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ABSTRACT
Having the ordered set (@,s,cﬂ,M) of exploded numbers we extend the traditional addition, multiplication
subtraction and division for exploded numbers and investigate the surprising properties of algebraic structure
(ﬁ <, + ) We solve the general first-order equation without using the associativity of addition and multiplication
and distributivity.

INTRODUCTION

The geometric explosion of real numbers is detailed in [1]. Here we repeat the most important facts. Denoting the
ordered field of real numbers by (R, <, +,-) for any real number x the pair

{Ix1}
1-{|x]}’

is called exploded of x and the set of exploded numbers is denoted by R.

(1.1) X =def ((sgn x) (sgn x)[IxI]), x € R.

The equality for exploded numbers means that

% =in R y if and only if (sgn x) % = (sgn y)% and (sgn x)[|x|] = (sgny)[lyl].

If ¥ and 7 are real numbers then ¥ =" R 5 < % = 7. So, instead of ,,= & " we can write the familiar ,,=”. It is proved
that ¥ = ¥ if and only if x = y. (See [1], Theorem 1.2.)

By definition (1.1) the exploded of x is an element of two — dymensional space, that is ¥ € R?, such that its second
coordinate is an integer and product of the coordinates is non negative. On the other hand, if a point u = (x,y) € R?
has these properties then

(1.2) Yyt =u
is fulfilled. (See [1], Theorem 1.7.) So, we obtain

ﬁ={u= (x,y)E]R%ZI{

y EZL } . )
x-y=0§" (Z is the set of integer numbers.)
Considering a real number X as pair x = (x,0), x € R is obvious. Moreover, it is easy to see, that if x € ]—1,1[then

- x x [ I .
X = (1_—|x| 0) and 1o overruns the set of real numbers. Set R is seen the Fig. 1.3.
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Fig.-1.3

With respect to (1.2) for the exploded number u = (x,y) € R we introduce the geometric compressor formula
X ~
(1.4) E'_y+1+lxl ,(UER,
Of course, the real number u is unambiguously determined. Moreover, u is called the compressed of exploded number

u and we have the first inversion formula

(1.5) ®=u , ueR.

(W)

Denoting x = u by (1.5) we have X = u. So, the second inversion formula
(1.6) (%) =x x €ER

R R ——

is obtained.

Using (1.4) and (1.1.) we define the super — addition and super multiplication

.7 uAv=u+v , U,V ER
- -

and

(1.8) uMv=u-v , U,V ER,
W

respectively.

Writing u = x ,u = X and v=y,v= ¥ with (1.7) and (1.8), the mutually unambiguous mapping x < X, x € R is
izomorphism between the algebraic structures (R, + ,-) and (ﬁ,cﬂ, M) As (R, +,") is a field, (ﬁ,c/l, M) is a field,
too. Important properties: If x, y and z € R then

Associative laws: (X A V) A Z=%X A(YAZ)and (X M Y)M Z=% M (M 7)

Commutative laws: X A Y =9 A Xandx M 5 =9 M X

Distributive law: (X AY) M Z=(X M Z) A(YM 7).

Unit element is for the super- addition is 0, that is, X4 0 =X, uniqueness can be proved.

Super - additive inverse element: x A Ei;) = 0, uniqueness can be proved.

Unit element is for the super — multiplication is T, that is, ¥ M T=5€, uniqueness can be proved Moreover,
T=(0,1). (See (1.1).)

~

Super - multiplicative inverse element: If x # 0then B?MG)=T, uniqueness can be proved.Moreover,

~ 1
N _ i 1
(x) = <(59" %) (1_{|71| }) , (sgn x) [m]) :
Definition 1.9: (Ordering of exploded numbers.)
For any pair x,y € R we say, that X < R 3 if
(sgnx) - [|x]] < (sgnx) - [lyl]
or

if (sgnx) - [lx[] = (sgn) - [lyl] then (sgn ) {2

1-{lx[}

{lyl}

< Ggny) 5
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If ¥ and 5 are real numbers then ¥ <" R 5 < % < 7. (See [1], Lemma 1.16.) So, instead of ,< & " we can write the
familiar ,,<”. For any pair x,y € R, X <% if and only if x < y. (See [1], Theorem 1.17.) If x is running the open
interval ]—1,1[ then X is running the real number line. In this case we say that % is a visible exploded number . If
x € R\ ]—1,1[ then X is outside the number line. (See. Fig. 1.3.) In this case the number line is considered as an one
dimensional space and is X called invisible exploded number. The greatest invisible exploded number which is smaller

than all of real numbers is —1 is called negative discriminator. The smallest invisible exploded number which is
- ~ -y . - - -
greater than all of real numbers is 1 called positive discriminator.

Lemma 1.10: (The monotonity property of explosion.) Let x # 0 an arbitrary real number.
al If

(1.11) 0<x
then

(1.12) x <X
b/ If

(1.13) x<0
then

(1.14) X < x.
Proof.

Ad o

{x}
1—{x}’

then 0 < x < 1 and we obtain that % = (é O). As the function f(x) = 1": is strictly convex on the interval ]0,1[,

Having that x = (x,0) , by (1.11) and (1.1) we have % = ( [x]) and Definition 1.9 yields that 0 < . If ¥ < T

the inequality (1.12) is obtained. If T <%, then the mentioned property of positive discriminator gives (1.12) because x
is a real number..
Ad b/

)
1—{—x}’
“1<Xxthen—1<x<0and ¥ = (ﬁ O). As the function f(x) = 1": is strictly concave on the interval ]—1,0[, the

Having that x = (x,0), by (1.13) and (1.1) we have X = (— [(—x)]) and Definition 1.9 yields that ¥ < 0. If

inequality (1.12) is obtained. If X < 21, then the mentioned property of negative discriminator gives (1.12) because x
is areal number.m

Lemma 1.15: (The monotonity property of compression.) Let u # 0 an arbitrary exploded number.
al If

(1.16) O<u

then

(1.17) 0< u<u
b/ If

(1.18) u<o

then

(1.19) u<u< 0.
Proof.

Ad a/

By (1.5) and (1.16) we have that (g) < (3) Hence, the inequaityg <u is obvious. As 0=0, the left hand side of

(1.17) is obtained. For the right hand side we use the part a/ of Lemmal.10, which says that u < @) . Using the
inversion formula (1.5) again, we have the right hand side of (1.17).
Ad b/

By (1.5) and (1.18) we have that (3) < (g) Hence, the inequaityg < 2 is obvious. As 9 = 0, the right hand side of

(1.19) is obtained. For the left hand side we use the part b/ of Lemma 1.10, which says that (3) <u Using the
inversion formula (1.5) again, we have the left hand side of (1.19).m

Definition 1.20: The exploded number u is called negative if u < 0 and positive if u > 0, respectively. m

The exploded number u is negative or positive if and only if u< 0 or u> 0,

H —~ . . - . s
respectively. For example —1 is negative and 1 is positive.
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If u and v are arbitrary exploded numbers and u < v, then for any exploded number w

UAWLS VAW
is fulfilled. (See [1], Lemma 1.22.) If u and v are arbitrary exploded numbers and u < v, then for any positive exploded
number w

Mw<vMw.
Moreover, for any negative exploded number w

uMw>vMw
holds. (See [1], Lemma 1.24.)

Now we already have that (ﬁ,cﬂ,]vr, <) is an ordered field. Moreover, we introduce the super — subtraction and
super - division

(1.22) uSv=u—v ,u,veﬁ,
>
(1.22) udDv = (%) ,u,v(= 0) € ﬁ,

respectively.
Of course, for any pair u,v € R indentitiesv A (u S v) =u and v M (uD v) = u, where v # 0, are valid.

Finally, we give some useful signs and symbols.

(1.23) —% =%/ (—=x) , x € R. (See the additive inverse element.)
This definition is the extension of the sign ,,minus” because (1.23) is valid for real numbers: If ¥ € Rthen —1 < x < 1,

so[|x|] = 0. Hence, (—x) = ((—x),O) real number. Moreover, (1.1) yields that

—= |—x| || -
(=) = (sgn(-2)) T3 il L v bl
Denoting ¥ = u by (1.23) and (1.6) we have the equivalent definition
(1.24) —y =4¢f (— E’) ,ueR
Hence, (1.5) yields
(1.25) (—u) = —u , ueR

Using (1.24) , (1.7) and (1.8) we have that u A(—u) = 0 and -u = 21 M u. Moreover —(—u) =u.
The next lemma is independent of the theory of exploded numbers but it will useful for it.

Lemma 1.26: If x and y are real numbers such that y is integer and the product x - y is non-negative numbers then

{5l
1.27 = +—) |
( ) X (5977- (y 1+|x|)> 1_{|y+T|x||}
and
GED y=(sam (4 552) ) [+ 5
are valid.
Proof: First of all we remark if x = y = 0, then sgn (y + ok I) =0, so, (1.27) and (1.28) are true.
Assuming thaty € Z and x € R, our condltlons of lemma are satisfied if and only if
Case I: (y=0andx>0)or (y >0andx =0)
or
Case Il.: (y=0andx <0)or (y<0andx <0)
are fulfilled.
Ad case I.
X X

Clearly, sgn (y EwP I) 1. As |y o I| o v+ ﬁ} and 0 < <L

L | ey I v

Hy T ] =y end -yl s

(1.27) and (1.28) are obtained.
Ad case II.
Clearly, sgn (y + 1+|x|) —1.As |y + — I| —{|—y - F and 0 S =< 1,

* 1= _ sz I 1:(__

Hy + 1+x| ] =—y and 1—{|y+%|x||} R x

(1.27) and (1.28) are obtained.m
© 2021, IMA. All Rights Reserved 19
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Using (1.4) Lemma 1.26 yield the

{lu}

Corollary 1.29: Ifu = (x,y) € R, then x = (sgn Zﬁ) . ] andy = (sgn E’) . Hg”l

The explosion formula (1.1) , definition (1.24) and Corollary 1.29 yield the
Corollary 1.30: If u = (x,y) € R, then the pair (-x,—y) € Rand (-x,—y) = —u.

Proof: (-x,—y) € R , because -y is integer if and only if y is integer. Moreover (—x) - (—y) = x -y, 50, (—x) - (—=y)
is non—negative, if and only if x - y is non — negative.

By definition (1.24) and (1.1) we can write

(sgn -w) 1_“_3“( w)-[[-u] ( u)l_{m”' (sgm ) [Ju]

{Jue]}

Moreover, considering u = (x,y) with x = (sgn Zf,) . W and y = (sgn Zf,) . Hg” by Corollary 1.29 we get
-u=(—x,—y).n

The extension of ,,absolute value” for any u € R

uifu>0
|lul =%f {0 if u=0.
—uif u<o0
Lemma 1.31: Forany u € R
(1.32) IM=g|
and
03 =y
hold.

