International Journal of Mathematical Archive-12(3), 2021, 23-28 MA Available online through www.ijma.info ISSN 2229 - 5046 # HOMOMORPHISM AND ANTI HOMOMORPHISM FUNCTIONS IN BIPOLAR VALUED VAGUE SUBSEMIRINGS OF A SEMIRING ¹K. ANITHA, ²M. MUTHUSAMY* AND ³K. ARJUNAN ¹Research Scholar, Department of Mathematics, Dr. Zakir Husain College, Ilayangudi-630702, Tamilnadu, India. ²Department of Mathematics, Dr. Zakir Husain College, Ilayangudi-630702, Tamilnadu, India. ³Department of Mathematics, Alagappa Government Arts college, Karaikudi – 630003, Tamilnadu, India. (Received On: 08-03-21; Revised & Accepted On: 18-03-21) #### **ABSTRACT** **I**n this paper, bipolar valued vague subsemiring of a semiring is studied by homomorphism and anti homomorphism and some properties are discussed. These properties are useful to further research. **Key Words:** Fuzzy subset, vague subset, bipolar valued fuzzy subset, bipolar valued vague subset, bipolar valued vague subsemiring, bipolar valued vague normal subsemiring, intersection, image and preimage. #### INTRODUCTION In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of research in different domains, there have been a number of generalizations of this fundamental concept such as intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc. Grattan-Guiness [7] discussed about fuzzy membership mapped onto interval and many valued quantities. Vague set is an extension of fuzzy set and it is appeared as a unique case of context dependent fuzzy sets. The vague set was introduced by W.L.Gau and D.J.Buehrer [6]. Lee [8] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the membership degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other [8, 9]. Fuzzy subgroup was introduced by Azriel Rosenfeld [3]. RanjitBiswas [11] introduced the vague groups. Cicily Flora. S and Arockiarani.I [5] have introduced a new class of generalized bipolar vague sets. Anitha.M.S., et.al. [1] defined as bipolar valued fuzzy subgroups of a group and Balasubramanian.A et.al [4] have defined the bipolar interval valued fuzzy subgroups of a group. K.Murugalingam and K.Arjunan[10] have discussed about interval valued fuzzy subsemiring of a semiring and then bipolar valued multi fuzzy subsemirings of a semiring have been introduced by Yasodara.B and KE.Sathappan [12]. Anitha.K., et.al. [2] defined as bipolar valued vague subsemirings of a semiring. Here, the concept of bipolar valued vague subsemiring of a semiring is introduced and estaiblished some results. Homomorphism and anti homomorphism are applied in bipolar valued vague subsemiring of a semiring. Corresponding Author: ²M. Muthusamy* ²Department of Mathematics, Dr. Zakir Husain College, Ilayangudi-630702, Tamilnadu, India. #### 1. PRELIMINARIES **Definition 1.1:** [13] Let X be any nonempty set. A mapping M: $X \rightarrow [0, 1]$ is called a fuzzy subset of X. **Definition 1.2:** [6] A vague set A in the universe of discourse U is a pair $[t_A, I - f_A]$, where $t_A : U \rightarrow [0, 1]$ and $f_A : U \rightarrow [0, 1]$ are mappings, they are called truth membership function and false membership function respectively. Here $t_A(x)$ is a lower bound of