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ABSTRACT

In this paper, bipolar valued vague subsemiring of a semiring is studied by homomorphism and anti homomorphism
and some properties are discussed. These properties are useful to further research.
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INTRODUCTION

In 1965, Zadeh [13] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical
structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of
research in different domains, there have been a number of generalizations of this fundamental concept such as
intuitionistic fuzzy sets, interval valued fuzzy sets, vague sets, soft sets etc. Grattan-Guiness [7] discussed about fuzzy
membership mapped onto interval and many valued quantities. VVague set is an extension of fuzzy set and it is appeared
as a unique case of context dependent fuzzy sets. The vague set was introduced by W.L.Gau and D.J.Buehrer [6]. Lee
[8] introduced the notion of bipolar valued fuzzy sets. Bipolar valued fuzzy sets are an extension of fuzzy sets whose
membership degree range is enlarged from the interval [0, 1] to [-1, 1]. In a bipolar valued fuzzy set, the membership
degree 0 means that elements are irrelevant to the corresponding property, the membership degree (0, 1] indicates that
elements somewhat satisfy the property and the membership degree [-1, 0) indicates that elements somewhat satisfy
the implicit counter property. Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However,
they are different each other [8, 9]. Fuzzy subgroup was introduced by Azriel Rosenfeld [3]. RanjitBiswas [11]
introduced the vague groups. Cicily Flora. S and Arockiarani.l [5] have introduced a new class of generalized bipolar
vague sets. Anitha.M.S., et.al. [1] defined as bipolar valued fuzzy subgroups of a group and Balasubramanian.A et.al
[4] have defined the bipolar interval valued fuzzy subgroups of a group. K.Murugalingam and K.Arjunan[10] have
discussed about interval valued fuzzy subsemiring of a semiring and then bipolar valued multi fuzzy subsemirings of a
semiring have been introduced by Yasodara.B and KE.Sathappan [12]. Anitha.K., et.al. [2] defined as bipolar valued
vague subsemirings of a semiring. Here, the concept of bipolar valued vague subsemiring of a semiring is introduced
and estaiblished some results. Homomorphism and anti homomorphism are applied in bipolar valued vague
subsemiring of a semiring.
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1. PRELIMINARIES
Definition 1.1: [13] Let X be any nonempty set. A mapping M: X — [0, 1] is called a fuzzy subset of X.

Definition 1.2: [6] A vague set A in the universe of discourse U is a pair [ta, 1-fa], where ta: U— [0, 1] and
fa: U— [0, 1] are mappings, they are called truth membership function and false membership function respectively.
Here ta(X) is a lower bound of the grade of membership of x derived from the evidence for x and fa(x) is a lower bound

on the negation of x derived from the evidence against x and ta(x) + fa(x) < 1, for all xeU.

Definition 1.3: [6] The interval [ ta(x), 1— fa(x) ] is called the vague value of x in A and it is denoted by Va(X),
i.e., Va(X) = [ta(x), 1-fa(x) ]-

Example 1.4: A={<4a, [0.4,0.6] > <b, [0.6,0.8] >, <c, [0.3,0.9] >} is a vague subset of X = {a, b, c }.

Definition 1.5: [8] A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form A = { < x, A*(X),
A (x) >/ xeX}, where A" : X— [0, 1] and A™ : X— [-1, 0]. The positive membership degree A*(x) denotes the
satisfaction degree of an element x to the property corresponding to a bipolar valued fuzzy set A and the negative
membership degree A™(x) denotes the satisfaction degree of an element x to some implicit counter-property
corresponding to a bipolar valued fuzzy set A.

Example 1.6: A= {<4a, 0.4, -0.2>,<Db, 0.6, -0.5>, <, 0.3, -0.7 >} is a bipolar valued fuzzy subset of X = {a, b, ¢ }.