Proof: Having that |3£| is a non — negative real number we apply the explosion formula (1.1) and write

If u > 0 then u > 0, too. So, first inversion formula (1.5) we have |u| = (u) = u.
Ld Ld St
If u = 0, then (1.32) is obvious.

If u < 0then u < 0, too. Hence, by (1.24) we have |3£| = (_Zﬁ) = —u.
For (1.33) we use (1.32) and apply (1.5).m

The traditional triangular inequality by (1.7), (1.32), (1.6), (1.33) and (1.7) again, yields

(1.34) lu A vl < |ulAlvl; u,ve]ﬁﬁ.
Moreover, by (1.8), (1.32), (1.6), (1.33) and (1.8) again,

(1.35) luMv|=ulMlv|l; u,ve R
is obtained.

The definition of the super - function ,,5gn” for anyu € R,

Tifu>0
sgnu=3{0 ifu=0.
~Tifu<o0

It is easy to see, that sgn u = sgn u. Moreover, if u is a real number, then sgn u = sgn u.

Using the definition of extended absolute value, for any u € R
(1.36) u = (5gn u)Mlul
is valid, because for u > 0 the equality (1.36) is obvious, while for u < 0 by (1.23), (1.24), (1.6), (1.8) and (1.5) we
write
(fg?z u)MIuI = (— T) M(—u) = TIM(_E) =(-1)- (— E;) = (E’) = wu. Istennek Hala,
2019-12-15;5.38, Sz I.
© 2021, IMA. All Rights Reserved 20
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2. TRADITIONAL ADDITION AND MULTIPLICATION FOR EXPLODED NUMBERS

In [1] we proved the identities

Cu+v= (u:/le(uMIvI)S(vMIuI))D (Té‘lulé’lvlu‘lIqulc/lIuc/le(uJV[Ivl)S(vMIuI)I)
and

2.2) u-v=uMv)D (TSulSvlAZ Mlurv])

for any pair u, v of real numbers. (See, [1], Theorems 2.1 and 2.3, respectively)

Our purpose to extend the identities (2.1) and (2.2) for exploded numbers as definitions.
Formula (1.22) shows that the denominator of a super — division cannot be 0, so we give

Definition 2.3. The exploded numbers u and v are called addition — incompetent partners if
(2.4) 1ShulSvlAluMvlAluAvS WM v])S (v M |ul)| = 0.

Otherwise we say that u and v are addition - competent partners.m
For example, real numbers are additionally competent partners.

Using the inversion formulas with (1.21), (1.7), (1.8), (1.35) and (1.33) we can write
TSulSWIAUMvIAAYS @M |v]) S (M ul)| =

=l1—-|ul=-wl+luMvI+luAvS WM |v])S (v M |u))| =

=1—|u|—|v|+|u|M|v|+|u+v—uM|v|—vM|u|| -
— —— ~—_——— “ (]

=1—‘u‘—‘v‘+‘u-v|+|u+v—u-|v|—v-|u||
) — Y - — — — — —

In the following we need to explode the points P = (x,y) of two-dimensional space R?. Namely, the exploded of P is
P= (¥,5) € R%. Consequently, if P = (u,v) € R? then its compressed in coordinates is P= (Zf,'lf,) € R?. The
procedure is similar in the case of the sets. For example (]RZ) = R?. The set

- ) : —u-lwl=v-lull =
@25) €a= {0 e |1 —[u| = |of + | o]+ [u+z - |of ~o-[uf| = ]
is called the super —curve of the addition — incompetence. The following should be for the simplicity u=x andz =y.
Of course, we have that —oo < x < coand —oo < y < oo . Clearly,

(26) Cy = {0 y) € RZI1 = Il = Iyl + -yl + Jx +y —x- Iyl =y~ x| = 0}
and it is shown on the next figure:
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Fig.-2.7
Considering the compressed of R?
(2.8) R? = {(x,y) e R2| 1S}
and observing Fig. 2.7 we have

Remark 2.9:
. Hj%j NR, ={ },soforany real number each each real number is addition — competent partner.
()

. 0 has no addition — incompetent partner.

. 1f 0 < [u| < 2 then u has unique (invisible) addition - incompetent parner vand u M v = 1.
. If 2 < |u| < oo then u has two (invisible) addition- incompetent parners v;and v,.

. The positive discriminator T is an addition — incompetent partner to himself.

. The negative discriminator — T is an addition — incompetent partner to himself.
. The discriminators are addition — incompetent partners.

T < |u| then u has two (visible) addition - incompetent parners v,and v,.

00 NO O AW N

Definition 2.10:

Assuming that the exploded numbers u and v are addition — competent partners

u+ v =% (uAvS WM |v|)S WM |ul))D (Té’lulé’lvla‘llu]\/[vlc/lIucﬂvé‘(u]\/[lvl)é‘(v]\/[lul)l). n
Definition 2.10 yields if the exploded numbers u and v are addition — competent partners then
(2.10)* —(u+v)=_(u)+ (-v)

holds.

Definition 2.11: The exploded numbers u and v are called multiplication — incompetent partners if

(2.12) T S lul Slvl A 2 MluMv| = 0.
Otherwise we say that u and v are multiplication - competent partners.m
For example, real numbers are multiplication - competent partners.

Using the inversion formulas with (1.21), (1.7), (1.8) and (1.33) we can write

TS|ulS A Z2MuMvl=1—[ul—[v]+2 [uMv|=
— [ ———

——
=T—[ul — ol +2- o] =1 Jul - ] + 2 (Ju] - ]v]) =
N o — N o e e

=1—|u|—|v|+2-|u|-|v|=1—|u|—|v|+2-|u|-|v|.

) ) N At head - -

The set

@13 e = {(w) € R[1-[u| ~ |o] +2-Ju]-|¢| = o}

is called the super — curve of the multiplication— incompetence. The following should be for the simplicity
u=x and v=y. Of course, we have that —co < x < oo and —oo < y < oo . Clearly,

(214) Gy = {(x,7) € R = Ixl = [yl +2Ixl - Iyl = 0}

and it is shown on the next figure:
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Fig.-2.15
Observing Fig. 2.15 we have

Remark 2.16:
1. ]1313 N R, ={ }, sofor any real number each each real number is multiplication— competent
N——
partner.
2. 1f 0 < |u| <1 then u has two (invisible) multiplication - incompetent parners v;and v,.
~ ~
1 3 3
For example u = SV = (E) and.vz. == (E)
3. If 1 < |u| < oo then u has no multiplication— incompetent partner
4. 1f lul = T then u and 0 are multiplication - incompetent partners.
~
5. |ul > 1 then u has two (visible) multiplication - incompetent parners v; and v,.
~
For exampleu = -4 ,v; = %and vy, = —%.

Definition 2.17:
Assuming that the exploded numbers u and v are multiplication — competent partners

u-v =% (uUMv)D (TSIuISIvIJl?MIquI) m
3. IMPORTANT ELEMENTS OF ALGEBRA (@ , <, + ,')

The 0 is the addition unit — element of algebra (R, <, +,-). What isiits role in algebra (ﬁ <, + )’7
The point 2. of Remark 2.9 says that it is addition — competent partner for any exploded number. Moreover by
Definition 2.10 we have for any u € R thatu +0 =uD T = u and for anyv € R that0+v =vD T. So, we have

Property 3.1: The 0 is the addition unit — element of algebra (ﬁ ,<,+ )

Proof: Considering Definition 2.10 we write for any u € R
u+0=

= (uA 0 SM|0]) S (0M]ul)) D (T5|u|5|0| AuMO| Alu A 0 S@M|0]) S (vMIOI)I) -
=uD (Té'lula‘llul):u.l

By the commutativity of extended addition its unit element is unambiguously determined, but gives us a surprise the
following

Theorem 3.2: Let u be an arbitrarily given exploded number such that |u| # 1. The solution of the equation
3.3) ut+v=u
In the cases
A Tul <5~ 1,366025404
there exists only one solution v = 0.
1+/3 o~
B) - < |u| (-‘F 1)
, 2(u)
the solutionsarev; = 0and v, = (sgn u)- =
= 3(w)
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Proof: By Definition 2.10 we have to solve the equation
(u AvSwMlv])) § (vMIuI)) D (Té‘lulé’lvl AluMv| Alu AvSWM|v]) § (vMIuI)I) =u

Denoting u=xand v =y and using the inversion formulas (1.5), (1.6), operations (1.7), (1.8), (1.21) and (1.22) ,
with (1.33) , equation (3.3) has the form

x+y—x-lyl=y-lx| _
(3.4) L=lx|=lyl+lxy |+]x +y—x-lyl=y-lxl|
Of course, by (2.5) we have that 1 — |x| — |y| + |xy| + |x +y—x-lyl—y- |x|| * 0.

For any x € R addition unit — element of algebra (R,<,+,-) is a solution of (3.4), therefore y = 0 is no longer
sought. Moreover, if x = 0, then (3.4) has solution y = 0, only. So, we may assume, that x = 0 and y # 0.

Given the absolute values we will consider eight cases.
A) —oo < x(# —-1)<0.

The transmuted (3.4) is
x+y—x-lyl+yx _
(3.5) L4x—lyl—x-lyl+lx+y —xlyl+yx| — x

a) —o <y<0.

The transmuted (3.5) is

x+y+2xy _
(3.6) T+x+y+xy +lx+y+2xy| x
)x+y+2xy<0.

The transmuted (3.6) is

(3.7) —xiy_;ixy =xoyx+1)?2=0
has no solution.
i)x+y+2xy=0.
The transmuted (3.6) is
+y+2xy
(3.8) STy _
1+2x+2y+3xy
which has the solution
2x2 1
y = s such that x < _\/_§'

(See the reservations —oo < x(# —1) < 0and —o0 < y < 0.).

So, in the case A)a)ii) the equation (3.4) has a solution depending on u

—

2

B 2(u) 7 1Y _ 143
(39) v = (— 3(3)2_1> ,Where u < (_ﬁ) =——
b) 0 <y < oo
The transmuted (3.5) is
(3.10) —
) <o 1+x—y—xy +|x+y|
Nx+y<0.
The transmuted (3.10) is
(3.11) 1_’;;{xy =xoyx+1)%2=0
has no solution.
ii)x+y=0.
The transmuted (3.10) is
(3.12) Y

1+2x—xy

. . 2x2 - x(x+1)2

which has the solution y = o but it is false because x +y = —5 <0

B) 0 <x(#1) < oo.
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The transmuted (3.4) is

(3.13) y x byl =x
1=x—=|yl+x-lyl+lx+y—xlyl-yx|
a) —o <y <0.

