝐼(𝑓𝑓), the level set fδ   of f  is  an ideal of N. 
 
Proof: Let f  be a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ�. 
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Now, we have to prove that the level set fδ  of 𝑓𝑓 is an ideal of N ( )im fδ∀ ∈  

By the definition of the level set δf = { x∈N, ( ) δ<f x } 

1. Let 𝑥𝑥, 𝑦𝑦 ∈ δf  
Then 𝑓𝑓(𝑥𝑥) < δ  and 𝑓𝑓(𝑦𝑦) < δ  
Now 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)} < δ  
∴ 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) < δ  
⇒ 𝑥𝑥+ 𝑦𝑦 ∈ fδ  

2. Let 𝑥𝑥 ∈ δf  and 𝑦𝑦 ∈ N  
Then 𝑓𝑓(𝑥𝑥) < δ  
Now 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥) < δ  
∴ 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) < δ  
⇒ 𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦 ∈ fδ  

3. Let 𝑥𝑥 ∈ fδ ,  𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ 
Then 𝑓𝑓(𝑥𝑥) < δ  
Now 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) < δ  
∴ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) < δ  

⇒ 𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ fδ  

Then the level set fδ  of 𝑓𝑓 is a left ideal of N,  ∀ δ ∈ 𝐼𝐼𝐼𝐼(𝑓𝑓) 

4. Let 𝑥𝑥 ∈ δf ,  𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ 
Then 𝑓𝑓(𝑥𝑥) < δ  
We have 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ ( ) <f x δ  
∴ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) < δ  

⇒ 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ fδ  

Then the level set fδ  of 𝑓𝑓 is a right ideal of N. 

Hence the level set fδ  of 𝑓𝑓 is a ideal of N, ( )Im∀ ∈ fδ  

Conversely assume that fδ  is an ideal of N   
Now we prove that 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ�   

1. Let 𝑥𝑥, 𝑦𝑦 ∈N 
If possible, let there exists 𝑥𝑥0,𝑦𝑦0 ∈ N  such that 
𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0) > 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥0),𝑓𝑓(𝑦𝑦0)} 
Let  δ = 1

2
�𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0) +𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥0),𝑓𝑓(𝑦𝑦0)}� 

Then  δ < 1
2

{𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0) + 𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0)} 
⇒ δ < 𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0) 

⇒ 𝑥𝑥0 + 𝑦𝑦0 ∉ fδ  

And  δ > 1
2
�2 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥0),𝑓𝑓(𝑦𝑦0)}� 

⇒ δ >  𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥0),𝑓𝑓(𝑦𝑦0)} 
⇒ δ > 𝑓𝑓(𝑥𝑥0) and ( )0> f yδ  

⇒ 𝑥𝑥0,𝑦𝑦0 ∈ fδ  

∴ 𝑥𝑥0 + 𝑦𝑦0 ∉ fδ  and 𝑥𝑥0,𝑦𝑦0 ∈ fδ  

This is a contradiction to fδ  is an ideal of N 
Then our assumption is wrong. 
Hence f (𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)} ,  ∀ 𝑥𝑥, 𝑦𝑦 ∈ N  
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2. Let 𝑥𝑥, 𝑦𝑦 ∈ N  

If possible, let there exists 𝑥𝑥0,𝑦𝑦0 ∈ N  such that 
𝑓𝑓(𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0) > 𝑓𝑓(𝑥𝑥0) 
Let  δ = 1

2
{𝑓𝑓(𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0) + 𝑓𝑓(𝑥𝑥0)} 

Then ( ){ }0 0 0
1 2
2

< + −f y x yδ  and ( ){ }0
1 2
2

> f xδ  

⇒ δ < 𝑓𝑓(𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0)  and  δ > 𝑓𝑓(𝑥𝑥0) 

⇒ 𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0 ∉ fδ  and 𝑥𝑥0 ∈ fδ  

This is a contradiction to fδ  is an ideal of N 
Then our assumption is wrong and hence 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥), 
∀ 𝑥𝑥,𝑦𝑦 ∈ N  

3. Let 𝑥𝑥, 𝑎𝑎, 𝑏𝑏 ∈ N and 𝛼𝛼 ∈ Γ  
If possible, let there exists 𝑥𝑥0,𝑎𝑎0,𝑏𝑏0 ∈ N and 𝛼𝛼 ∈ Γ such that 
𝑓𝑓(𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0) > 𝑓𝑓(𝑥𝑥0) 

𝐿𝐿𝑒𝑒𝑜𝑜  δ =
1
2

{𝑓𝑓(𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0) + 𝑓𝑓(𝑥𝑥0)} 

Then ( )( ){ } ( ){ }0 0 0 0 0 0
1 12 2
2 2

< + − >f a x b a b and f xδ α α δ  

⇒ δ < 𝑓𝑓(𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0)  and  ( )0> f xδ  

⇒ 𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0 ∉ fδ  and 𝑥𝑥0 ∈ fδ  

This is a contradiction to fδ  is an ideal of N 
Then our assumption is wrong and hence 
𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) ,∀ 𝑥𝑥, 𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ. 
Then 𝑓𝑓 is a co-fuzzy left ideal of a finite Γ-near ring �N , +, Γ�. 