the grade of membership of x derived from the evidence for x and $f_A(x)$ is a lower bound on the negation of x derived from the evidence against x and $t_A(x) + t_A(x) \leq 1$, for all $t \in U$. **Definition 1.3:** [6] The interval [$t_A(x)$, $I - f_A(x)$] is called the vague value of x in A and it is denoted by $V_A(x)$, i.e., $V_A(x) = [t_A(x), I - f_A(x)]$. **Example 1.4:** A = $\{ < a, [0.4, 0.6] >, < b, [0.6, 0.8] >, < c, [0.3, 0.9] > \}$ is a vague subset of X = $\{ a, b, c \}$. **Definition 1.5:** [8] A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form $A = \{ < x, A^+(x), A^-(x) > / x \in X \}$, where $A^+ : X \to [0, 1]$ and $A^- : X \to [-1, 0]$. The positive membership degree $A^+(x)$ denotes the satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative membership degree $A^-(x)$ denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a bipolar valued fuzzy set A. **Example 1.6:** A = $\{$ < a, 0.4, -0.2 >, < b, 0.6, -0.5 >, < c, 0.3, -0.7 > $\}$ is a bipolar valued fuzzy subset of X = $\{$ a, b, c $\}$. **Definition 1.7:** [5] A bipolar valued vague subset A in X is defined as an object of the form $A = \{\langle x, [t_A^+(x), 1-f_A^+(x)], [-1-f_A^-(x), t_A^-(x)] \rangle / x \in X \}$, where $t_A^+: X \to [0, 1], f_A^+: X \to [0, 1], t_A^-: X \to [-1, 0]$ and $f_A^-: X \to [-1, 0]$ are mapping such that $t_A(x) + f_A(x) \le 1$ and $-1 \le t_A^- + f_A^-$. The positive interval membership degree $[t_A^+(x), 1-f_A^+(x)]$ denotes the satisfaction region of an element x to the property corresponding to a bipolar valued vague subset A and the negative interval membership degree $[-1-f_A^-(x), t_A^-(x)]$ denotes the satisfaction region of an element x to some implicit counter-property corresponding to a bipolar valued vague subset A is denoted as $A = \{\langle x, V_A^+(x), V_A^-(x) \rangle / x \in X \}$, where $V_A^+(x), = [t_A^+(x), 1-f_A^+(x)]$ and $V_A^-(x) = [-1-f_A^-(x), t_A^-(x)]$. **Note that.** [0] = [0, 0], [1] = [1, 1]and [-1] = [-1, -1]. **Example 1.8:** [A] = { < a, [0.4, 0.6], [-0.5, -0.2] >, < b, [0.2, 0.4], [-0.6, -0.3] > < c, [0.1, 0.6], [-0.6, -0.2] > } is a bipolar valued vague subset of X = {a, b, c}. **Definition 1.9:** [5] Let $A = \langle V_A^+, V_A^- \rangle$ and $B = \langle V_B^+, V_B^- \rangle$ be two bipolar valued vague subsets of a set X. We define the following relations and operations: - (i) [A] \subset [B] if and only if $V_A^+(u) \leq V_B^+(u)$ and $V_A^-(u) \geq V_B^-(u)$, $\forall u \in X$. - (ii) [A] = [B] if and only if $V_A^+(u) = V_B^+(u)$ and $V_A^-(u) = V_B^-(u)$, $\forall u \in X$. - (iii) [A] \cap [B] = {\langle u, rmin ($V_A^+(u)$, $V_B^+(u)$), rmax ($V_A^-(u)$, $V_B^-(u)$) \rangle / u \in X}. - $\begin{aligned} &(\text{iv}) \; [\mathbf{A}] \cup [\mathbf{B}] = \{ \langle \; \mathbf{u}, \; \text{rmax} \; (V_A^+(\mathbf{u}), \; V_B^+(\mathbf{u}) \;), \; \text{rmin} \; (V_A^-(\mathbf{u}), \; V_B^-(\mathbf{u}) \;) \; \rangle \; \; / \; \mathbf{u} \in \mathbf{X} \}. \; \text{Here rmin} \; (V_A^+(\mathbf{u}), \; V_B^+(\mathbf{u}) \;) = [\; \text{min} \; \{ \; t_A^+(x), \; t_B^+(x) \; \}, \; \text{min} \; \{ \; 1 f_A^+(x), \; 1 