The transmuted (3.13) is

x+y _
(3.14) 1—x+y—xy +lx+y| x
x+y<0.
The transmuted (3.14) is
x+y
(3.15) Ty =X
. . 2x2 - x(x-1)?
which has the solution y = —=—, but it is false because x + y = ——— > 0.
x4+l x2+1
i)x+y=0.
The transmuted (3.14) is
(3.16) 1:;;:{}] =xoyx-1%=0
has no solution.
b) 0 <y <oo.

The transmuted (3.13) is
(3.17) Xy 2y =x

1—x—y+xy +lx+y—2xy|
)x+y—2xy<0.

The transmuted (3.17) is

(3 18) x+y—2xy _
’ 1-2x-2y+3xy -
which has the solution
2x?2 1
y = ERY such that x > \/_§

(See the reservations 0 < x(# 1) < o0. and 0 < y < oo.

So, in the case B)b)i) the equation (3.4) has a solution depending on u

2(3)2 71\ _1+3
(3.19) V= (3(3)2_) , Where u > (\/l—g) = 12—3

ii)x+y—2xy=0.

The transmuted (3.17) is
(3.20) % =xoyx-1%=0
has no solution.

—

2
2
Considering (3.9) and (3.19) v = (sgn 3) . (L where 1+2_\/§ < |u] is obtained.

3() -1

Finally, by Property 3.1 our theorem is proved. m

Remark 3.21: Considering the part B of Theorem 3.2 and knowing that if

(3.22) 5 < ul < oo
2
then u is a real number, a novelty that there is a number (sgn E) -32(;“‘2) . other than zero that is added to u, the
u) —
2 - ———
result is u. Using (1.4) by (3.22) (1+2_\/§) = \/1_§ <lul<1le 2(32) > 1 is obtained. Hence, (sgn u) . 2(32) > T,
- - 3(u) 1 = 3(u)

—

that is (sgn E’) . 2(3)2

() -1

Definition 3.23: If u is an arbitrary exploded number then the exploded number v is called the addition — value partner
for u if it that leaves u unchanged when it added up.m

not a real number.m
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Clearly, v = 0 is addition - value partner for any exploded number u.

Considering Definition 2.10 the esteemed reader can easily prove

Property 3.24: (The behavior of discriminators for addition.) Assuming that |v| # T, forany v € R

(3.25) T+u:{“f|”|<1
T if vl > 1

and

(3.26) T1+v:{_1 if <1
T iflvl > 1

hold.

If |v| =T, then T + v and =1 + v are undetermined. (See (1.22).)m

We can see that every real number v, is addition — valuae partner for T and Tl, too.
Fig. 2.7 shows that except the pairs (—T,T) and (T, —T) the pair (u, —u) € C4.

Property 3.27: If [u| # T the for anyu € Ru+ (—w) =0.

Proof: Using Definition 2.10 we can write
u+(—u) =

(u A(—u)SuM|—ul) § ((—u)MIuI)) D (Té‘lulé‘l—ul AluM (—u)| Jl|u A(—w)SuM|—ul) s ((—u)MIuI)D =
= (u Su SuMlul) A (uMIuI)) D (Té’lulé’lul AuMu) Alu Su SwM|ul) A (uMIuI)I) =
=0D (T5|u|5|u| c/l(u]\/[u)) -0D ((T S |u|) M (T S |u|) ) = 0m

The following theorem is important when researching the addition inverse element.

Theorem 3.28: Let u be an arbitrarily given exploded number such that [u| # T. The solution of the equation
(3.29) ut+v=20
If |u| < 1then there exists only one solution v = —u.

. u
If 1 < |ulthen solutionsare v; = —u and v, = (—Zl“l 1).
-

Proof: Starting from (3.29) by Definition 2.10 we have to solve the equation
(uAvS@Mlv) S @WMul) D (T5|u|5|v| AluMv| Alu A v S@M|v]) S (vMIuI)I) =0.

Denoting u=xand v =y and using the inversion formulas (1.5) , (1.6), operations (1.7) , (1.8) , (1.21) and (1.22) ,
with (1.33) , equation (3.3) has the form
x+y—x-lyl-y-lx| — o
T—lxl =yl +lxyl +|x+y—x-lyl—y-Ixl|

Of course, by (2.5) we have that 1 — x| — |yl + |xy| + |x +y — x|yl —y - |x|| # 0 , so we have to solve the
equation
(3.30) x+y—x-lyl—y-lx| =0.

For any x € R addition inverse — element in algebra (R, <, + ,-) is a solution of (3.30), therefore y = —x is no longer
sought. Moreover, if x = 0, then (3.30) has solution y = 0, only. So, we may assume, that x # 0 and y # 0.

Given the absolute values we will consider four cases.
Case A) —oo < x(# —1) <0.

The transmuted (3.30) is

(3.31) x+y—x-|yl+xy=0.
Parta) —oo <y < 0.
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The transmuted (3.31) is
(3.32) x+y+2xy=0
which has the solution

= hthatx < — =
y= A1 ,such that x >

(See the reservations —co < x(# —1) < 0 and —0 <y < 0.)

So, in the case A)a) the equation (3.31) has a solution depending on u

—_——
——

(3.33) v= (Zﬁ ) where u < (—%) =-1.

ul|-1
-

Parth) 0 <y < oo.

The transmuted (3.31) is

(3.34) x+y=0
has no solution.

CaseB) 0 < x(# 1) < oo.

The transmuted (3.30) is
(3.35) x+y—x-|lyl—xy=0.
Parta) —oo < y < 0.

The transmuted (3.35) is

(3.36) x+y=0
has no solution.

Parth) 0 <y <

The transmuted (3.35) is
(3.37) x+y—2xy=0
which has the solution
X 1
y = 2|x|—_1 ,such that x > E

(See the reservations 0 < x(# 1) < 00.and 0 <y < o0.)

So, in the case B)b) the equation (3.35) has a solution depending on u

(3.38) v=( % ) , Where u>®:1.

2lu]-1

Considering (3.33) and (3.38) v = <2|ET> , where |u| > 1 is obtained.

Finally, by Property 3.27 our theorem is proved. m

Remark 3.39: Considering the part B of Theorem 3.28 and knowing that if
(3.40) 1<|ul <o

u

then u is a real number, a novelty that there is a number v = <2|“T> other than (-u) that is added to u, the result is
ul-
- —t—
4
2luf-1

Definition 3.41: If u is an arbitrary exploded number such that |u| # T then the exploded number v is called the
nullifying partner for u if adding it the result is 0.m

o
g

2lu|-1

> 1 is obtained. Hence, > T, that is( & ) not a

zero . Using (1.4) by (3.30) % < M <le |3| = 2|u|_1

real number.m

Clearly, if |u| # T, then (—uw) is nullifying partner for u. The discriminators have no nullifying partners. (See Remark
2.9, points 5-7 and Property 3.24.)

Remark 3.42: Theorems 3.2 and 3.28 point out that even linear equations can have two solutions. For example in the

case of Theorem 3.2 , B) the (3.3) equation and in Theorem 3.28 , B) the equation (3.29) have two nullifying or
addition - value solutions.
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The 1 is the multiplication unit — element of algebra (R, <, +,-).
What is the situation in algebra (ﬁ <, + )’7

The point 3. of Remark 2.16 says that 1 is multiplication — competent partner for any exploded number.
Moreover, we have

Property 3.43: The 1 is the multiplication unit — element of algebra (ﬁ <, + )

Proof: Considering Definition 2.17 we write for any u € R

u-1=(uM1)D(TSIuISI1IJl?IuM1|)= w

t-ful-grzofulg)

By the commutativity of extended multiplication its unit element is unambiguously determined, but gives us a surprise
the following

Theorem 3.44: Let u be an arbitrarily given exploded number such that u # 0 and|u| # 1. The solution of the
equation
(3.45) uv=u
In the cases
A) 0+ |ul < 1
there exists only one solutionv =1 = 1072
B) 1< lul

—

the solutionsare v; =1 and v, = (T 5 Iul)D (? M |u|) = (ﬁ_a

Proof: Considering (3. 45) by Definition 2.17 we have to solve the equation

(3.46) (M v)D (TS lul S lv] A Z MluMv]) =u
wehere by (2.13) TSIuISIvIJl ?MIquI # 0 is obtained. Definition 2.17 gives that
(3.47) u-0=0 ,wherelul %1 (see Remark 2.16, point 4 and [1], (3.12))

holds, so, v = 0 is excluded.
Starting from (3.46) and using (1.35) by the algebra (@ , <, + ) we can write

v="18lulS vl A2 M |u| M |v]|
a)lul #1 and v > 0.

Now, (3.46) has the forms v = Ts lul Sv A 'fMIuIMv and2M v S 'fMIuIMv =1s lul.
Hence, (? Mv) M(T S Iul) =Ts |u| and solution v = TD7Z is obtained.
b) |ul +T andv < 0.

Now, (3.46) has the forms v = T S |ul AvS ZMulMvand0=1T S [ul § ZMulMv

Moreover, 2 M|ulMv =T §|u| and hence, v = (T S IuI)D(E M Iul) ,Jbut the condition v < 0 regires that
1< |ul.

Finally, Property 3.43 says that for any u € R the multiplicative unit — element 1 is a solution of (3.45). m

Definition 3.48: If u is an arbitrary exploded number then the exploded number v is called the multiplication- value
partner for u if it that leaves u unchanged when it multiplied up.m

Clearly, v = 1 is multiplication - value partner for any exploded number u. (See Property 3.43.) If |u| > T then u has
two multiplication— value partners. (See Theorem 3.44,B.)
Considering Definition 2.17 the esteemed reader can easily prove

Property 3.49: (The behavior of discriminators for multiplication.) Assuming that v # 0, for any v € R

- {Tifv>o

(3.50) 1-v=9 (see [1], (3.5)%),
1ifv<o0

© 2021, IMA. All Rights Reserved 28



Istvdn Szalay*/ Traditional operators for exploded numbers... / IIMA- 12(2), Feb.-2021.

and

(3.51) [Hov= {11 ifv>0
Tifv<o

hold.

If v =0, then T-vand =1 - v are undetermined. (See (1.22) and [1], (3.6)*.)m

We can see that every positive (exploded) number v, is multiplicative — valuation partner for T and Tl, respectively .
Especially,

(3.52) T-T=T (see[1], (3.4) and (3.7)*)
and

(3.53) 1.17=3

are valid. Moreover, we have

(3.54) 51.59=T.

The following theorem is important when researching the multiplication inverse element.