Definition 1.7: [5] A bipolar valued vague subset A in X is defined as an object of the form
A={x[ta(X), 1-f, (X)] [F1- f 5 (X), t,(X) 1) /xeX }, where t, : X— [0, 1], f, :X—> [0, 1], t, : X— [-1, 0]
and fA‘ : X— [-1, 0] are mapping such that ta(x) + fa(x) < 1 and -1< t, + fA‘. The positive interval membership
degree [ t, (x), 1- 1 (X) ] denotes the satisfaction region of an element x to the property corresponding to a bipolar

valued vague subset A and the negative interval membership degree [-1- f, (X), t,(X) ] denotes the satisfaction
region of an element x to some implicit counter-property corresponding to a bipolar valued vague subset A. Bipolar

valued vague subset A is denoted as A ={(x, V, (X), V, (X)) /xeX} where V, (X),=[t,(x),1-f, (x)]and
Vi (x) =[F1- £, (%), () 1.

Note that. [0] = [0, 0], [1] = [1, 1] and [-1] = [-1, -1].

Example 1.8: [A] = { < a, [0.4, 0,6], [-0.5, -0.2] >, < b, [0.2, 0.4], [-0.6, -0.3] > < ¢, [0.1, 0.6], [ 0.6, -0.2] > } is a
bipolar valued vague subset of X = {a, b, ¢ }.

Definition 1.9: [5] Let A=(V,, V, yand B=(V; ", Vg ) be two bipolar valued vague subsets of a set X. We define
the following relations and operations:

(i) [A] < [B]ifand onlyif V, (u) <V, (u)and V (u) >V (u), V ueX.

(ii) [A] = [B] if and only if V" (u) = V" (u)and V; (u) = V5 (u), ¥ ueX.

(iii) [A]A[B] = { u, rmin (V7 (u), V& (u) ), rmax (V7 (u), Vg (U)))/ueX }.

(iv) [AJU[B] = {( u, rmax (V, (u), Vg (u) ), rmin (V, (u), Vg (u))) /ueX}. Here rmin (V, (u), Vg (u) ) = [ min
{ta(X), tg (X) 3 min {1 (), 1~ 5 (X) 31, rmax (V7 (), Vg (u)) = [max {t, (), t5 (X) }, max {1~ (x),
1-fg (X) 31, min (V, (), Vg (u) ) = [min {~1-f,(x), -1~ fg (X)}, min {t,(x), tz(X)}], rmax (V, (u),
Ve ) = max -1 (x), -1- f5 (X) 3 max {t5.(%), 5 () 1.

Definition 1.10: [2] Let R be a semiring. A bipolar valued vague subset A of R is said to be a bipolar valued vague
subsemiring of R (BVVSSR) if the following conditions are satisfied,

(i) Va (x+y)2rmin{V,; (), V3 ()}

(i) Vy (y) =mmin{V, (9, Vo () }

(iii)) V5 (x+y) <rmax{V, (x), V. (¥)}

(iv) V, (xy) <rmax{V, (x), V, (y)} for all xand y in R.
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Example 1.11: Let R = Z3 = { 0, 1, 2 } be a semiring with respect to the ordinary addition and multiplication. Then
A={<0,[05,0.7], [-0.8,-0.5] > <1, [04,0.6], [-0.7, -0.4] >, <2, [0.4, 0.6], [-0.7, —0.4] > } is a bipolar valued
vague subsemiring of R.

Definition 1.12: Let R be a semiring. A bipolar valued vague subsemiring A = (VA+, V, ) of Ris said to be a bipolar
valued vague normal subsemiring of R if V (x+y) = V, (y+x), V4 (xy) = V, (yx), V, (x+y) = V, (y+x) and
V, (xy)=V, (yx) forallxandyin R.

Definition 1.13: [3] Let R and R' be any two semirings. Then the function f: R — R' is said to be an
antihomomorphism if f(x+y) = f(y)+f(x) and f(xy) = f(y)f(x) for all xand y in R.

Definition 1.14: Let X and X' be any two sets. Let f : X— X' be any function and let A = (VA+, V, ) be a bipolar
valued vague subset in X, V = (V,/, V) be a bipolar valued vague subset in f(X) = X! defined by V,’(y)

=r sup Viand V() =1 [Nf Va ®), forall xin X and y in X'. A'iss called a preimage of V under f and is
xe fL(y) xef(y)

defined as V; (x) = V|, (f(x)), V1 (x) =V, (f(x)) for all x in X and is denoted by f*(V).