f_B^+(x) \; \}], \; \text{rmax} \; (V_A^+(\mathbf{u}), \; V_B^+(\mathbf{u})) = [\; \text{max} \; \{ \; t_A^+(x), \; t_B^+(x) \; \}, \; \text{max} \; \{ \; 1 f_A^+(x), \; 1 f_B^-(x) \; \}, \; \text{rmin} \; \{ \; t_A^-(x), \; t_B^-(x) \; \}], \; \text{rmax} \; (V_A^-(\mathbf{u}), \; V_B^-(\mathbf{u})) = [\; \text{max} \; \{ \; -1 f_A^-(x), \; -1 f_B^-(x) \; \}, \; \text{max} \; \{ \; t_A^-(x), \; t_B^-(x) \; \}]. \end{aligned}$ **Definition 1.10:** [2] Let R be a semiring. A bipolar valued vague subset A of R is said to be a bipolar valued vague subsemiring of R (BVVSSR) if the following conditions are satisfied, - (i) $V_A^+(x+y) \ge \min\{V_A^+(x), V_A^+(y)\}$ - (ii) $V_A^+(xy) \ge \min\{V_A^+(x), V_A^+(y)\}$ - (iii) $V_A^-(x+y) \le \max\{V_A^-(x), V_A^-(y)\}$ - (iv) $V_A^-(xy) \le \operatorname{rmax} \{ V_A^-(x), V_A^-(y) \}$ for all x and y in R. #### Homomorphism and Anti Homomorphism Functions in Bipolar Valued Vague Subsemirings of .../ IJMA- 12(3), March-2021. **Example 1.11:** Let $R = Z_3 = \{0, 1, 2\}$ be a semiring with respect to the ordinary addition and multiplication. Then $A = \{<0, [0.5, 0.7], [-0.8, -0.5]>, <1, [0.4, 0.6], [-0.7, -0.4]>, <2, [0.4, 0.6], [-0.7, -0.4]>\}$ is a bipolar valued vague subsemiring of R. **Definition 1.12:** Let R be a semiring. A bipolar valued vague subsemiring $A = \langle V_A^+, V_A^- \rangle$ of R is said to be a bipolar valued vague normal subsemiring of R if $V_A^+(x+y) = V_A^+(y+x)$, $V_A^+(xy) = V_A^+(yx)$, $V_A^-(x+y) = V_A^-(y+x)$ and $V_A^-(xy) = V_A^-(yx)$ for all x and y in R. **Definition 1.13:** [3] Let R and R¹ be any two semirings. Then the function f: R \rightarrow R¹ is said to be an antihomomorphism if f(x+y) = f(y) + f(x) and f(xy) = f(y) + f(x) for all x and y in R. **Definition 1.14:** Let X and X¹ be any two sets. Let $f: X \to X^1$ be any function and let $A = \langle V_A^+, V_A^- \rangle$ be a bipolar valued vague subset in X, $V = \langle V_V^+, V_V^- \rangle$ be a bipolar valued vague subset in $f(X) = X^1$, defined by $V_V^+(y) = r \inf_{x \in f^{-1}(y)} V_A^+(x)$ and $V_V^-(y) = r \inf_{x \in f^{-1}(y)} V_A^-(x)$, for all x in X and y in X¹. A is called a preimage of V under f and is defined as $V_A^+(x) = V_V^+(f(x))$, $V_A^-(x) = V_V^-(f(x))$ for all x in X and is denoted by $f^1(V)$. #### 2. SOME THEOREMS **Theorem 2.1:** Let R and R^{†} be any two semirings. The homomorphic image of a bipolar valued vague subsemiring of R is a bipolar valued vague subsemiring of R^{†}. **Proof:** Let $f: R \to R^{l}$ be a homomorphism. Let $V = f(A) = \langle V_{V}^{+}, V_{V}^{-} \rangle$, where $A = \langle V_{A}^{+}, V_{A}^{-} \rangle$ is a bipolar valued vague subsemiring of R. We have to prove that V is a bipolar valued vague subsemiring of R^{l} . Now for f(x), f(y) in R^{l} , $V_{V}^{+}(f(x)+f(y)) = V_{V}^{+}(f(x+y)) \geq V_{A}^{+}(x+y) \geq \min\{V_{A}^{+}(x), V_{A}^{+}(y)\} = \min\{V_{V}^{+}(f(x)), V_{V}^{+}(f(y))\}$ which implies that $V_{V}^{+}(f(x)+f(y)) \geq \min\{V_{V}^{+}(f(x)), V_{V}^{+}(f(y))\}$. And $V_{V}^{+}(f(x)+f(y)) \geq V_{A}^{+}(x) \geq \min\{V_{A}^{+}(x), V_{A}^{+}(y)\} = \min\{V_{V}^{+}(f(x)), V_{V}^{+}(f(x)), V_{V}^{+}(f(y))\}$ which implies that $V_{V}^{+}(f(x)+f(y)) \geq