Theorem 3.55: Let u be an arbitrarily given exploded number such that u = 0 and |u| # T. The solution of the
equation

(3.56) uv=1

Case A) If 0 < |u] <§ then solutions are

v, == l and v, = <(Sgn4T)|( | | ) (sgnu)M((TSIuI) D (EMIuI ST))

Case B) If - L < |ul < T then there exists only one solution v = (sgnu)m (1 Slul) = i

Case C) If lul > T then there exists only one solution v = (sgnu)m ((1 Slul) ( Mlul S 1)) = (sgn 3) 1—|g|.

Proof: Starting from (3.56) by Definition 2.17 we have to solve the equation
(uMv)D (T5|u|5|v|dq ?M|uMu|) -TD7.

By (2.13) we may assume that T SlulS|v|AZ MuMv| £ 0 and using definition of super function 5gn we have to
solve the equation

(3.57) IMuMv=TSuSIv|A ZMulMlv].  (See (L.35).

By (3.47) v = 0 is excluded, so we consider the following parts:
Part a) (Ti)u >0andv > 0.

Now, (3.57) is reduced to 0 = TSulsv, so, we have

(3.58) V= Té’lul = (s'Tq?zu)M (Té‘lul) ==
but the reservation v > 0 requires the condition
(3.59) lul <T.

Part b) (Ti)u< 0and v > 0.

Now, (3.57) is reduced to IMuMy= TSIuIS vS ZMuMv , S0, we have

360) v=(Tslul)D(TMmua T)=(Sgau)m ((’f5|u|)1) (F2lul ST)) _ <(Sgn4T)|( | |)>

but the reservation v > 0 requires one of conditions

(3.61) 0<ul <3
or
(3.62) lul > T.

Part c) (Ti)u<0andv<0.

Now, (3.57) is reduced to 0 = TSIulc/lv, so, we have

(3.63) v= IuIST = (fg?zu)M (Té‘lul) ==
but the reservation v < 0 requires the condition (3.59).

Part d) (Ti)u >0andv <0.
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Now, (3.57) is reduced to IMuMy= TSIuIle S 2Mumv , SO, We have

- - o e - - =) _ ((Gome)(1-x))
(364) v=(Tslul)D(TMmus T)= (Sgru)m ((1 Stul)D (T Mlul s 1)) = (W
but the reservation v < 0 requires one of conditions (3.61) or (3.62).
Collecting our results, we can see

- Under condition (3.61) Parts a) and ¢) give v; = (Sgnu)M (Tslul) while Parts b) and d) give
v, = (Sgnu)m ((Tslul) D (ZMIuI ST)). So, Case A\) is obtained.
- Under condition (3.59) Part a) and c) give v = (Sgnu)M (TSIuI), only. So, Case B) is obtained.

- Under condition (3.62) Part b) and d) give v = (Sgnu)M ((TSIuI)D (EMIuI 5T)), only. So, Case C) is
obtained. m

Remark 3.65: Considering the Case A of Theorem 3.55 and knowing that in this case u is a real number, a novelty that
there is a number (@?zu)M((TSIuI)D(EMIuI ST)) other than i that is multiplied to u, the result is 1.
However, this number not a real number because by using definition of super function Sgn and (1.35) we can write
|(§Tg?zu)M((Ts|u|)D (Tprlul 5T))| = |(sgnuw)|r |(Tshul)| D[ 2lul s T| == (Tshul) D (T5Talul)
>1lm

Definition 3.66: If u( 0) is an arbitrary exploded number such that |u| # T then the exploded number v is called the
unifying partner for u if multiplying it the result is 1. Provided that v # i but it is unifying partner for u, use pseudo

reciprocial value for u.m
Clearly,

- ifu#0and |ul < T, then i is unifying partner ,

- the 0 has not unifying partners, (see (3.47) and Remark 2.16, point 4)
- the discriminators have not unifying partners (see Remark 2.16, point 4 and (3.50) — (3.54)).
Remark 3.67: Definitions 2.10 and 2.17 show the commutativity of addition and multiplication, respectively.

Unfortunately, the most important traditional laws are not valid in algebra (ﬁ ,+ )

- Counterexample to the associativity of addition: (?+ 2) + @) 2+ (2 + @)) because 2 and @) are

addition — incompetent partners. (See Definition 2.3 and (2.5).)

- Counterexample to the associativity of multiplication: (?(—%))@i?((—%)@) because

1

(_g) and (g) are multiplication — incompetent partners. (See Definition 2.11 and (2.13).)

.. .. o~ 1 ~ 1 1 o~ 1 .- .
- Counterexample to the distributivity: (2+2)-5¢2-5+2-5 because Zandz are multiplication -

incompetent partners. (See Definition 2.11 and (2.13).)
Finding the necessary and sufficient conditions for the above laws to investigate is a nice task.

4. TRADITIONAL SUBTRACTION IN ALGEBRA (@ , <, 1, )

In [1] we have already mentioned the identity
4Du—-v= (uSvé‘(uMIvI)Jl(vMIuI))D (Té‘lulé’lvlo‘lIqulc/lIuSUS(uMlvl)c/l(vMIul)l)
for any pair u, v of real numbers. (See, [1], Theorem 2.5.)

(o) 0—v
Example 4.2: For any v € R, (4.1) yields: 0 — v = (0Sv)D (1 SIUIC/ZIOSUI) = (—) = —v.

oo
Our purpose to extend the identity (4.1) for exploded numbers as a definition.

Formula (1.22) shows that the denominator of a super — division cannot be 0, so we give

Definition 4.3: The exploded numbers u and v are called subtraction — incompetent partners if

(4.4) Ts lul SIv| AluMv|lAlusSvS WM |v]) AWM |ul)| = 0.
Otherwise we say that u and v are subtraction - competent partners.m
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For example, real numbers are subtraction competent partners.

Using the inversion formulas with (1.21), (1.7), (1.8), (1.35) and (1.33) we can write

TSulSIwAuMvAluSvS @M |[v]) A @M JuD)| =

=1—|u|—|v|+|u-v|+
- - Y

u—v—u-|v|+v-|u”
Ld Ll Ld Ld Ld Ld
The set
- ) : —v—u- ull =
@5 Co={@v) e R 1-ful - [o] +[u-gl+|u-p-u-[o]+ 2 || = o)
is called the super — curve of the subtraction— incompetence.
The following should be for the simplicityg = x and v=y. Of course, we have that —co < x < 0 and —o < y < o
. Clearly,
(4.6) Cs ={Coy) eR?I1 = Ixl = Iyl +lx -yl + [x =y —x-Iyl + y - Ixl| = 0}.

In (4.6) replacing y with (- y) yields C_, (see (2.6)), so C 4 (see Fig. 2.7) is areflection of C4 on the ,,x” axis.
e e e

Definition 4.7:

Assuming that the exploded numbers u and v are subtraction — competent partners

u—v =4 (usvSMIwDAWMuD)D (T SlulS|vlAMIAluSS WM DA@M )] ). m
Definition 4.7 yields

Property 4.8: If |u| = 1 then forany u € R the equality u — u = 0 is valid.

Because " — " is used both the subtraction and additive inverse of number u (see Theorem 3.28) it is important to
see the following identities:

(4.9) 0—u=-u , UER

(4.10) u—v=u+(-v) ,(u,v) & Cs . (See, (4.5).)

and

(4.12) (—w)—v=—-(u+v) ,(u,v) & C4.(See, (2.5).)

Remark 4.12:

1. Hj&j NCg ={ 1}, sofor any real number each each real number is subtraction— competent partner.
A

2. 0 has not subtraction — incompetent partner.

3. The positive discriminator T is an subtraction — incompetent partner to himself.

4. The negative discriminator — T is an subtraction — incompetent partner to himself.
5. The discriminators are subtraction — icompetent partners.
Considering Definition 4.7 the esteemed reader can easily prove

Property 4.13: (The behavior of discriminators for subtraction.) Assuming that |v| # T, forany v € R

(4.14) T—v={iJf WIS (see 111, 3%,
T if vl > 1
and
(4.15) q-v= {_1 flol<1
T iflvl>T1
hold.m

Theorem 4.16: (It is important for the concept of ,,difference”.)

Let u and v= 0 be arbitrarily given exploded numbers such that |u| # 1 ,v| = T andu # v. Considering the
equation
(4.17) u+w=v
Cases and solutions are
Casel/a) —o<u<—-land —o<v<u o 1<u<ow and u<v <o
— — — — — —

i T A su—2uy
MR ) T T b))

-2
Casel/b) —co<u<—-1and u<v<0 or 1<u<oo and 0<v<u
Ld Ld Naad Ld Ld

)