4. Let 𝑥𝑥, 𝑎𝑎 ∈N  and 𝛼𝛼 ∈ Γ  
If possible, let there exists 𝑥𝑥0,𝑎𝑎0 ∈ N  and 𝛼𝛼 ∈ Γ such that 
𝑓𝑓(𝑥𝑥0𝛼𝛼𝑎𝑎0) > 𝑓𝑓(𝑥𝑥0) 
Let δ = 1

2
{𝑓𝑓(𝑥𝑥0𝛼𝛼𝑎𝑎0) + 𝑓𝑓(𝑥𝑥0)} 

Then ( )0 0< f x aδ α  and ( )0> f xδ  

⇒ 𝑥𝑥0𝛼𝛼𝑎𝑎0 ∉ fδ  and 𝑥𝑥0 ∈ fδ  

This is a contradiction to fδ  is an ideal of N. 
Then our assumption is wrong and hence 𝑓𝑓 (𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥) ,∀ 𝑥𝑥,𝑎𝑎 ∈ N and 𝛼𝛼 ∈ Γ 
Then 𝑓𝑓 is a co- fuzzy right ideal of a finite Γ-near ring �N , +, Γ� 
Hence 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +, Γ�.           
 

Theorem 3.13: Let ( )≠S φ  be a non empty sub set of a finite Γ-near ring �N , +, Γ�. Then the fuzzy set 

𝑓𝑓𝑆𝑆 : N → [0,1] defined by 𝑓𝑓𝑆𝑆(𝑥𝑥) = �0     𝑀𝑀𝑓𝑓 𝑥𝑥 ∈ 𝑆𝑆
1    𝑀𝑀𝑓𝑓 𝑥𝑥 ∉ 𝑆𝑆

�  is a co-fuzzy ideal of N if and only if 𝑆𝑆 is an ideal of N . 

 
Proof: Let ( )≠S φ  be a non empty sub set of a finite Γ-near ring �N , +,Γ�  

Define  𝑓𝑓𝑆𝑆 : N → [0,1] such that 𝑓𝑓𝑆𝑆(𝑥𝑥) = �0       𝑀𝑀𝑓𝑓 𝑥𝑥 ∈ 𝑆𝑆
1       𝑀𝑀𝑓𝑓 𝑥𝑥 ∉ 𝑆𝑆

�   

Let 𝑓𝑓𝑆𝑆  be a co-fuzzy ideal of a finite Γ-near ring �N , +, Γ�  
 
Now we prove that 𝑆𝑆 is an ideal of N  

1. Let 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆  
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 and 𝑓𝑓𝑆𝑆(𝑦𝑦) = 0 
Now 𝑓𝑓𝑆𝑆(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓𝑆𝑆(𝑥𝑥),𝑓𝑓𝑆𝑆(𝑦𝑦)} = 0 
∴ 𝑓𝑓𝑆𝑆(𝑥𝑥+ 𝑦𝑦) = 0 
⇒ 𝑥𝑥+ 𝑦𝑦 ∈ 𝑆𝑆 
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2. 𝑥𝑥 ∈ 𝑆𝑆 and y ∈N  
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 
Now 𝑓𝑓𝑆𝑆(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) =0 
∴ 𝑓𝑓𝑆𝑆(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) = 0 
⇒ 𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆 

3. Let 𝑥𝑥 ∈ 𝑆𝑆,  𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 
Now 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) =0 
∴ 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0 
⇒ 𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆 
Then 𝑆𝑆 is a left ideal of N  

4. Let 𝑥𝑥 ∈ 𝑆𝑆, ∈a N and 𝛼𝛼 ∈ Γ  
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 
We have 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) =0 
∴ 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 0 
⇒ 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 
⇒ 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆 
Then 𝑆𝑆 is a right ideal of N 
Hence 𝑆𝑆 is an ideal of N 

Conversely assume that 𝑆𝑆 is an ideal of N  
 
We prove that 𝑓𝑓𝑆𝑆  is a co-fuzzy ideal of a finite Γ-near ring �N , +, Γ� 
1. Let ,x y ∈ N  

( ) ( )
( ) ( ) ( ){ }
( ) ( ) ( ){ }

( ) ( ) ( )
( ) ( ) ( ){ }

( ) ( ) ( ){ }

( ) ( ) ( )

( ) ,
0 0

0 max ,

max ,

( ) ,
1 0

0 max ,

max ,

( ) ,
1

s s

s s s

s s s

s s s

s s s

s s s

s s s

s

i Let x y S
Then f x and f y and x y S

f x y f x f y

f x y f x f y

ii Let x y S and x y S
Then f x f y and f x y

Now f x y f x f y

f x y f x f y

iii Let x y S and x y S
Then f x f y f x y

Now f x

∈

= = + ∈

⇒ + = ≤

∴ + ≤

∉ + ∈

= = + =

+ = ≤

∴ + ≤

∉ + ∉

= = + =

+( ) ( ) ( ){ }
( ) ( ) ( ){ }

1 max ,

max ,
s s

s s s

y f x f y

f x y f x f y

= ≤

∴ + ≤

 

2. Let 𝑥𝑥, 𝑦𝑦 ∈ N  

(i) Let x S∈  and 𝑦𝑦 ∈ N     
Then ( ) 0sf x =  and y x y S+ − ∈  
⇒ 𝑓𝑓𝑆𝑆(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) = 0 ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 

(ii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑦𝑦 ∈ N    
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 1 
Now 𝑓𝑓𝑆𝑆(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 1 ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 

3. Let 𝑥𝑥, 𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
(i)   Let  𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  

Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 and  𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆 
⇒ 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0 
Now  𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0  ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
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(ii)  Let  x ∉ 𝑆𝑆 , 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 1 
Now 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 1 = 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
Thus 𝑓𝑓𝑆𝑆  is a co-fuzzy left ideal of a finite Γ-near ring �N , +, Γ� 