V_{A}^{-}(f(x))$, $V_{V}^{+}(f(x)+f(y)) \geq V_{A}^{-}(f(x)+f(y)) \geq V_{A}^{-}(f(x)+f(y)) \geq V_{A}^{-}(f(x))$, $V_{V}^{-}(f(x)+f(y)) \geq V_{A}^{-}(f(x))$, $V_{V}^{-}(f(x))$ $V_{V}^{-}(f(x$ **2.2 Theorem:** Let R and R^{\dagger} be any two semirings. The homomorphic preimage of a bipolar valued vague subsemiring of R^{\dagger} is a bipolar valued vague subsemiring of R. **Proof:** Let $f: R \to R^{\top}$ be a homomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where V is a bipolar valued vague subsemiring of R^{\top} . We have to prove that $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague subsemiring of R. Let X and Y in R. Now $V_A^+(X+Y) = V_V^+(f(X+Y)) = V_V^+(f(X+Y)) \geq r\min\{V_V^+(f(X)), V_V^+(f(Y))\} = r\min\{V_A^+(X), V_A^+(Y)\}$ which implies that $V_A^+(X+Y) \geq r\min\{V_A^+(X), V_A^+(Y)\}$. And $V_A^+(X+Y) \geq r\min\{V_A^+(X), V_A^+(Y)\}$ which implies that $V_A^+(X+Y) \geq r\min\{V_A^+(X), V_A^+(Y)\}$ which implies that $V_A^+(X+Y) \geq r\min\{V_A^+(X), V_A^+(Y)\}$. Also $V_A^-(X+Y) = V_V^-(f(X+Y)) = V_V^-(f(X+Y)) \leq r\max\{V_A^-(X), V_A^-(Y)\}$ which implies that $V_A^-(X+Y) \leq r\max\{V_A^-(X), V_A^-(Y)\}$ which implies that $V_A^-(X+Y) \leq r\max\{V_A^-(X), V_A^-(Y)\}$. And $V_A^-(X+Y) \leq r\max\{V_A^-(X), V_A^-(Y)\}$ which implies that $V_A^-(X+Y) \leq r\max\{V_A^-(X), V_A^-(Y)\}$ which implies that $V_A^-(X+Y) \leq r\max\{V_A^-(X), V_A^-(Y)\}$. Hence X is a bipolar valued vague subsemiring of X. ## Homomorphism and Anti Homomorphism Functions in Bipolar Valued Vague Subsemirings of .../ IJMA- 12(3), March-2021. **2.3 Theorem:** Let R and R^{l} be any two semirings. The antihomomorphic image of a bipolar valued vague subsemiring of R is a bipolar valued vague subsemiring of R^{l} . **Proof:** Let $f: R \to R^1$ be an antihomomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague subsemiring of R. We have to prove that V is a bipolar valued vague subsemiring of R^1 . Now for f(x), f(y) in R^1 , $V_V^+(f(x)+f(y)) = V_V^+(f(y+x)) \geq V_A^+(y+x) \geq \min\{V_A^+(x), V_A^+(y)\} = \min\{V_V^+(f(x)), V_V^+(f(y))\}$ which implies that $V_V^+(f(x)+f(y)) \geq \min\{V_V^+(f(x)), V_V^+(f(y))\}$. And $V_V^+(f(x)f(y)) = V_V^+(f(y)) \geq V_A^+(yx) \geq \min\{V_A^+(x), V_A^+(y)\}$ and $V_V^+(f(x)) \geq V_V^+(f(x))$ which implies that $V_V^+(f(x)) \geq V_V^-(f(x))$. Also $V_V^-(f(x)+f(y)) \geq V_V^-(f(y+x)) \leq V_V^-(f(y+x)) \leq V_V^-(f(y))$. And $V_V^-(f(x)) \geq V_V^-(f(x)) \geq V_V^-(f(x))$ which implies that $V_V^-(f(x)) \geq V_V^-(f(x))$ which implies that $V_V^-(f(x)) \geq V_V^-(f(x))$. Hence V is a bipolar valued vague subsemiring of $V_V^-(f(y))$ which implies that $V_V^-(f(x)) \leq V_V^-(f(x))$. **2.4 Theorem:** Let R and R¹ be any two semirings. The antihomomorphic preimage of a bipolar valued vague subsemiring of R¹ is a bipolar valued vague subsemiring of R. **Proof:** Let $f: R \to R^{\top}$ be an antihomomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where V is a bipolar valued vague subsemiring of R^{\top} . We have to prove that $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague subsemiring of R. Let X and Y in X in X is a bipolar valued vague subsemiring