_ _ vy d w = su2uy
B ) e AR Vo7 e P ey
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1 1
Casellc) —o<u<—-land 0<v < —- or l1<u<ow and —-<v<0
Ld Ld E Ll u Ld
v—u—2| |v v—u
wp=v—u=|=—=—=] and w, = ==
Lruy 1-2lufruy
1 2u+1 2u-1 1
Caselld) —o<u<—-1and —-<v <-=—0r l1<u<o and =—<v<—-
- u - 33+2 - 33—2 “ u
——
. . v—u
there exists only one solution w = | ———|.
1-2fulruy
2u+1 2u-1
Caselle) —o<u<—-1and =—<v<o or l1<u<o and —co<v<—=
- 33+2 - - - 33—2
v—u—2|u|v v—u
w=v—u-= T and w, = ————|).
1-2lul+20(sgnu)-3uz 1-2fulruy
2 2
Casellfa) —1<u<—-> and —o<v<u or -fu<land u<v<oo
- 3 - - 3 — - -
——
v—u v—u—2|u|v
w=v—u=|—5—) and w, = Y S .
1-2fulruy 1-2lul+20(sgnu)-3uz
2 2
Caselllb)-1<u<—-= and u<v<0 or -Su<land 0<v<u
[ 3 “ “ 3 [ “ “
————
v—u —u—2|u|v
w=v—u=|—"=—] and w, = Y S .
1-2y(sgn u)+uy 1-2lul+20(sgnu)-3uz
2 1 2 1
Caselllc)-1<u<—- and0<v < —- or -fu<l1land —-<v<0
- 3 - u 3 - u -
——
v—u—2|u v v—u
w=v—u=|=—7=] and w, = ==
L+uy 1-2Juf+uy,
2 1 2u+1 2 2u-1 1
Casell/ld)-1<u<—-> and —-<v <= or -fu<land ——=—<v<-—-
“ 3 u - 33+2 3 - 33—2 “ u
——
- . v—u
there exists only one solution w = =
1-2lufruy
2 2u+1 2 2u-1
Casellle)-1<u<—= and =—=<v<® or -<u<land —o<v<—=—
- 3 33+2 - 3 - - 33—2
——
v—u—2|u|v v—u
w=v—u= T and w, = | ———|.
1-2ful+2u(sgnu)-3uy 1-2fulruy
2 1 2u+1 1 2 2u-1
Caselllla)—-<u<—-——and—oo<v <= oo =<u<= and——=—<v<®
3w V3 w T 3u+2 V3T W 3 3u—2 " w
- . v—u
there exists only one solutionw = v —u = | ———).
1-2fulruy
2 1 2u+1 1 2 2u-1
Casellllb) —-<u<—=and==<v<u or =<u<- and u<v<-—==
3w V3 But2 T 37w 3 - 3u-2
——
v—u v—u—2|u|v
w=v—u=|—F—| and w, = T .
1-2fulruy 1-2lul+20(sgnu)-3uz
2 1 1 2
Caselll/c)—><u<——= andu<v <0 or =<u<=- and 0<v<u
3w V3 [ 37w 3 —- W
v—u d v—u—2|u|v
w=v—u=|(—7—=5—)] and w, = s .
' 1-2u(sgn ) tuy 2 \i-fulran(sona)-suy
2 1 1 1 2 1
Caselllld)—-<u<—-——=and 0<v<—- or =<u<=- and —-<v<0
3w V3 - u 37w 3 T
—— ——
v—u—2|u|v v—u
w=v—u= - A and w, = | ———|.
Lruy 1-2fulruy
2 1 1 1 2 1
Caselllle) —=<u<——=and —-<v<o oF =<u<- and —oo<v<—- <
3w V3 u — 37w 3 — u
- . v—u
there exists only one solution w = =
1-2lulruy
1 1 1
CaselVla)——=<u<—-and —wo<v<u or ~fu<—and u<v <o
V3 2 - 2 - 3 W
——
- . v—u
there exists only one solutionw = v —u = AN
1-2fulruy
1 2u+1 1 1 2u-1
Case IVIb)—=<u<—->andu<v <= or ~fus—=and —=—=<v<u
V3T W 2 w w7 3u+2 27 - 3 3u—2 7w W
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———————————
- . rv—u
there exists only one solutionw = v —u = | ——=—=—~—|.
1=2p(sgnuJuy
1 1 2u—1
CaseIV/C)——<u<—— and—<v<0 or ~<us<—=and 0<v<—==
3 +2 “ 2 “ 3 %} 33—2
————————
v—u d v—u—2|u|v
w=v—u=|—7—=5—|] and w, = T .
' 1-2u(sgn ) tuy 2 \i-fulran(sonu)-suy
1 1 1 1 1
Case 1V/d.) -~ <u s——and0<v<—— oo ~<u—and —-<v<0
V3 2 - u 27w 3 woow
yu—2uly vy
w=v—u= and w, = =
1+3£w 1—2|5|+uv
1 1 1 1 1
CaseIV/e)——<u<—— and — - <v <o O -<u<—= and —o<v<—-
u % 2 “ 3 %} u
——t~—
- . v—u
there exists only one solution w = | ——— ).
1-2lufruy
1 1
Case V/a) —- < u<0 and —co<y<u o 0<u<; and u<p<o
2 % [} [} 2 “ %}
—t~—
- . v—u
there exists only one solutionw = v —u = | ——=—|.
1-2fulruy
1 1
Case V/b.) —= < <O andu<v<0 oo 0<u<- and 0<v<u
2 ] 2 -
—_————
- . v—u
there exists only one solutionw = v —u = { ——=—=<—|.
1=2p(sgnu Juy
1 1 1 1
Case V/c.) —=< <0 and 0 < -—2 o 0<u<:- and —-+2<5v<0
2 u “ 2 u %
———t~—
A v—u—2|u|v
there exists only one solutionw = v —u = | ==
Ty
1 1 1 1 1 1
CaseV/d)—-<u<0 and ——-—-2<v<—-—- o O0<u<- and —-<v<—-+4+2
2 u % u 2 u % u

Proof:
By Definition 2.10 we have to solve the equation

(u AwSuMlw|) § (wMIuI)) D (Té‘lulé’lwl AlumMw| Alu Aw SuM|w|) § (WMIuI)I) =
Denoting u = x,v = y and w = z and using the inversion formulas (1.5) , (1.6), operations (1.7) , (1.8) , (1.21) and
(1.22), wihtﬂh (1.33H)H, equation a.17) has the form

(418) x+z—x-|z|—z"|x| =y.

1—|x|—|z|+|xz|+|x+z—x-|z|—z-|x||
Of course, by (2.5) we have that 1 — |x| — |z| + |xz| + |x +z—xz|—z- |x|| * 0.

By the assuptions v # 0 and u # v we have that y # 0 and x # y. If x = 0, then (4.18) has solution z = y, only. So,
we may assume, that x # 0. If z = 0 then (4.18) is reduced to x =y, so z = 0 is excluded. Given the absolute values
we will consider eight cases.

A) —o0o < x(#—-1)<0.

The transmuted (4.18) is
(419) x+z—x-|z|+zx =y.

1+x—|z|—x"|z|+|x+z—x"|z]|+zx]|

a) —o < z<0.

The transmuted (4.19) is
2
(420) x+z+2xz — y

1+x+z+xz+|x+z+2xz|
)x+2z+4+2xz<0.
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The transmuted (4.20) is
x+z+2xz . yx _ y—x
(421) 1-xz yez= 1+2x+xy  1-2|x|+xy’

This gives the solutions

w; of Case I/a , w, of Case of I/c, w of Case I/d and w;, of Case I/e,
w, of Case Il/a, w, of Case Il/c, w of Case Il/d, w, of Case Il/e,
w of Case Ill/a, w; of Case Ill/b, w, of Case Il1/d, w of Case Ill/e,
w of Case IVV/a, w, of Case 1V/d, w of Case IV/e,

w of Case V/a, w, of Case V/d, w of Case V/e.
i)x+y+2xz=0.

The transmuted (4.20) is
+y+2 —x+42 —x—2
(4.22) IV _ g = LTI yoxoZlily
142x+2y+3xz 142x—-2y—3xy 1-2]x|+2y(sgnx )—3xy

This gives the solutions

w, of Cases I/a and I/b, w; of Case l/e,

w, of Cases Il/aand Il/b, w; of Case ll/e,
w, of Cases Ill/b and Case Ill/c,

w, of Case IV/c.

b) 0<z< oo
The transmuted (4.19) is
x+z

(423) 1+x—z—xz+|x+z| =Y
Nx+2z<0.
The transmuted (4.23) is

x+z y—x y—x
(424) 1-2z—xz =yezr= 14+2y+xy = 1-2y (sgnx )+xy
This gives the solutions
w; of Case I/b,
w, of Case Il/b,
w; of Case Ill/c,
w of Case IV/b, w; of Case IV/c,
w of Case V/b.
ii)x+y=0.
The transmuted (4.23) is

x+z —x+2x —x—2|x|
(4.25) —yoz=2 y =7 24
1+2x—xz 1+xy 1+xy

This gives the solutions

w; of Case l/c,

w; of Case ll/c,

w; of Case I11/d,

w; of Case 1V/d,

w of Case V/c, w; of Case V/d.
B) 0 <x(#1) < oo.

The transmuted (4.18) is

(426) x+z—x'|z|—zx =y.

1—x—|z|+x|z|+|x+z—x"|z|—zx]| -

a) —o <z <0.
The transmuted (4.26) is

x+z _
(427) 1—-x+z—xz+|x+z| =Y
x+2z<0.

The transmuted (4.27) is

x+z —x—2x —x—2|x|
(4.28) —yoz=2 Y =2 2
1+xy 1+xy

This gives the solutions

w; of Case l/c,

w; of Case ll/c,

w; of Case I11/d,

w; of Case 1V/d,

w of Case V/c, w, of Case V/d.
ii)x+2z=0.
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The transmuted (4.27) is
(4.29) R L NP .

1-2y+xy  1-2y(sgnx)+xy’
This gives the solutions
w; of Case I/b,
w, of Case Il/b,
w; of Case Ill/c,
w of Case IV/b, w; of Case IV/c,
w of Case V/b.

b) 0<z< oo
The transmuted (4.26) is

x+z—-2xz _
(430) 1—-x—z+xz+|x+z—2xz| =Y
x+2z-2xz<0.
The transmuted (4.30) is

x+z—2xz —x—2x —x—2|x|
(4.31) B VRN R o R A
1-2x—-2z+3xz 1-2x+2y—-3xy 1-2]x|+2y (sgnx )—3xy

This gives the solutions

w, of Cases I/a and I/b, w; of Case l/e,

w, of Cases Il/aand Il/b, w; of Case ll/e,
w, of Cases Ill/b and Case Ill/c,

w, of Case IV/c.

i)x+2z—2xz=>0.

The transmuted (4.30) is

x+z—-2xz —x —x

(4.32) T oy eoz=t— =2
—xz —2x+x —2|x|+x
1 1-2x+xy 1-2|x|+xy

This gives the solutions

w, of Case I/a , w, of Case of I/c, w of Case I/d and w, of Case l/e,

w, of Case Il/a, w, of Case Il/c, w of Case I1/d,w, of Case Il/e,

w of Case Ill/a, w; of Case Il1/b, w, of Case I11/d, w of Case Ill/e,

w of Case IV/a, w, of Case 1V/d, w of Case IV/e,

w of Case V/a, w, of Case V/d, w of Case V/e.

Finally, in the Cases I/a, I/b, l/c, I/e, Il/a, 1I/b, ll/c. /e, I/a, /b, H/c, 11l/d, IV/a, IV/b, IV/c, IVId, V/a, Vib,
Vic abd Vv/d we may apply Definition 4.7. So, the proof of Theorem 4.16 is complete. m
Istennek Hala! 2020. februar 27. (cstitortok) 15.10, Szalay Istvan

Remark 4.33: For any given exploded numbers u and v, Theorems 4.16, 3.28 (case v = 0) and 3.2 (case v = u) give
the full solution of the linear equation (4.17).

Remark 4.34: Considering the linear equation (4.17) we can see that in Cases I/d, 11/d, Ill/e, IV/e and V/e the solution
w is not v — u but in the cases only one of u and v is a real number the other is invisible exploded number.

Remark 4.35: If u and v are real numbers then the traditional interpretation of ,difference” remains: ,,v — u” is the real
number that we add to u give v.