4. Let 𝑥𝑥, 𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ  
(i)  Let 𝑥𝑥 ∈ 𝑆𝑆,  𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ  

Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 0 and  𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆 
⇒ 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 
Now 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 

(ii)  Let  𝑥𝑥 ∉ 𝑆𝑆 , 𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ 
Then 𝑓𝑓𝑆𝑆(𝑥𝑥) = 1 
Now 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 1 ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 
∴ 𝑓𝑓𝑆𝑆(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓𝑆𝑆(𝑥𝑥) 

 Thus 𝑓𝑓𝑆𝑆  is a co-fuzzy right ideal of a finite Γ-near ring �N , +, Γ� 
 
 Hence 𝑓𝑓𝑆𝑆  is a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ�                   
 
Theorem 3.14: If 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ� then the set  𝑆𝑆 = �𝑥𝑥 ∈ N ∕ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)� 
is an ideal of N 
 
 Proof: Let 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ� 

Given that 𝑆𝑆 = �𝑥𝑥 ∈ N ∕ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)� 
We know that ( )0f ≤ 𝑓𝑓(𝑥𝑥) ,  ∀ 𝑥𝑥 ∈ N  
Now we prove that 𝑆𝑆 is an ideal of N 

1. Let 𝑥𝑥, 𝑦𝑦 ∈ 𝑆𝑆  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) and 𝑓𝑓(𝑦𝑦) = 𝑓𝑓(0)  
Since 𝑓𝑓 is a fuzzy ideal,  𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} = 𝑓𝑓(0)       
𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ 𝑓𝑓(0) 
⇒ 𝑓𝑓(𝑥𝑥+ 𝑦𝑦) = 𝑓𝑓(0) 
⇒ 𝑥𝑥+ 𝑦𝑦 ∈ 𝑆𝑆 

2. Let 𝑥𝑥 ∈ 𝑆𝑆 and 𝑦𝑦 ∈N  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)  
Since 𝑓𝑓 is a fuzzy ideal,  𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) 
∴ 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(0) 
⇒ 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 𝑓𝑓(0) 
⇒ 𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆 

3. Let 𝑥𝑥 ∈ 𝑆𝑆, 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) 
Since 𝑓𝑓 is a fuzzy left ideal,  𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) 
∴ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(0) 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑓𝑓(0) 
⇒ 𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆 
Thus 𝑆𝑆 is a left ideal of N. 

4. Let 𝑥𝑥 ∈ 𝑆𝑆,  𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ   
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0) 
Since 𝑓𝑓 is a fuzzy right ideal, 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥) =𝑓𝑓(0) 
∴ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(0) 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝑓𝑓(0) 
⇒ 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆 
Thus 𝑆𝑆 is a right ideal of N. 
Hence 𝑆𝑆 is an ideal of a finite Γ-near ring �N , +, Γ�. 

 
Theorem 3.15: Let ( )≠S φ  is an ideal of a finite Γ-near ring �N , +,Γ�. Then for all 𝑜𝑜 ∈ (0�, �1] there exists a       

co-fuzzy ideal 𝑓𝑓 of  N  Such that    N 𝑓𝑓
= 𝑆𝑆, Where N

𝑓𝑓
  =  �𝑥𝑥 ∈ N ∕ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)�. 
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Proof: Given that ( )≠S φ  is an ideal of N .Define 𝑓𝑓: N → [0,1] such that  𝑓𝑓(𝑥𝑥) = �0  𝑀𝑀𝑓𝑓 𝑥𝑥 ∈ 𝑆𝑆
𝑜𝑜   𝑀𝑀𝑓𝑓 𝑥𝑥 ∉ 𝑆𝑆

�  

We prove that 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +,Γ� 
 
1. Let 𝑥𝑥, 𝑦𝑦 ∈ N    

(i) Let 𝑥𝑥,𝑦𝑦 ∈ 𝑆𝑆  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑦𝑦) = 0 
Since 𝑆𝑆 is an ideal of N , 𝑥𝑥 + 𝑦𝑦 ∈ 𝑆𝑆 
⇒ 𝑓𝑓(𝑥𝑥+ 𝑦𝑦) = 0 
⇒ 𝑓𝑓(𝑥𝑥+ 𝑦𝑦) = 0 ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} 
∴ 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} 

(ii) Let 𝑥𝑥,𝑦𝑦 ∉ 𝑆𝑆 and 𝑥𝑥 + 𝑦𝑦 ∈ 𝑆𝑆  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑦𝑦) = 𝑜𝑜 and 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 0 
Now 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 0 ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} 
∴ 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} 

(iii) Let 𝑥𝑥, 𝑦𝑦 ∉ 𝑆𝑆 and 𝑥𝑥 + 𝑦𝑦 ∉ 𝑆𝑆  
Then 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑦𝑦) = 𝑜𝑜 and 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 𝑜𝑜 
Now 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) = 𝑜𝑜 ≤ Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)} 
∴ 𝑓𝑓(𝑥𝑥 + 𝑦𝑦) ≤ Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} 

2. Let 𝑥𝑥, 𝑦𝑦 ∈ N    
(i) Let 𝑥𝑥 ∈ 𝑆𝑆 and 𝑦𝑦 ∈ N   

Then 𝑓𝑓(𝑥𝑥) = 0 
Since 𝑆𝑆 is an ideal of N , 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦 ∈ 𝑆𝑆 
⇒ 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 0 ≤  𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥) 

(ii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑦𝑦 ∈ N  
Then 𝑓𝑓(𝑥𝑥) = 𝑜𝑜 and 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦 ∉ 𝑆𝑆 
⇒ 𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 𝑜𝑜  ≤  𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ 𝑓𝑓(𝑥𝑥) 

 3. Let 𝑥𝑥, 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ   
(i) Let  𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎, 𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ   

Then 𝑓𝑓(𝑥𝑥) = 0 and 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0 ≤ 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) 

(ii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∈ 𝑆𝑆     
Then 𝑓𝑓(𝑥𝑥) = 𝑜𝑜 and 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 0 ≤ 𝑜𝑜 = 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) 

(iii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 ∉ 𝑆𝑆    
Then 𝑓𝑓(𝑥𝑥) = 𝑜𝑜 and 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑜𝑜 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑜𝑜 = 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ 𝑓𝑓(𝑥𝑥) 
Thus  𝑓𝑓 is a co-fuzzy left ideal of a finite Γ-near ring �N , +,Γ�. 