2. SOME THEOREMS

Theorem 2.1: Let R and R' be any two semirings. The homomorphic image of a bipolar valued vague subsemiring of R
is a bipolar valued vague subsemiring of R'.

Proof: Let f: R— R' be a homomorphism. Let VV = f(A) =(V,,, V,, ), where A=(V ", V, ) is a bipolar valued vague
subsemiring of R. We have to prove that V is a bipolar valued vague subsemiring of R'. Now for f(x), f(y) in R/,
V" (F)+(y) ) = V" (f(x+y) ) = V7 (x+y) > min{V,; (), V, (0} = rmin{V,,” (f(x)), V" (f(y)) } which implies
that VV+ (F)+f(y) ) > rmin{VV+ (f(x)), VV+ (f(y)}. And VV+ (FOOf(y)) = VV+( f(xy)) > VA+ (xy) > rmin{VA+ (%),
V5 (y)3= rmin { V" (£09), V" (f(y) ) 3 which implies that V" ( f0)f(y))= rmin{ V" (f(x)), V" ( f(y) ) }. Also
Vy (F0+(y)) = Vi, (f(x+y) ) < V1 (cty) < rmax {V, (X), Vi () 3 = max{ V, (f(x)), Vi, (f(y))} which implies
that Vi, ( fpQ+f(y)) < rmax{V, (fx)), Vi, (fy)}. And Vi (FOf(Y)) = Vy (f(xy)) < Vi (xy) < rmax{V, (x),
Vo ()3 = rmax{V, (f(x)), Vi, (f(y))} which implies that Vi, ( f(x)f(y)) < rmax{V, (f(x)), Vy (f(y)) }. Hence V is a

bipolar valued vague subsemiring of R'.

2.2 Theorem: Let R and R' be any two semirings. The homomorphic preimage of a bipolar valued vague subsemiring
of R' is a bipolar valued vague subsemiring of R.

Proof: Let f: R — R' be a homomorphism. Let VV = f(A) = (V,,", V,, ) where V is a bipolar valued vague subsemiring
of R'. We have to prove that A = (V,, V) is a bipolar valued vague subsemiring of R. Let x and y in R. Now
V5 ocry) = V) (f(xry)) = V) (f)+(y) = rmin £V, (F9), V" (f(y)3= rmin{V,} (%), V7 (y)} which implies that
Vi Gy = mindV,0 (9, Vo ()} And Vi) = V' (fxy) = V() = rmin £V, (f9), V' (f(y)}=
min{V, (x), V (y)} which implies that V, (xy)> rmin {V, (x), V. ()} Also V, (x+y) = V, (f(x+y)) =
Vy, (F)+H(y)) < rmax{V,, (f(x)), Vy (F(y))} = rmax{V, (x), V. ()} which implies that V/; (x+y) < rmax{V  (x),
Vi W} And Vo (xy) =V (f(xy)) = V,, (fO9f(y)) < rmax{V,, (f(x)), V,, (f(y))} = rmax{V, (x), V, (y)} which

implies that V, (xy) < rmax{V, (x), V, (y)}. Hence A is a bipolar valued vague subsemiring of R.

© 2021, IIMA. All Rights Reserved 25



K. Anitha, *M. Muthusamy* and K. Arjunan/
Homomorphism and Anti Homomorphism Functions in Bipolar Valued Vague Subsemirings of .../ IIMA- 12(3), March-2021.

2.3 Theorem: Let R and R' be any two semirings. The antihomomorphic image of a bipolar valued vague subsemiring
of R is a bipolar valued vague subsemiring of R'.