Definition 4.36: If w # v — u but adding u to give v, then it is called the pseudo — difference of the ordered pair v,
u. In the case of v =u for w # 0 we can use the terms pseudo — zero for u (see Remark 3.21) and in the case v = 0
for w = —u the pseudo — additive inverse of u (see Remark. 3.39).m

For example, the real number u = 2 has two addition - value partners (see Definition 3.23). One of them isw; = 0 and

onew, = (g) is the pseudo — zero for 2 (see Theorem 3.2.B). So, the pseudo -difference of the pair 2, 2 is the invisible

exploded number (g) # 0 because by the extended addition (see Definition 2.10) 2 + (g) = 2. On the other hand, the

real number u = 2 has two nullifying partners (see Definition 3.41). One of them is w; = —2 and one w, = 7 is the
pseudo — additive inverse of 2 (see Theorem 3.28, second statement). So, the pseudo - difference of the pair 0, 2 is the

invisible exploded number 7 # —2 because by the extended addition (see Definition 2.10) 2 + Z=0.

5. TRADITIONAL DIVISION IN ALGEBRA (ﬁ, <,+, )
In [1] we have already mentioned the identity

*_ (s (Tt 55 e (1)) o (e () o (1 )

for any pair u, v # 0 of real numbers. (See, [1], Theorem 2.7.)
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L)

>—‘}I =3
=1
N

Definition 5.1: Assuming that the exploded number v = 0, for any u € R and lul # T (among others
are forbidden symbols) we define

= (wae (T5101) 2530 (v2¢ (T st)) ) 2 ([ 3¢ (V1) o 3¢ (T s1at) o

Remark 5.2: If u € R, then 1S|ul > 0, we may use
652  *=(um(Tslvl)msgav)D (jure(Tslvl)|a|var (Tshu))).

1

=

Exercise 5.3: If u = 1 then for any v(# 0) € R, by the definition of super — function 51371 using

Lemma 1.15 and applying the formulas (5.2),(1.1),(1.33) and (1.4) the esteemed reader can prove that
(120 (Tslvl) amsga v) D (|1 a0 (Tsivl)|a v e (Ts 1)[) =3

v

If u = 1 then for any |v| > T Definition 5.1 yields
= (1M (T5|v|)Msquq(vM (T5|1|))>D (|12 (Ts1vl)|a e (Ts121)]) =

(e s
2|v|—_1 :E—sgn v.m

Casting a glance at (2.13) we get if |[v| > 1 then the pair (v, %) € Cy¢, thatis v and %are multiplication — incompetent

partners, so, their extended product v i is undefined. (See Definition 2.10.) This means that if |u| > T then 1 is not

an unifying partner for u (see Definition 3.66) but it has the unifying partner (sgn u) T I ul . (See Theorem 3.55, Case
C) )

For the forbidden symbol = See [1], (3.12). Of course, the symbol is forbidden, too.
The most important noveltles given by Definition 5.1 are

(5.4) =0 ,ueR, Jul#T (e [1] (3.14))
and
(5.5) _%=O , ueﬁ, IuliT.
[By (5.2) we mention the following (apocryphal) extensions which is out of Definition 5.1.
Tif u<ti
T _aer )T if “l<u<o
(5.6) - = i o - , (see, [1], (3.13))
o if T<u
and
3 if u<1
(5 7) 2 —def T if T<u<o ]
’ u A if o<u<T’
Tif T<u
Having Definition 5.1 the esteemed reader can prove that
(5.8) %=1,u€@ but uiOandIuIiT,
is obtained. On the other hand having that
u if u€eR
u — ~~
(59 1T { |31 = if lul>1

(

Moreover, by Definition 4.1 for the invisible exploded numbers we give

Corollary 5.10. If |u| > Tthen

(5.11) u--=0.

So, the real number ? (# w)is one of nullifying partners, that is pseudo-additive inverse of u. (See Definitions 3.41

and 4.36.) We may refer to Theorem 3.28 where the second solution of the equation u + v = 0 is

vy, = (ﬁ) =r——= T (See (59)

ul-1) " fuf-1
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Remark 5.12: In Excersise 5.3 we can see that if |u| > T, then

1_((-ful)son w

v\ 2y
By (5.9) we have
u —u -
—_ = —— , |u| >1.
bzl
Using Definition 2.17 the estemeed reader is able to prove the interesing identity
1 u [
(5.13) -—=1 , |ul>1.

u 1

Clearly, if u(# 0)is a real number, that is |u| < T, then u is an unifying partner for its reciprocial value i Now, (5.13)
shows that if |u| > T then % (# w) is an unifying partner for i (See Definition 3.66.) At the same time, if |u| > T then

i and u are multiplication — incompetent partners.
Istennek Hala, 2020-03-07.: 11.44, and 2020-04-21: 9.12. Sz.I.

Remark 5.14:

An invisible exploded number may have a lot of new partners. For example the invisible exploded number 2 has seven
traditional or funny partners:
- 0isthe traditional addition - value partner (see Property 3.1.)

- g is another addition — value partner because 7+ g =2 (see Definition 3.23.)

- 2and =2 are nullifying partners of 7 because Z+2=0=2+ 22 (see Definition 3.41). We seem to have

Iontn)

found the contradiction 2 = =2 . (Having that 2 = (g) , see [1], Theorem 1.2). It’s just an illusion because in
the third line of the necessary derivation
Z4+2=2+

.,

D2+ (2+2)="2+(2+52)
(F2+2)+2=("2+2)+ 22
0+2=0+22
2=22

unproven associativity is used. From here we say that disregarding pairs for addition the algebra (ﬁ, +) is

a commutative (Abelian) grupoid vith unit element 0. (See (2.5) and Fig. 2.7.)
- listhe traditional multiplication — value partner (see Property 3.43)

- —% is another multiplication — value partner because 7. (— %) =2 (see Definition 3.48)

- —% is (unique) unifying partner because 7. (— %) = 1 (see Definition 3.66)
Turning towards the real numbers: In the case of% , the real number 4 and the invisible exploded number 7% are
unifying partners of i , (see Theorem 3.55, Case A) because i-4 =1 =i-:1. We seem to have found the

contradiction 4 = ~4 (Having that 4 = (g) , see [1], Theorem 1.2). It’s just an illusion because in the third line of the
necessary derivation

Lyl
4 " 4
v (4) =4 (3-59)
4 B 4
(+3)4=(e-5)
CERN
1:-4=1-—4
4="3

unproven associativity is used. From here we say that disregarding pairs for multiplication the algebra (ﬁ ) isa
commutative grupoid vith unit element 1. (See (2.13) and Fig. 2.15.) m
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Example 5.15: (Continuation of Exercise 5.3) Having that for any u(+ 0) € R we get that (|1||||| g|n|u |1|1| ||| ||| | <1is
+ +
obtained and assumed that |u| # T by the explosion formula (1.1) we compute
1-— sgn u 1-— sgn u |1 | || ‘ u‘ 1-—

( | |) ( | |) (Sgnu) Sgn| | || u| |
il el |\ =Tl lef ) T 4
.(1 -u .( l+ 1ifu<™i

| " ~ ifu>0 | Y

{1 {1Lf—1<u(¢0)<1.
i " ~ifu<0 'u

k v} k E— 1 qu > 1

Remark 5.16: If |u| > T then u and i are multiplication — incompetent partners (see Definition 2.11). Really, by (5.2)
having = = (1 M (Tslvl) m sga v) D (|1 (TsIvl)|4 v (T 1)|) and denoting x = u and

y = (1) = |1 |||||Sg|n|u moreover, considering (2.14) we have |x| > 1, so
+
|1 - Ix|

) 1ol _
1= lxl =yl +2-Ix| |Y|—1_|x|_|1_|x||+|x|+2 lx| |1—|x||+|x|_

Moreover, If |ul >T then Theorem 3.55 Case C shows that u has the unifying partner (see Definition 3.66)

(fg?zu)M((TSlul)D (EMIuI ST)) <( || |)| o u) For example —% is unifying partner for 2 , while %= —%.

Theorem 5.17: (It is important for the concept of ,,quotient™.)

Let u# 0 and |v| # 1 be arbitrarily given exploded numbers such that |u| # T, lv] # T andu # v. Considering the
equation

(5.18) u-w=v

Cases and solutions are

Case l/a) —oo<3£<—1 and —oo<3<—1 or 1<3£<oo and 1<3<oo

S A Gl R (1 Gl )
C\utr-2fuly BRVEREI b

u

Casel/b) —co<u<—-1 and —1<v<—=
“ Ld u

2u—sgn u “ 2u—sgn u %
e - e -

I (il ) S - Gl )
C\erp-2fyy C\u-zrefyly
|

|u <v<0 o 1l<u<oww andO<vS£

2u—sgn u % [} % 2u—sgn u
oo - o -

Case l/c) —o0 < u<-1 and

there exist only one solution w =

Casel/d) —co<u<-1 and 0<v<
Ld Ld

md
Y

Zg—sgn u

Caselle) —oo < u< -1 and

1 Gl ™) IR S 1 (el )
C\urr-2fyy *\u-zrzfyy
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Caselff) —o<u<—-1 and 1<v<oo or l1<u<o and—oo<v<-—1
Ld Ld Ld Ld
(1 4)) p(1-]4))
wy=|——— | and w, = | ==
u+v—2|uv u—v+2u|v
Cad Ld L Cad Ld L
1 |3£| 1 |E|
Casellla) —1<u<-—- and — ©<ys-—=— or ~<u<1and Sv<oo
[} 2 Zu —sgn u 2 “ 2u—sgn u %
there is no solution of equatlon (5.18)
1 u u
Caselllb)-1<u<—= and |“| <p< 10r—<u<1and1<v< 1
“ 2 Zg—sgnu 2u—sgn u
there exist only one solution w =
utv— 2| |
1 Lo
Caselllc)-1<u<—= and—1<v<0 or -<u< 1and0<v<1
“ 2 - 2 -
there exist only one solution w = ( | ) =
wrg2fuly)
1 1
Casell/d)-1<u<—= and 0<v<1l or -<u< 1and—1<v<0
- 2 - 2 -
: : o) \ _ v
there exist only one solution w = | =———| = -
upi2fuly)
1 = 1 [
Casellle)-1<u<—= and 1<v<——— or -<u<1and v<-—1
“ 2 %} Zg—sgng 2 “ 2u—sgn u %

there exist only one solution w = ( =

u—v+2|u|v
(v ] )
PR —

Casell/fff —1<u<-< and
] 2

1
Sv<owor - <u<land—owo<v<
“ 2 [ “

md
Y

Zg—sgn u ZE—sgn u
there is no solution of equation (5.18)
1 1 —|y 1 1 —| |
Caselllfa) —-<u<—-= and —o<v<——— o =-<u<- and v <
2 “ 3 % Zu—sgn u 3 2 2u —sgn u %

n(i-fu])