4. Let 𝑥𝑥, 𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ   
(i) Let  𝑥𝑥 ∈ 𝑆𝑆 , 𝑎𝑎 ∈ N  and 𝛼𝛼 ∈ Γ  

Then 𝑓𝑓(𝑥𝑥) = 0 and 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 ≤ 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥) 

(ii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑥𝑥𝛼𝛼𝑎𝑎 ∈ 𝑆𝑆  
Then 𝑓𝑓(𝑥𝑥) = 𝑜𝑜 and 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 0 ≤ 𝑜𝑜 = 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥) 

(iii) Let 𝑥𝑥 ∉ 𝑆𝑆 and 𝑥𝑥𝛼𝛼𝑎𝑎 ∉ 𝑆𝑆   
Then 𝑓𝑓(𝑥𝑥) = 𝑜𝑜 and 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝑜𝑜 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝑜𝑜 = 𝑓𝑓(𝑥𝑥) 
⇒ 𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ 𝑓𝑓(𝑥𝑥) 
Thus  𝑓𝑓 is a co-fuzzy right ideal of a finite Γ-near ring �N , +,Γ�. 
Hence 𝑓𝑓 is a co-fuzzy ideal of a finite Γ-near ring �N , +, Γ�. 
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Finally, N
𝑓𝑓

= �𝑥𝑥 ∈ N ∕ 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(0)� 
                          = �𝑥𝑥 ∈ N ∕ 𝑓𝑓(𝑥𝑥) = 0� 
                          = 𝑆𝑆 
∴ N

𝑓𝑓
= 𝑆𝑆 

 
Theorem 3.16: If 𝑓𝑓 and 𝑔𝑔 are two co-fuzzy ideals of a finite Γ-near ring �N , +,Γ�,  then their intersection 
(𝑓𝑓 ∩ 𝑔𝑔) is also co- fuzzy ideal of N. 
 
Proof: Given that 𝑓𝑓 and 𝑔𝑔 are two co-fuzzy ideals of a finite Γ-near ring �N , +, Γ� 
 
Now we prove that (𝑓𝑓 ∩ 𝑔𝑔) is co-fuzzy ideal of N. 
 
Let 𝑥𝑥, 𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
 1.  (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥 + 𝑦𝑦) = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥 + 𝑦𝑦),𝑔𝑔(𝑥𝑥 + 𝑦𝑦)}  

≤ 𝑀𝑀𝑀𝑀𝑀𝑀 {Max {𝑓𝑓(𝑥𝑥), 𝑓𝑓(𝑦𝑦)} , Max {𝑔𝑔(𝑥𝑥),𝑔𝑔(𝑦𝑦)}} 
≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {Min {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)} , Min {𝑓𝑓(𝑦𝑦),𝑔𝑔(𝑦𝑦)}} 
= 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥), (𝑓𝑓 ∩ 𝑔𝑔)(𝑦𝑦)} 

∴ (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥+ 𝑦𝑦) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥), (𝑓𝑓 ∩ 𝑔𝑔)(𝑦𝑦)} 
2.  (𝑓𝑓 ∩ 𝑔𝑔)(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦),𝑔𝑔(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦)}   

≤ 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)} 
= (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 

∴ (𝑓𝑓 ∩ 𝑔𝑔)(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 
3. (𝑓𝑓 ∩ 𝑔𝑔)(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏),𝑔𝑔(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏)}  

≤ 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)} 
= (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 

∴ (𝑓𝑓 ∩ 𝑔𝑔)(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 
Thus (𝑓𝑓 ∩ 𝑔𝑔) is a co-fuzzy left ideal of N  

4.  (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎),𝑔𝑔(𝑥𝑥𝛼𝛼𝑎𝑎)}  
≤ 𝑀𝑀𝑀𝑀𝑀𝑀 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)} 
= (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 

∴ (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ (𝑓𝑓 ∩ 𝑔𝑔)(𝑥𝑥) 
Thus (𝑓𝑓 ∩ 𝑔𝑔) is a co-fuzzy right ideal of N. 
Hence (𝑓𝑓 ∩ 𝑔𝑔) is a co-fuzzy ideal of N. 

        
Remark 3.17: The union of two co-fuzzy ideals of a finite Γ-near ring �N , +, Γ�  
need not be a co-fuzzy ideal of N. Now, we prove a sufficient condition for the union of two co-fuzzy ideals of a 
finite Γ-near ring �N , +, Γ� to be a co-fuzzy ideal of N.   
 
Theorem 3.18: If 𝑓𝑓 and 𝑔𝑔 are two co-fuzzy ideals of a finite Γ-near ring �N , +,Γ�,  then their union(𝑓𝑓 ∪ 𝑔𝑔) is 
fuzzy ideal of N   if 𝑓𝑓 ⊆ 𝑔𝑔 or 𝑔𝑔 ⊆ 𝑓𝑓. 
 