Proof: Let f: R — R' be an antihomomorphism. Let V = f(A) = (V,/", V, ) where A=(V,, V, ) isa bipolar valued
vague subsemiring of R. We have to prove that V is a bipolar valued vague subsemiring of R'. Now for f(x), f(y) in R/,
V" (F)+(y)) = V" (fy+x)) > V7 (y+x) > rmin {V,] (x), V, ()} = rmin {V,," (f(x)), V,," (f(y) )} which implies that
V" (FQ+F(y) ) = rmin{ V" (F(), V" (f(Y)) 3. And V" (F)F(y) ) = V" (F(yx) ) = V) (yx) = min {V1 (x), V7 ()}
=rmin {V,, (f(x)), V,,” (f(y)) } which implies that V" (f(x)f(y)) > rmin {V,]" (f(x)), V., (f(y))}. Also V,,” (f(x)+f(y))
=V, (fly+x)) <V, (y+x) <rmax{ V, (x), V, ()} = rmax{V,, (f(x)), V|, (f(y))} which implies that V,,” (f(x)+f(y))
<max{Vy (f(x)), Vi, (f(y))} And V,, (fx)f(y)) =V, (f(yx)) <V, (yx) <rmax{V, (x), V, ()} = rmax{V,, (f(x)),
V, (f(y))} which implies thatV,, (f(x)f(y)) < rmax{ V, (f(x)), V| (f(y))}. Hence V is a bipolar valued vague

subsemiring of R'.

2.4 Theorem: Let R and R' be any two semirings. The antihomomorphic preimage of a bipolar valued vague
subsemiring of R' is a bipolar valued vague subsemiring of R.

Proof: Let f: R — R' be an antihomomorphism. Let V = f(A) = (V,", V,, ) where V is a bipolar valued vague
subsemiring of R'. We have to prove that A = <VA+ , V) is a bipolar valued vague subsemiring of R. Let x and y in R.
Now VA+ (xty) = VV+ (f(x+y)) = VV+( f(y)+f(x) ) > rmin{ VV+ (f(x)), VV+ (fy)y = rmin{VA+ (%), VA+ ()} which
implies that V, (x+y) > rmin{V; (x), V, W} And V, (xy) = V,/ ( f(xy)) = V" ( f1(x) = rmin {V,] (f(x)),
V" (fy)} = rmin{ V,; (x), V, (y)} which implies that V; (xy)> rmin {V, (x), V, (V)}. Also V, (x+y) =
V, (F(x+y)) = Vy (F)+(x) ) < rmax{V,, (Fx)), Vi, (Fy))3 = rmax{V ; (x), Vx (¥)} which implies that V ; (x+y) <
rmax{V, (x), V. 1)} And V, (xy) =V (f(xy)) = Vy (FO)FO) < rmax{Vy (), Vy, (f(y))} = rmax {V,; (),
V. ()} which implies that V, (xy) <rmax{V, (x), V, (y)}. Hence A is a bipolar valued vague subsemiring of R.

2.5 Theorem: Let R and R' be any two semirings. The homomorphic image of a bipolar valued vague normal
subsemiring of R is a bipolar valued vague normal subsemiring of R'.

Proof: Let f: R — R' be a homomorphism. Let V = f(A) = (V,/", V|, ) where A =(V,, V, ) is a bipolar valued
vague normal subsemiring of R. We have to prove that V is a bipolar valued vague normal subsemiring of R'. By
Theorem 2.1, V is a bipolar valued vague subsemiring of R'. Now for f(x), f(y) in R, V,," (f(x)+f(y)) = V,," (f(x+y) ) >

Vi(x+y) = Vi (y#x) <V, (fly+x)) =V, (f(y)+f(x)) which implies that V, (f(x)+f(y)) = V. (f(y)+f(x)). And
V" (FOOf(y) ) = V" (FOy) ) = V7 (xy) = V7 (90 < V" (F(y9)) = V' (f()F(x)) which implies that V" (F0)f(y)) =
V" (f0F)). Also V() +f(y)) = Vi (fx+y)) = V0 (x+y) =V, (y+x) < Vi (fly+x)) =V, (f(y)+f(x) ) which
implies that V,, (f)+f(y)) = V,, (f(y)+f(x)). And V, (fx)f(y)) = V,, (Fxy)) = V1 (xy) = V4 (v%) <V, (f(yx)) =
V, (f(y)f(x) ) which implies that V., (F(x)f(y)) = V|, (f(y)f(x)). Hence V is a bipolar valued vague normal subsemiring
of R".

2.6 Theorem: Let R and R' be any two semirings. The homomorphic preimage of a bipolar valued vague normal
subsemiring of R' is a bipolar valued vague normal subsemiring of R.