Case lllb) —><u<-—3; and

there exist only one solution w = | =———
u+v—2|u|v

1 1 1 1
Case Ill/c) —;<us-—3 and—1<3<0 or -su<-

o) \ _ v
there exist only one solution w = =
<

1 1 1 1
Caselll/d) —-<u<—-= and0<v<1 or -<Su<- and —1<v<0
2 - 3 - 3 - 2 -
: : p(-fe) \ _ v
there exist only one solution w = =-
u—v+2|u|z u
1 1 lu] 1 1 o]
Caselllle) —-<u<—-—= andl<v<——— or -<u<- and <v<-1
2 “ 3 % 2u—sgn u 3 “ 2 2u—sgn u %
" : p(1-]e))
ere exist only one solution w =
u—v+2|u|v
1 1 lu] 1 1 lu]
Caselllff)y —-<u<—= and ———<v<o o =-=Su<=- and —o<v<
2 [} 3 Zg—sgn u % 3 “ 2 “ 2u—sgn u
v(1-[4]) v 1—| )
faad faad

1 1
Case 1V/a) —3Su<0and —o<p<-1 o 0<us<s; a

© 2021, IMA. All Rights Reserved

39



Istvdn Szalay*/ Traditional operators for exploded numbers... / IIMA- 12(2), Feb.-2021.

md
Y

1 1
CaselVIb) —=<u<0and —-1<v<——— o O0<u<-=- and <v<1
3 “ %} Zu—sgng [} 3 Zg—sgng %
o(-l) v v (1 - [uf)
w, = nad =—and w, = AN ] VA
u+v-— | | u u—v+2|uv
— - - — — Ld

|
S =1

Case 1V/c) —§<E’<Oand v<0 or O<3£<§ and0<gs

2u—sgnu W 2u—sgn u
_ . o) \ _ v
there exist only one solution w =|—=—"——2]=-
u+v—2|u|v u
1 u 1 u
CaseIV/d) —=<u<0and 0 <v< 1 or 0<u<-:= and 1 <0
3 “ % ZE—sgn u [} 3 2u—sgn u %

- - 4
there exist only one solution w =|—=——=5-|=-
u—v+2|u|v u

o

Case 1V/e) ——<u<0and <v<lor O<u<-+ and—1<v<
ZE—sgn u % [} 3 Zu —sgn u
(1_| |) v 3(1_| |)
L= —and w, =
—v+2|| u u+v—2|u|
— Ul —

Case IV/f) —%S <Oand1<v<ooor O<u <§ and—00<3<—1

Al ) N (1 G )

u— v+2|uv u+v—2|uv
Ul — Ll el Ul — Lad Bl

wy =

Proof:
Considering Definition 2.17 we transcribe the linear equation (5.18) by super- operations

wMw)D (1 5lulSiwlA 2 Mludw]) =
where we assume that the exploded numbers u and w are multiplication — competent partners. Using (1.7), (1.8) , (1.21)

and (1.22) with (1.5) , (1.6), (1 32) (1.33) and (1.35) we have to solve equatlon

= whereu¢0| | |u|¢1and|v|¢1
[ [+ 2 [l Jo] - - -

Denoting u=x,v=y and w=z and using the inversion formulas we solve equation

XZ

1
(519) m— y,Wherex;tO,IyI;tE,IxI¢1and |y|-'F1
such that
(5.20) 1—|x| =1zl +2-1x| -1zl # 0.

We analyse (5.19) in the following four cases
CaseA) x<0 and z=0

The equation (5.19) has the form —o =Y and
1_
(5.21) Z; _ yasn _ (i)
a2y wep2uly
is obtained. Moreover we can compute that 1 — |x| — |zF| + 2 |x| - |zf| = xi(yl:;)y Given the x +y + 2xy # 0

requirements (5.21) gives the following solutions to the left of the following cases

w;, for Case I/a, Case I/b, Case l/e, Case I/f and w for Case I/d
w for Case Il/b, 1l/c
w, for Case lll/a, 111/f and w for Case Il1/b, 1ll/c
w, for Case IV/a, IV/b and w for 1V/c and w, for IV/e, IV/f.
CaseB) x<0 and z<0

The equation (5.19) has the form =y and

1+x+z+2xz
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(522) _ Y(I‘HC) _ 3(1_|3ﬂ|)

SR N

[}

is obtained. Moreover we can compute that 1 — |x| — |zg| + 2 |x| - [zz]| = % Given the x —y —2xy # 0

requirements (5.22) gives the following solutions to the left of the following cases

w, for Case l/a, Case I/b, Case l/e, Case I/f and w for Case I/c
w for Case 1l/d, 1l/e
w, for Case Ill/a, 111/f and w for Case I1l/d, 1ll/e
w, for Case IV/a, IV/b and w for IVV/d and w;, for IV/e, IV/T.

CaseC) x>0 and z=0

XZ

The equation (5.19) has the form PR

xX—z+2xz

=y and
(523) Z+_ y(1-x) _ 3(1_|3ﬂ|)

R e

. . 1-
is obtained. Moreover we can compute that 1 — |x| — |z + 2+ |x| - |zf| = %

requirements (5.23) gives the following solutions to the left of the following cases

Given the x +y —2xy # 0

w;, for Case I/a, Case I/b, Case l/e, Case I/f and w for Case I/d
w for Case Il/b, ll/c
w;, for Case Ill/a, 111/f and w for Case Il1/b, 1ll/c
w;, for Case IV/a, IV/b and w for IV/c and w, for IV/e, IV/f.

CaseD) x>0 and z<0
The equation (5.19) has the form ——— =y and
1-x+z

_ v(l—|u
(5.24) 75 = 2um _ 2l
vy upizfufy
is obtained. Moreover we can compute that 1 — |x| — |zp |+ 2 |x| - [z5] = % Given the x —y +2xy # 0

requirements (5.24) gives the following solutions to the left of the following cases

w, for Case l/a, Case I/b, Case l/e, Case I/f and w for Case I/c
w for Case 1l/d, 1l/e
w, for Case Ill/a, 111/f and w for Case I1l/d, 1ll/e
w, for Case IV/a, IV/b and w for IVV/d and w;, for IV/e, IV/T.
Considering Case Il/c, 11/d, I1l/c, 111/d, 1V/c and 1V/d we apply Definition 5.1, too.

Finally, we investigate Case Il/a, 1I/f.
To the left-side of 1l/a and II/f.
Strarting from (5.19) we state that z = 0 is not solution of the equation (5.18).

. . . 1 . ..
For z < 0 equation —=~—— = y is obtained. Hence, z = 222 > ¢ is a contradiction.
1+x+z+2xz xX—y—=2xy
. . . 1 . ..
For z > 0 equation —=— = y is obtained. Hence, z = 222 < 0 is a contradiction.
1+x—z—2xz x+y+2xy

So, in these cases the equation (5.18) has not solution.
To the right-side of 1l/a and II/f.
Strarting from (5.19) we state that z = 0 is not solution of the equation.

For z < 0 equation —=~—— = y is obtained. Hence, z = 2222 > 0 is a contradiction.
1-x+z—-2xz x—=y+2xy

For z > 0 equation —~—— = y is obtained. Hence, z = 2222 < 0 is a contradiction.
1-x—z+2xz x+y-—2xy

So, in these cases the equation (5.18) has not solution. m

Remark 5.25: By Definition 2.17 we can see immedialely that, if u = 0 and v = 0 then every exploded number w
exception of |w| = T is a solution of equation (5.18). (See Remark 2.16, point 4.) If u = 0 butwv # 0 then equation

(5.18) is insoluble. For |u| = Torlvl=Twe may use Property 3.49. If u = v or v = 1 then Theorems 3.44 and 3.55
are valid, respectively. For v = —1 we give the following theorem without any proof.
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Theorem 5.26: Let u be an arbitrarily given exploded number such that u + 0 and |u| # 1. The solution of the
equation

uv=-1
Case A) If 0 < |u] <§ then solutions are

p==—1  and v, = |3f|—1 _ (Sgnz)qzl—l) _ (Lo
u 45 sgny 4|3£| 1 4|5 1

Case B) If % <lul < T then there exists only one solution v = —i.

- . . |u|—1 |u|—1
Case C) If lu| > 1 then there exists only one solution v = 4ujsgnu = (sgn 3) 3|“u|_2.

By Remark 5.25 and Theorem 5.26 we have the full solution of the linear equation (5.18).m

Remark 5.27: Observing Cases Il/c, Il/d, Illl/c, 1ll/d , IV/c and 1V/d we can see that u and v are real numbers and the
unique solution of equation (5.18) the traditional w = 5 is obtained. In Cases IV/b and IV/e despite of that u and v are
real numbers we get two solutions. One them is the traditional w; = 5 while the second is the invisible number w,. For

example if u = Zandv =3 (then u = < vith ﬁ = andv= 3, so we use Case 1V/b) then the solutions of
4 [} 5 % 4

Zg—sgn u 3

equation i-w = 3 are the traditional w; = 12 and the invisible exploded number w, = (—15—2) = (—%,—2). (See
the exploder formula (1.1).)

Remark 5.28: If v # 0 and v are real numbers then the traditional interpretation of ,,quotient” remains: 5 is the real
number if multiplied by u gives v.

Definition 5.29: If w # 5 ,(u #0,|ul # T) but multiplied by u to gives v, then it is called the pseudo —quotient of

the pair v , u. The special case of ordered pair v =1, u # 1 was already mentioned in Definition 3.66 as pseudo
reciprocial value for u. (In the special case of pair 1, 1 identity (5.8) and Theorem 3.44, A) show that their pseudo
reciprocical value does not exist.)

—_——

For example, in the case of pair v =3 and u = i the traditional quotientf = 12, while the pseudo-quotient is (— 15—2)

712\ v 12 12\ 1 =z 3
because (—?) ;t;but (—?) U= (—?) T (w) = (Z) =3 =v.

——
Inthe case of v=1andu = i the traditional reciprocial value i = 4, while the pseudo reciprocial value is (—4),

1 ~
27, W SN e, SN O S B OB D A O
because (—4) # = but (—=4) ‘u = (-4) -1 = ('1_51_4”..51.4) = (2) =lm

Remark 5.30: You have to make friends with the facts that algebra (@ ,+, 0, < ) is much harder than normal algebra
(R, +, -, <). For example the rule ,,dividing by a real number (s 0) multipliying its reciprocal” invalidates. The rule

(5.30) S=y-- , u(#0)ER

- -

is obvious, but for exploded numbers it is just an equation. Let’s solve it! If u(+ 0) € R we use the Definitions 5.1 and
2.17, respectively. Denoting u=x and using the second inversion formula (1.6) we have that equation (5.30) is

equivalent with the equation

(x(1-Ja]))sn (z-1xD) *(3)

—

G e Py i [ s

We consider three cases. First we assume that [x| < 1. Using that sgn (EE (1- le)) =sgn x =sgnx , and (1.33)

(5.31)

by Lemma 1.15 (|£| < |x|) the equation (5.31) has the form

(<(1- 1)) -som * ()

——

el (1= 1) + ] L= 1) 1= x| - |§J|+2|x||é|.