Proof: Given that 𝑓𝑓 and 𝑔𝑔 are two co-fuzzy ideals of a finite Γ-near ring �N , +, Γ�  such that 𝑓𝑓 ⊆ 𝑔𝑔 or 𝑔𝑔 ⊆ 𝑓𝑓, 
Without loss of generality, We assume that 𝑓𝑓 ⊆ 𝑔𝑔 
Now we prove that (𝑓𝑓 ∪ 𝑔𝑔) is co-fuzzy ideal of N.   
Let 𝑥𝑥, 𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N  and 𝛼𝛼 ∈ Γ  
1.  (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥 + 𝑦𝑦) = 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥 + 𝑦𝑦),𝑔𝑔(𝑥𝑥 + 𝑦𝑦)}   
                                    ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {Max {𝑓𝑓(𝑥𝑥),𝑓𝑓(𝑦𝑦)} , Max {𝑔𝑔(𝑥𝑥),𝑔𝑔(𝑦𝑦)}}  
                                    ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {Max {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)} , Max {𝑓𝑓(𝑦𝑦),𝑔𝑔(𝑦𝑦)}}     
                                    = 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥), (𝑓𝑓 ∪ 𝑔𝑔)(𝑦𝑦)}   

∴ (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥+ 𝑦𝑦) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥), (𝑓𝑓 ∪ 𝑔𝑔)(𝑦𝑦)}    
2. (𝑓𝑓 ∪ 𝑔𝑔)(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦),𝑔𝑔(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦)}  
                                          ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)}   
                                          = (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥)  

∴ (𝑓𝑓 ∪ 𝑔𝑔)(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥) 
3.  (𝑓𝑓 ∪ 𝑔𝑔)(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏)− 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏)− 𝑎𝑎𝛼𝛼𝑏𝑏),𝑔𝑔(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏)− 𝑎𝑎𝛼𝛼𝑏𝑏)}   
                                            ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)}  
                                                       = (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥)  

∴ (𝑓𝑓 ∪ 𝑔𝑔)(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥) 
Thus (𝑓𝑓 ∪ 𝑔𝑔) is a co-fuzzy left ideal of N 
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4. (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎),𝑔𝑔(𝑥𝑥𝛼𝛼𝑎𝑎)}  
                                ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝑓𝑓(𝑥𝑥),𝑔𝑔(𝑥𝑥)}  
                                = (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥)  

∴ (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ (𝑓𝑓 ∪ 𝑔𝑔)(𝑥𝑥) 
Thus (𝑓𝑓 ∪ 𝑔𝑔) is a co-fuzzy right ideal of N 
Hence (𝑓𝑓 ∪ 𝑔𝑔) is a co-fuzzy ideal of N 

 
Remark 3.19: The converse of the above theorem need not be true. i.e, even if (𝑓𝑓 ∪ 𝑔𝑔) is a co-fuzzy ideal of a 
finite Γ-near ring, either one may not  contained in other.  
    
Example: Let 𝑆𝑆 = {1,2,3,4} and N = 𝑃𝑃(𝑆𝑆), Where 𝑃𝑃(𝑆𝑆) is the power set of 𝑆𝑆.  

Then �N ,∆,∩� is a finite near ring. 
Let us take Γ = {{1}, {1,2,3}}, then �N ,∆,Γ� is a finite Γ-near ring. 

Define 𝑓𝑓: N → [0,1] such that 𝑓𝑓(𝐴𝐴) = �
0.6   𝑀𝑀𝑓𝑓 𝐴𝐴 ≠ φ
0.3   𝑀𝑀𝑓𝑓 𝐴𝐴 = φ

� 

and define 𝑔𝑔: N → [0,1] such that 𝑔𝑔(𝐴𝐴) = �
0.7  𝑀𝑀𝑓𝑓 𝐴𝐴 ≠ φ
0.2  𝑀𝑀𝑓𝑓 𝐴𝐴 = φ

� 

Then (𝑓𝑓 ∪ 𝑔𝑔): N → [0,1] such that (𝑓𝑓 ∪ 𝑔𝑔)(𝐴𝐴) = �
0.7  𝑀𝑀𝑓𝑓 𝐴𝐴 ≠ φ
0.3  𝑀𝑀𝑓𝑓 𝐴𝐴 = φ

� is a co-fuzzy ideal of a finite Γ-near ring 

�N ,∆, Γ�. But 𝑓𝑓 ⊈ 𝑔𝑔 and 𝑔𝑔 ⊈ 𝑓𝑓. 
 
4. CO-FUZZY HOMOMORPHISM OF FINITE 𝚪𝚪-NEAR RINGS 
 
In this section, we define co-fuzzy homomorphism between two finite Γ-near rings and we prove that the 
homomorphic image of co-fuzzy ideal is a co-fuzzy ideal and inverse image of a co-fuzzy ideal is also a co-fuzzy 
ideal. 
 