of X. Let X and Y in X is a bipolar valued vague subsemiring of X. Let X and X in **2.5 Theorem:** Let R and R^{†} be any two semirings. The homomorphic image of a bipolar valued vague normal subsemiring of R is a bipolar valued vague normal subsemiring of R^{†}. **Proof:** Let $f: R \to R^{\scriptscriptstyle \parallel}$ be a homomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague normal subsemiring of R. We have to prove that V is a bipolar valued vague normal subsemiring of $R^{\scriptscriptstyle \parallel}$. By Theorem 2.1, V is a bipolar valued vague subsemiring of $R^{\scriptscriptstyle \parallel}$. Now for f(x), f(y) in $R^{\scriptscriptstyle \parallel}$, V_V^+ (f(x)+f(y)) = V_V^+ (f(x+y)) $\geq V_A^+$ (x+y) = V_A^+ (y+x) $\leq V_V^+$ (f(y+x)) = V_V^+ (f(y)+f(x)) which implies that V_V^+ (f(x)+f(y)) = V_V^+ (f(y)+f(x)). And V_V^+ (f(x)+f(y)) = V_V^- V_V **2.6 Theorem:** Let R and R^{\dagger} be any two semirings. The homomorphic preimage of a bipolar valued vague normal subsemiring of R^{\dagger} is a bipolar valued vague normal subsemiring of R. **Proof:** Let $f: R \to R^+$ be a homomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where V is a bipolar valued vague normal subsemiring of R^+ . We have to prove that $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague normal subsemiring of R. By Theorem 2.2, $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague subsemiring of R. Let X and Y in Y in Y is a bipolar valued vague subsemiring of Y. Let Y and Y in Y is a bipolar valued vague subsemiring of Y, which implies that Y is a bipolar valued vague Y. ### Homomorphism and Anti Homomorphism Functions in Bipolar Valued Vague Subsemirings of .../ IJMA- 12(3), March-2021. And $V_A^+(xy) = V_V^+(f(xy)) = V_V^+(f(x)f(y)) = V_V^+(f(y)f(x)) = V_V^+(f(y)f(x)) = V_A^+(yx)$ which implies that $V_A^+(xy) = V_A^+(yx)$. Also $V_A^-(x+y) = V_V^-(f(x+y)) = V_V^-(f(x)+f(y)) = V_V^-(f(y)+f(x)) = V_V^-(f(y+x)) = V_A^-(y+x)$ which implies that $V_A^-(x+y) = V_A^-(y+x)$. And $V_A^-(xy) = V_V^-(f(xy)) = V_V^-(f(x)f(y)) = V_V^-(f(y)f(x)) V_V^-(f(y)f(x))$ **2.7 Theorem:** Let R and R^{†} be any two semirings. The antihomomorphic image of a bipolar valued vague normal subsemiring of R is a bipolar valued vague normal subsemiring of R^{†}. **Proof:** Let $f: R \to R^{\dagger}$ be an antihomomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague normal subsemiring of R. We have to prove that V is a bipolar valued vague normal subsemiring of R^{\dagger} . By Theorem 2.3, V is a bipolar valued vague subsemiring of R^{\dagger} . Now for f(x), f(y) in R^{\dagger} , V_V^+ (f(x)+f(y)) = V_V^+ (f(y+x)) $\geq V_A^+$ (y+x) = V_A^+ (x+y) $\leq V_V^+$ (f(x+y)) = V_V^+ (f(y)+f(x)) which implies that V_V^+ (f(x)+f(y)) = V_V^+ (f(y)+f(x)). And V_V^+ (f(x)+f(y)) = V_V^- **2.8 Theorem:** Let R and R^{\dagger} be any two semirings. The antihomomorphic preimage of a bipolar valued vague normal subsemiring of R^{\dagger} is a bipolar valued vague normal subsemiring of R. **Proof:** Let $f: R \to R^{\perp}$ be an antihomomorphism. Let $V = f(A) = \langle V_V^+, V_V^- \rangle$ where V is a bipolar valued vague normal subsemiring of