Applying the geometric compressor formula (1.4), |x| = ™ and (1) =2. 2 are obtained and we get

1+]x| u.{.; x ' 1+]x|
sgnx  sgnx,
lxl(2 = 1xD) — Ix[(2 = Ix])’
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Because |x| < 1 we can see, that every x is a solution for (5.31), that is every reall number is a solution of the equation
(5.30).

Second we assume |x| = 1. Now the left hand side of (5.30) is equal O, but by its right hand side x = 0 which is
excluded.

Finally, we assume |x| > 1, that is [u| > 1. Similarly to the first step we have
—Ssgn x sgnx,

X2 — [xD) 212 — Ix])

Here, |x|(2 — |x]) # 0 because x # 0 and 2 — |x| # 0 because if |x| = 2 then

1—|x|—|@|+2|x| (i)

so both (2 ,1) and (—2, —1) € Cy (see (2.14) or Fig. 2.15) .Observing Definition 2.10 we can see that Zand (1) =
3 3 - 3

Gl=

e

1 1
—1—2—5-}-2'2'5—0

L=~ are multiplication — incompetent partners. Similarly =2 with (— l) =-2="L qe
are multiplication — incompetent partners. So, 7. % and =2 - (:{—2) are undetermined. On the other hand by

-~

E
}

N

)=1and(

- -~ 2

the equgality —sgn x =sgnx is impossible. Consequently, if [u| > T then equation (5.30) has no solution.

Definition 5.1 the surpisinng = 1 are obtained. (They are funny results, but true.) Moreover, if x # 0

,-\
N}
L)

—

6. SOLUTION OF THE GENERAL LINEAR EQUATION

Without using the associativity of extended addition (see Definition 2.10) and multiplication (see Definition 2.10) we
solve the linear equation

(6.1) uE+b=0 where u#0,lul#7T and |b| # 1,
on the set of exploded numbers. The solution model has two steps

Step 1.

Using Theorem 3.28 we solve the equation

(6.2) b+v=0, where IbliT.

Step 2. Using one of Theorems 3. 55 or 5. 17 or 5.26 we solve the equation
(6.3) ué = v where u;tO,IuI;tT and IvliT.

According to the solution method by the commutativity of extended addition (b + ué = ué + b) the linear equation
(6.1) has at least one and at most four solutions on the set of exploded numbers.

There are two possible solutions both the equations (6.2) and (6.3) can be up to four solution of equation (6.1). Then
consider the following exercises.

Exercise 6.4. Solve the linear equation 3¢ + i =0.
Step 1. For (6.2) we have a solution v = —i , only.
1

Step 2. For (6.3) by Theoem 5.17 (Case 11/d, right hand side) gives the traditional §{ = ——.

12
So, the equation (6.1) has only one solution.
Exercise 6.5. Solve the linear equation 3¢ — 5 = 0.

Step 1. For (6.2) we have two solutions v; =5 and v, = (—%).

Step 2. For (6.3) we get the equation 3¢ =5 with the unique solution g (see Theorem 5.17, Case ll/c right) and the

——

equation 3¢ = (—%) with the unique solution &, = (— %) (see Theoem 5.17 , ll/e right,)

So, the equation (6.1) has two solutions.

Exercise 6.6. Solve the linear equation 55 +2=0.

Step 1. For (6.2) we have two solutions v; = ~7="3 and v, = 2.

Step 2. For (6.3) we get the equation ?E = 22 with two solutions &1 = % and &;, = —1 (see Theorem 5.17, Case l/c

right) and the equation ?5 = 2 with the unique solution &, = —% (see Theoem 5.17 , I/c right,)
So, the equation (6.1) has three solutions.
Exercise 6.7. Solve the linear equation ?E +3=0.

~

).
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Step 2. For (6.3) we get the equation ?E = —3 with two solutions &;; = 13—4 and &, = —3 (see Theorem 5.17, Case

I/e right)
and
the equation 55 = (g) with two solutions &,; = %and &y = —13—0 (see Theoem 5.1, l/aright,)

So, the equation (6.1) has four solutions. All of them are real numbers.

Finally, we have yet to prove that the equation (6.1) always has a solution.

In Step 1. the equation (6.2) always has solution (one or two).

Case a) Be

(6.8) bl<1 o |p|<i.

Now, (6.2) has the solution v = —b, only. Let us consider step 2.

If |b| = 1 then by Theorems 3.55 and 5.26 the equation ué = —b (see (6.3)) can always be solved, so, the equation
(6.1) has a solution. If

69 bl<1 = |pl<]

is fulfilled, then there is no solution to equation (6.3) if we get Theorem 5.17 for 1l/a and Il/f. So, there is no solution to
equation ué = —b in the following cases:

I/a left —1<u<—l and —00<—bS_—E<—1,
[ 2 “ 23+1

Il/aright l<u<1 and 1<ig—b<oo ,

2 [ 23—1 (]

1/f left —1<u<-+ and 1< & <—-b<o
“ 2 23+1 “

and

1/f right lcu<1l and —w<-b<—<-1.
2 “ (] 2u—1

In all four cases we get a contradiction with the condition (5.9), so the equation (6.3) can be solved.
Summary for Case a: Under the condition (6.8) the equation (6.1) has a solution.

Case B)
Be
(6.10) Ibl>1 « |p|>1 suchthat |b]=T.

b
In Step 1. the equation (6.2) has two solutionsv;, = —b and v, = <W>

Considering Step 2. there is no solution to equation (6.3) if we get Theorem 5.17 for 11/a and II/f.
We distindwish four cases.
We may use Theorem 5.17.

Case Il/a left
First investigation. Considering the condition (6.10) we assume that
1
b<-le<b<—=
w 2

—_——

. b L
and we turn towards the equation ué = <W> It has not a solution if

L b U _
—1<;l£<—5 and _OO<WS@(< 1)(@£>3)
However, in this domain w and (—b) are real numbers and the equation ué = —b has a solution, so the egation (6.1)

has a solution.
Second investigation. Considering the condition (6.10) again, we assume that

1

b>1<b>—

- 2

and we turn towards the equation ué = —b . It has not a solution if

~1<u<-- and —oo<—bs_—35(<—1)(<:>(1<)i<b<oo).
“ 2 23+1 23+1 “
b

2lp|-1

N . b . . .
However, in this domain « and (W> are real numbers and the equation ué = ( ) has a solution, so the egation

(6.1) has a solution.
Case Il/aright
First investigation. Considering the condition (6.10) we assume that

1
hb<-1o b<—=
“ 2
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and we turn towards the equation ué = —b . It has not a solution if

2u—1
—— /—'—

1 u U
-<u<1 and Ls—b<oo((:> oo<b< “)
2 ] 23—1 ]

b

2|b|—1

v}

N . b . . .
However, in this domain « and <W> are real numbers and the equation ué = ( ) has a solution, so the egation

(6.1) has a solution.
Second investigation. Considering the condition (6.10) again, we assume that
1
b>1<b>—
w2

—_——

. b L
and we turn towards the equation ué = (ﬁ) It has not a solution if

b

l<u<1 and (1<) <oo((:>b<u).

2 “ Zu 1 2|b| “ .

However, in this domain w and (—b) are real numbers and the equation ué = —b has a solution, so the egation (6.1)

has a solution.

Case I1/f left
First investigation. Considering the condition (6.10) we assume that
1
b<-1© b<—=
- 2
and we turn towards the equation ué = — bt has not a solution if

l<u<-—- and(1<)— —b<oo<<:> oo<b<—(< 1))
“ 2 2+1 2+1

/—'—
b
2lp|-1

N . b . . .
However, in this domain u and (W> are real numbers and the equation ué = ( ) has a solution, so the egation

(6.1) has a solution.
Second investigation. Considering the condition (6.10) again, we assume that

1
b>1b>-
“ 2

—_——

b
and we turn ué = ( =

2|b|_1> towards the equation. It has not a solution if

—1<u<-+ and (1<) <oo((:>bS—u).
“ 2 2u+1 2|b| “ .
However, in this domain u and — b are real numbers and the equation ué = —b has a solution, so the egation (6.1) has
a solution.
Case Il/f right

First investigation. Considering the condition (6.10) we assume that

1
b<—-1o b<—=
“ 2

. b L
and we turn towards the equation ué = <W> . It has not a solution if

1 b —-u
§<~%<1 and —00<2|b|_1S2u_1(< 1)((:)b>—u)
(o]

However, in this domain u and (—b) are real numbers and the equation ué = —b has a solution, so the egation (6.1)
has a solution.
Second investigation. Considering the condition (6.10) again, we assume that

1
b>1<b>—
- 2
and we turn ué = —b towards the equation. It has not a solution if

(< —1)((:» (1 <)2uz£_1Sé’<oo>

1
_ _ _ o
2<3£<1 and 00 < "IZSZE—l

—_——

S . b . . .
However, in this domain u and <W> are real numbers and the equation ué = ( ) has a solution, so the egation

2lp|-1
(6.1) has a solution
Summary for Case B: Under the condition (6.10) the equation (6.1) has a solution.
Summary for together Case « and Case §: The equation (6.1) has a solution.

Istennek Hala, 2020-04-08, 18:35 Szalay Istvan
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HISTORICAL DISCUSSION

In the seventh century the great Indian mathematician and astronomer Brahmagupta entering the set of negative
numbers solved the general linear equation. (See [2].) We, in the set of exploded numbers have done this in a very
difficult way. (See (6.1) and part 6.) Moreover, Brahmagupta extended the rules of arithmetic manipulations that apply

to zero, but his description division by zero differs from our understanding: with respect to % ,(a # 0) he did not
commit himself but if a = 0 then % = 0. As regards the set of exploded number we maintain the prohibition of

division by 0 and % is not allowed either. Novelties that % = 0and _% = 0 such that |u| # Tand0-Tand0-=1 are
not allowed. (See (5.4) - (5.7) and Remark. 2.16 point 4.)

In terms of astronomy, we try to get a glimpse into the mysteries of the Multiverse by traditional operations,
considering our Universe as a set of real numbers and the set of exploded numbers as the Multiverse.
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