Definition 4.1: Let �N

1
, +, Γ� and �N

2
, +,Γ� be two finite Γ-near rings. Then  the function 𝑓𝑓: N

1
→ N

2
 is 

said to be a homomorphism from N
1

to N
2

 if  
1. 𝑓𝑓(𝑎𝑎 + 𝑏𝑏) = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏) 
2. 𝑓𝑓(𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑓𝑓(𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏),  ∀ 𝑎𝑎, 𝑏𝑏 ∈ N

1
 and 𝛼𝛼 ∈ Γ 

 
Definition 4.2: Let �N

1
, +, Γ1� be a finite Γ1-near ring and �N

2
, +,Γ2� be a finite Γ2-near ring, and 

𝑓𝑓: N
1
→ N

2
 and 𝑔𝑔: Γ1 → Γ2 be two functions. Then the pair (𝑓𝑓,𝑔𝑔) is said to be a homomorphism from N

1
 

to N
2
 if  

1. 𝑓𝑓(𝑎𝑎 + 𝑏𝑏) = 𝑓𝑓(𝑎𝑎) + 𝑓𝑓(𝑏𝑏)  
2. 𝑓𝑓(𝑎𝑎𝛼𝛼𝑏𝑏) = 𝑓𝑓(𝑎𝑎)𝑔𝑔(𝛼𝛼)𝑓𝑓(𝑏𝑏), ∀ 𝑎𝑎,𝑏𝑏 ∈ N

1
 and 𝛼𝛼 ∈ Γ1    

 
Definition 4.3: Let �N

1
, +, Γ� and �N

2
, +,Γ� be two finite Γ-near rings and  𝑓𝑓: N

1
→ N

2
 is a 

homomorphism from N
1

 to N
2
. If 𝜇𝜇 is a fuzzy sub set of N

1
then its image 𝑓𝑓(𝜇𝜇) is a fuzzy sub set of N

2
 is 

defined by  

( )( )( ) ( ) ( ) ( )
( )

1
1

21

inf

0

−
−

∈

−

 ≠= ∀ ∈
=

z f y
z if f y

f u y y N
if f y

µ φ

φ
 

 
Definition 4.4: Let �N

1
, +, Γ� and �N

2
, +,Γ� be two finite Γ-near rings. The function 𝑓𝑓: N

1
→ N

2
 is a 

homomorphism from N
1

 to N
2
. If 𝜎𝜎 is a co-fuzzy sub set of N

2
𝑜𝑜hen its inverse image 𝑓𝑓−1(𝜎𝜎) is a fuzzy sub 

set of N
1
 defined by �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥) = 𝜎𝜎�𝑓𝑓(𝑥𝑥)�,  ∀ 𝑥𝑥 ∈ N

1
.  
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Theorem 4.5: Let �N
1

, +,Γ� and �N
2

, +,Γ� be two finite Γ-near rings. The function 𝑓𝑓: N
1
→ N

2
 is a 

homomorphism from N
1

 to N
2

. If 𝜎𝜎 is a co-fuzzy ideal of N
2

 then its inverse image 𝑓𝑓−1(𝜎𝜎) is a co-fuzzy 
ideal of N

1
. 

 
Proof: Let 𝑓𝑓: N

1
→ N

2
 is a homomorphism from the finite Γ-near rings  �N

1
, +,Γ� to �N

2
, +, Γ� and 

𝜎𝜎: N
2
→ [0,1] is a co-fuzzy sub set of N

2
. 

Let 𝜎𝜎 be a co-fuzzy ideal of N
2

  
 
 
Now we prove that 𝑓𝑓−1(𝜎𝜎) is a co-fuzzy ideal of N

1
  

Let 𝑥𝑥, 𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N
1
 and 𝛼𝛼 ∈ Γ   

1.  �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥 + 𝑦𝑦) = 𝜎𝜎�𝑓𝑓(𝑥𝑥 + 𝑦𝑦)� 
                                       = 𝜎𝜎�𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑦𝑦)� 
                                        ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 �𝜎𝜎�𝑓𝑓(𝑥𝑥)�, 𝜎𝜎�𝑓𝑓(𝑦𝑦)��   
                                       = 𝑀𝑀𝑎𝑎𝑥𝑥 ��𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥), �𝑓𝑓−1(𝜎𝜎)�(𝑦𝑦)�   
          ∴ (𝑓𝑓−1(𝜎𝜎)) (𝑥𝑥+ 𝑦𝑦) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓−1(𝜎𝜎)) (𝑥𝑥), (𝑓𝑓−1(𝜎𝜎)) (𝑦𝑦)}     
2.  �𝑓𝑓−1(𝜎𝜎)�(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = 𝜎𝜎�𝑓𝑓(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦)�  
                                                = 𝜎𝜎�𝑓𝑓(𝑦𝑦) + 𝑓𝑓(𝑥𝑥) − 𝑓𝑓(𝑦𝑦)�  
                                                ≤ 𝜎𝜎(𝑓𝑓(𝑥𝑥))  
                                                = �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥)   
         ∴ (𝑓𝑓−1(𝜎𝜎)) (𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ (𝑓𝑓−1(𝜎𝜎)) (𝑥𝑥)  
 3.  �𝑓𝑓−1(𝜎𝜎)�(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = 𝜎𝜎�𝑓𝑓(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏)�  
                                                            = 𝜎𝜎 �𝑓𝑓(𝑎𝑎)𝛼𝛼�𝑓𝑓(𝑥𝑥) + 𝑓𝑓(𝑏𝑏)� − 𝑓𝑓(𝑎𝑎)𝛼𝛼𝑓𝑓(𝑏𝑏)�  
                                                             ≤ 𝜎𝜎(𝑓𝑓(𝑥𝑥))  
                                                             = �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥)     
           ∴ �𝑓𝑓−1(𝜎𝜎)�(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥)        

 Thus �𝑓𝑓−1(𝜎𝜎)� is a co-fuzzy left ideal of N
1

  
  4. �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥𝛼𝛼𝑎𝑎) = 𝜎𝜎�𝑓𝑓(𝑥𝑥𝛼𝛼𝑎𝑎)�  
                                     = 𝜎𝜎�𝑓𝑓(𝑥𝑥)𝛼𝛼𝑓𝑓(𝑎𝑎)�   
                                     ≤ 𝜎𝜎(𝑓𝑓(𝑥𝑥))   
                                     = �𝑓𝑓−1(𝜎𝜎)�(𝑥𝑥)    
           ∴ (𝑓𝑓−1(𝜎𝜎)) (𝑥𝑥𝛼𝛼𝑎𝑎) ≤ (𝑓𝑓−1(𝜎𝜎)) (𝑥𝑥)   

Thus �𝑓𝑓−1(𝜎𝜎)� is a co-fuzzy right ideal of N
1

  
Hence �𝑓𝑓−1(𝜎𝜎)� is a co-fuzzy ideal of N

1
.    