R^{\perp} . We have to prove that $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague normal subsemiring of R. By Theorem 2.4, $A = \langle V_A^+, V_A^- \rangle$ is a bipolar valued vague subsemiring of R. Let x and y in R. Now $V_A^+({\bf x}+{\bf y})=V_V^+({\bf f}({\bf x}+{\bf y}))=V_V^+({\bf f}({\bf y})+{\bf f}({\bf x}))=V_V^+({\bf f}({\bf x})+{\bf f}({\bf y}))=V_V^+({\bf f}({\bf y}+{\bf x}))=V_A^+({\bf y}+{\bf x})$ which implies that $V_A^+({\bf x}+{\bf y})=V_A^+({\bf y}+{\bf x})$. And $V_A^+({\bf x}{\bf y})=V_V^+({\bf f}({\bf x}{\bf y}))=V_V^+({\bf f}({\bf y})+{\bf f}({\bf y}))=V_V^+({\bf f}({\bf y}+{\bf y}))=V_V^+({\bf f}({\bf y}+{\bf y}))=V_V^+({\bf f}({\bf y}+{\bf y}))=V_V^+({\bf f}({\bf y}+{\bf y}))=V_V^-({\bf y})$ #### REFERENCES - 1. Anitha.M.S., Muruganantha Prasad & K.Arjunan, Notes on bipolar valued fuzzy subgroups of a group, Bulletin of Society for Mathematical Services and Standards, Vol. 2 No. 3 (2013), pp. 52-59. - 2. Anitha.K, M.Muthusamy & K.Arjunan, "Bipolar valued vague subsemiring of a semiring", *Journal of Shanghai Jiaotong University*, Vol. 16, Issue 8 (2020), 129 135 - 3. Azriel Rosenfeld, fuzzy groups, Journal of mathematical analysis and applications 35(1971), 512-517. - 4. Balasubramanian.A, K.L.Muruganantha Prasad & K.Arjunan, "Properties of Bipolar interval valued fuzzy subgroups of a group", *International Journal of Scientific Research*, Vol. 4, Iss. 4 (2015), 262 268. - 5. Cicily Flora. S and Arockiarani.I, A new class of generalized bipolar vague sets, International Journal of Information Research and review, 3(11), (2016), 3058–3065. - 6. Gau W.L and Buehrer D.J, Vague sets, IEEE Transactions on systems, Man and Cybernetics, 23(1993), 610 614. - 7. Grattan-Guiness, "Fuzzy membership mapped onto interval and many valued quantities", *Z.Math.Logik. Grundladen Math.* 22 (1975), 149 160. - 8. K.M.Lee, bipolar valued fuzzy sets and their operations. Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand (2000), 307-312. #### ¹K. Anitha, ²M. Muthusamy* and ³K. Arjunan/ Homomorphism and Anti Homomorphism Functions in Bipolar Valued Vague Subsemirings of .../ IJMA- 12(3), March-2021. - 9. K.M.Lee, Comparison of interval valued fuzzy sets, intuitionistic fuzzy sets and bipolar valued fuzzy sets. J. fuzzy Logic Intelligent Systems, 14 (2) (2004), 125-129. - 10. K.Murugalingam & K.Arjunan, A study on interval valued fuzzy subsemiring of a semiring, International Journal of Applied Mathematics Modeling, Vol.1, No.5, 1-6, (2013). - 11. RanjitBiswas, Vague groups, International Journal of Computational Coginition, 4(2), (2006), 20 23. - 12. Yasodara.B and KE.Sathappan, "Bipolar-valued multi fuzzy subsemirings of a semiring", *International Journal of Mathematical Archive*, 6(9) (2015), 75 80. - 13. L.A.Zadeh, fuzzy sets, Inform. And Control, 8(1965), 338-353. Anitha. M.S., Muruganantha Prasad & K.Arjunan, "Notes on bipolar valued fuzzy subgroups of a group", *Bulletin of Society for Mathematical Services and Standards*, Vol. 2 No. 3 (2013), pp. 52-59. #### Source of support: Nil, Conflict of interest: None Declared. [Copy right © 2021. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]