Proof: Let f: R — R' be a homomorphism. Let V = f(A) = (V,/, V,, ) where V is a bipolar valued vague normal
subsemiring of R'. We have to prove that A = <VA+, V, ) is a bipolar valued vague normal subsemiring of R. By
Theorem 2.2, A = (V,, V) is a bipolar valued vague subsemiring of R. Let x and y in R. Now V (x+y) =
V" (f(x+y)) =V, (f)+(y)) = V|, (f(y)+f(x)) = V" (f(y+x) ) = V; (y+x) which implies that V; (x+y) =V (y+X).
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And V| (xy) = V)" (f(xy)) = V" (FOOf(Y)) = V" (F)f(x)) = V" (F(yx) ) =V (yx) which implies that V' (xy) =
\ A+ (yx). Also V, (x+y) = V,, (f(x+y)) = V, (F()+(y)) = V, (f(y)+f(x)) = V,, (f(y+x)) = V, (y+x) which implies
that V, (x+y) =V 4 (y+X). And V, (xy) = V|, (fixy)) = V, (f)f(y)) = Vi, (fW)f(x)) = Vi (f(yx)) = V4 (yx) which
implies that V, (xy) = V, (yx). Hence A is a bipolar valued vague normal subsemiring of R.

2.7 Theorem: Let R and R' be any two semirings. The antihomomorphic image of a bipolar valued vague normal
subsemiring of R is a bipolar valued vague normal subsemiring of R'.

Proof: Let f: R — R' be an antihomomorphism. Let V = f(A) = (V,/", V, ) where A=(V,, V) isa bipolar valued
vague normal subsemiring of R. We have to prove that V is a bipolar valued vague normal subsemiring of R'. By
Theorem 2.3, V is a bipolar valued vague subsemiring of R'. Now for f(x), f(y) in R, V|, (f(x)+f(y)) = V" (f(y+x)) >

Vi(y+x) = Vi (x+y) < V7 (f(x+y)) = V" ( f(y)+f(x) ) which implies that V" (f(x)+f(y)) = V, (f(y)+f(x)). And
V' (f00fy) = V" (fy) = V0 () = Vi () < V' (fxy)) = V" (f()f(x)) which implies that V" (fF(<)f(y)) =
V' (fY)f()). Also V,, (f)+f(y)) = Vi, (fy+x)) < Vi (y+x) = Vi (x+y) =V, (fix+y)) =V, (f(y)+f(x)) which
implies that V" (f(x)+f(y)) = V,, (f(y)+f(x)). And V, (f)f(y)) = V\, (f(yx) <V, (yx) = V4 (xy) =V, (f(xy) =
V,, (f(y)f(x)) which implies that V,, (f(x)f(y)) = V,, (f(y)f(x)). Hence V is a bipolar valued vague normal subsemiring
of R'.

2.8 Theorem: Let R and R' be any two semirings. The antihomomorphic preimage of a bipolar valued vague normal
subsemiring of R' is a bipolar valued vague normal subsemiring of R.

Proof: Let f: R — R' be an antihomomorphism. Let V = f(A) = <VV+, V,, ) where V is a bipolar valued vague normal
subsemiring of R'. We have to prove that A = (V,, V, ) is a bipolar valued vague normal subsemiring of R. By

Theorem 2.4, A = (VA+ , V, ) isabipolar valued vague subsemiring of R. Let x and y in R.

Now V. (x+y) = V, (f(x+y)) = V" (f()+(x)) = V" f)+f(y)) = V" (fy+x)) = V, (y+x) which implies that
Vi (xty) = Vi (r+x). And V0 (xy) = V' (f(xy) = V" (FO)F() = V" (FOOR(Y)) = V" (f(yx) =V, (yx) which
implies that V" (xy) = V, (yx). Also V, (x+y) = V,, (f(x+y)) = V,, (f(y)+f(x)) = V,, (F)+f(y)) = V (f(y+x)) =
V. (y+x) which implies that V, (x+y) = V, (y+x). And V, (xy) = V|, (f(xy)) = V,, (f(0f(xX) = V,, Ff(y)) =

V, (f(yx)) = V (yx) which implies that V, (xy) = V, (yx). Hence A is a bipolar valued vague normal subsemiring
of R.
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