            
Theorem 4.6: Let �N

1
, +,Γ� and �N

2
, +,Γ� be two finite Γ-near rings. The function 𝑓𝑓: N

1
→ N

2
 is a 

onto homomorphism from N
1

 to N
2

. If 𝜇𝜇 is a co-fuzzy ideal of N
1

 then its image 𝑓𝑓(𝜇𝜇) is   a co-fuzzy ideal of 
N

2
. 

 
Proof: Let 𝑓𝑓: N

1
→ N

2
 is an onto homomorphism from the finite Γ-near rings �N

1
, +, Γ� to �N

2
, +,Γ� 

and 𝜇𝜇: N
1
→ [0,1] is a fuzzy sub set of N

1
  

Let 𝜇𝜇 be a co-fuzzy ideal of N
1

 
Now we prove that 𝑓𝑓(𝜇𝜇) is a co-fuzzy ideal of N

2
 

We have 

( )( )( ) ( ) ( ) ( )
( )

1
1

21

inf

0

−
−

∈

−

 ≠= ∀ ∈
=

z f y
z if f y

f u y y N
if f y

µ φ

φ
 

Let 𝑥𝑥, 𝑦𝑦,𝑎𝑎,𝑏𝑏 ∈ N
2
 and 𝛼𝛼 ∈ Γ   

Since 𝑓𝑓 is onto from N
1

 to N
2

 then there exists 𝑥𝑥0,𝑦𝑦0,𝑎𝑎0, 𝑏𝑏0 ∈ N
1
 such that  

𝑓𝑓(𝑥𝑥0) = 𝑥𝑥, 𝑓𝑓(𝑦𝑦0) = 𝑦𝑦, 𝑓𝑓(𝑎𝑎0) = 𝑎𝑎 and 𝑓𝑓(𝑏𝑏0) = 𝑏𝑏  
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1.   �𝑓𝑓(𝜇𝜇)�(𝑥𝑥 + 𝑦𝑦) = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥+𝑦𝑦) 𝜇𝜇(𝑧𝑧)                                                                                                                                          (1) 
         Let 𝜇𝜇(𝑥𝑥0) = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥) 𝜇𝜇(𝑧𝑧) and 𝜇𝜇(𝑦𝑦0) = Inf𝑧𝑧∈𝑓𝑓−1(𝑦𝑦) 𝜇𝜇(𝑧𝑧)  
          ⇒ 𝑓𝑓(𝑥𝑥0) = 𝑥𝑥 and 𝑓𝑓(𝑦𝑦0) = 𝑦𝑦   
         Now 𝑓𝑓(𝑥𝑥0 + 𝑦𝑦0) = 𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑦𝑦0) = 𝑥𝑥 + 𝑦𝑦 
         ⇒ 𝑥𝑥0 + 𝑦𝑦0 ∈ 𝑓𝑓−1(𝑥𝑥 + 𝑦𝑦)  
        
        From equation (1), �𝑓𝑓(𝜇𝜇)�(𝑥𝑥 + 𝑦𝑦) = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥+𝑦𝑦) 𝜇𝜇(𝑧𝑧)  

         ≤ 𝜇𝜇(𝑥𝑥0 + 𝑦𝑦0) 
         ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {𝜇𝜇(𝑥𝑥0), 𝜇𝜇(𝑦𝑦0)} 
         = 𝑀𝑀𝑎𝑎𝑥𝑥 �Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥) 𝜇𝜇(𝑧𝑧) , Inf𝑧𝑧∈𝑓𝑓−1(𝑦𝑦) 𝜇𝜇(𝑧𝑧)� 
         = 𝑀𝑀𝑎𝑎𝑥𝑥 ��𝑓𝑓(𝜇𝜇)�(𝑥𝑥), �𝑓𝑓(𝜇𝜇)�(𝑦𝑦)� 

         ∴ (𝑓𝑓(𝜇𝜇))(𝑥𝑥+ 𝑦𝑦) ≤ 𝑀𝑀𝑎𝑎𝑥𝑥 {(𝑓𝑓(𝜇𝜇))(𝑥𝑥), (𝑓𝑓(𝜇𝜇))(𝑦𝑦)} 
   2.   �𝑓𝑓(𝜇𝜇)�(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = Inf𝑧𝑧∈𝑓𝑓−1(𝑦𝑦+𝑥𝑥−𝑦𝑦) 𝜇𝜇(𝑧𝑧)                                                                                                                           (2) 

   Now 𝑓𝑓(𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0) = 𝑓𝑓(𝑦𝑦0) + 𝑓𝑓(𝑥𝑥0) − 𝑓𝑓(𝑦𝑦0) = 𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦  
           ∴𝑦𝑦0 + 𝑥𝑥0 − 𝑦𝑦0 ∈ 𝑓𝑓−1(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦)    
            
           From equation (2), �𝑓𝑓(𝜇𝜇)�(𝑦𝑦 + 𝑥𝑥 − 𝑦𝑦) = Inf𝑧𝑧∈𝑓𝑓−1(𝑦𝑦+𝑥𝑥−𝑦𝑦) 𝜇𝜇(𝑧𝑧)  

  ≤ 𝜇𝜇 (𝑦𝑦0 + 𝑥𝑥
0
− 𝑦𝑦0) 

  ≤ 𝜇𝜇(𝑥𝑥0) 
  = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥) 𝜇𝜇(𝑧𝑧) 
  = �𝑓𝑓(𝜇𝜇)�(𝑥𝑥) 

∴ (𝑓𝑓(𝜇𝜇))(𝑦𝑦+ 𝑥𝑥 − 𝑦𝑦) ≤ (𝑓𝑓(𝜇𝜇))(𝑥𝑥) 
3.  �𝑓𝑓(𝜇𝜇)�(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏)− 𝑎𝑎𝛼𝛼𝑏𝑏) = Inf𝑧𝑧∈𝑓𝑓−1(𝑎𝑎𝛼𝛼 (𝑥𝑥+𝑏𝑏)−𝑎𝑎𝛼𝛼𝑏𝑏 ) 𝜇𝜇(𝑧𝑧)                                                                                                      (3) 

Now 𝑓𝑓(𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0) = 𝑓𝑓(𝑎𝑎0)𝛼𝛼�𝑓𝑓(𝑥𝑥0) + 𝑓𝑓(𝑏𝑏0)� − 𝑓𝑓(𝑎𝑎0)𝛼𝛼𝑓𝑓(𝑏𝑏0) 
                                                           = 𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏 
∴ 𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0 ∈ 𝑓𝑓

−1(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) 
 
From equation (3), �𝑓𝑓(𝜇𝜇)�(𝑎𝑎𝛼𝛼(𝑥𝑥 + 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) = Inf𝑧𝑧∈𝑓𝑓−1(𝑎𝑎𝛼𝛼 (𝑥𝑥+𝑏𝑏)−𝑎𝑎𝛼𝛼𝑏𝑏 ) 𝜇𝜇(𝑧𝑧) 
                                                                                        ≤ 𝜇𝜇(𝑎𝑎0𝛼𝛼(𝑥𝑥0 + 𝑏𝑏0) − 𝑎𝑎0𝛼𝛼𝑏𝑏0) 

                                                                                                ≤ 𝜇𝜇(𝑥𝑥0) 
                                                                                        = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥) 𝜇𝜇(𝑧𝑧) 
                                                                                        = �𝑓𝑓(𝜇𝜇)�(𝑥𝑥) 
                                     ∴ (𝑓𝑓(𝜇𝜇))(𝑎𝑎𝛼𝛼(𝑥𝑥+ 𝑏𝑏) − 𝑎𝑎𝛼𝛼𝑏𝑏) ≤ (𝑓𝑓(𝜇𝜇))(𝑥𝑥) 
Thus �𝑓𝑓(𝜇𝜇)�:𝑁𝑁2 → [0,1] is a co-fuzzy left ideal of N

2
 

4.  �𝑓𝑓(𝜇𝜇)�(𝑥𝑥𝛼𝛼𝑎𝑎) = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥𝛼𝛼𝑎𝑎 ) 𝜇𝜇(𝑧𝑧)                                                                                                                                              (4)  
 

Now 𝑓𝑓(𝑥𝑥0𝛼𝛼𝑎𝑎0) = 𝑓𝑓(𝑥𝑥0)𝛼𝛼𝑓𝑓(𝑎𝑎0) = 𝑥𝑥𝛼𝛼𝑎𝑎  
                    ∴ 𝑥𝑥0𝛼𝛼𝑎𝑎0 ∈ 𝑓𝑓

−1(𝑥𝑥𝛼𝛼𝑎𝑎 )  
   

From equation (4), �𝑓𝑓(𝜇𝜇)�(𝑥𝑥𝛼𝛼𝑎𝑎) = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥𝛼𝛼𝑎𝑎 ) 𝜇𝜇(𝑧𝑧)  
 ≤ 𝜇𝜇(𝑥𝑥0𝛼𝛼𝑎𝑎0) 
 ≤ 𝜇𝜇(𝑥𝑥0) 
 = Inf𝑧𝑧∈𝑓𝑓−1(𝑥𝑥) 𝜇𝜇(𝑧𝑧) 
 = �𝑓𝑓(𝜇𝜇)�(𝑥𝑥) 

   ∴ (𝑓𝑓(𝜇𝜇))(𝑥𝑥𝛼𝛼𝑎𝑎) ≤ (𝑓𝑓(𝜇𝜇))(𝑥𝑥) 
Then �𝑓𝑓(𝜇𝜇)�: N

2
→ [0,1] is a co-fuzzy right ideal of N

2
  

Hence �𝑓𝑓(𝜇𝜇)�: N
2
→ [0,1] is a co-fuzzy ideal of N

2
.        

 
5. CONCLUSION 
 
In this article, we inspected the idea of co-fuzzy ideals of a finite Γ − near ring. We proved some necessary and 
sufficient conditions for a fuzzy subset of finite Γ − near ring to be co-fuzzy ideal of the ring. The intersection and 
union of co-fuzzy ideals and homomorphism theorems have been proved. This concept may be extended to Bipolar co-
fuzzy ideals in finite Γ − near rings.   
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