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ABSTRACT 
This research aims to manage the risks of spreading Corona-Virus over the world, by specifying the optimal statistical 
modeling to analyze the daily count of new cases of the COVID-19, therefore discrete distributions were needed. A new 
three-parameter discrete distribution has been improved named as a Discrete Marshall–Olkin Lomax (DMOL) 
distribution. Probability mass function and hazard rate are discussed. Based on the maximum likelihood estimation 
(MLE) for the DMOL distribution parameters are discussed. A numerical study is done using the daily count of new 
cases in Argentina and Uganda. Monte Carlo Simulation has been performed to evaluate the restricted sample 
properties of the proposed distribution. 
 
Keywords: COVID-19; Hazard Rate; Discrete Distributions; Survival Discretization; Maximum Likelihood Estimation; 
Marshall–Olkin Lomax. 
 
 
1. INTRODUCTION 
 
In December 2019, Corona-Virus "COVID-19" was started in Wuhan, China, On March 11, 2020, World Health 
Organization (WHO) described COVID-19 as a pandemic. See Figure 1 and 2. Therefore, countries around the world 
have been increased their measures trying to decrease the spread rate of the COVID-19. 

 
Figure 1: The situation for the daily new cases over the world by the WHO Region. 

 

 
Figure-2: The situation for the daily new deaths over the world by the WHO Region. 
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To model daily cases and deaths in the world, a natural discrete Lindley distribution has been introduced by Al-Babtain 
et al. (2020). A discrete Marshall-Olkin generalized exponential distribution has been introduced by Almetwally et al. 
(2020) to discussed the daily new cases of Egypt. The study was carried out by Hasab et al. (2020) where they used the 
Susceptible Infected Recovered (SIR) epidemic dynamics of the COVID-19 pandemic for modeling of the novel 
Coronavirus epidemic in Egypt. El-Morshedy et al. (2020) studied a new discrete distribution, called discrete 
generalized Lindley, to analyze the counts of the daily coronavirus cases in Hong Kong and daily new deaths in Iran. 
An autoregressive time series model based on the two-piece scale mixture normal distribution has been used by Maleki 
et al. (2020) to forecast the recovered and confirmed COVID-19 cases. The daily new COVID-19 cases in China have 
been predicted by Nesteruk (2020) and Batista (2020b) by using the mathematical model, called susceptible, infected, 
and recovered (SIR). Batista (2020a) used the logistic growth regression model is used for the estimation of the final 
size and its peak time of the coronavirus epidemic. And etc. as and Almetwally and Ibrahim (2020) andIbrahim and 
Almetwally (2021). 
 
In Lomax distribution: It is an important model for lifetime analysis, medical and business failure data, moreover it has 
been widely applied in a variety of contexts, it known as Lomax or Pareto type II distribution. Many authors have 
studied more applications by using extended Lomax distribution. Rao et al. (2009) studied and introduced the Marshall-
Olkin extended Lomax (MOL) distribution. The CDF, PDF and hazard rate function of MOL distribution with 
parameters 𝛾𝛾, 𝛿𝛿 and 𝜗𝜗 are given respectively, as 

𝐹𝐹(𝑥𝑥; 𝛾𝛾, 𝛿𝛿,𝜗𝜗) =
�1 + 𝑥𝑥

𝜗𝜗
�
𝛿𝛿
− 1

�1 + 𝑥𝑥
𝜗𝜗
�
𝛿𝛿
− (1− 𝛾𝛾)

;    𝑥𝑥 > 0, 𝛾𝛾,𝛿𝛿, 𝜗𝜗 > 0, (1.1) 

𝑓𝑓(𝑥𝑥; 𝛾𝛾,𝛿𝛿, 𝜗𝜗) =
𝛾𝛾𝛾𝛾
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and 
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. (1.3) 

 
Figure 3 show the PDF and hazard rate function of the MOL distribution for different parameter. The MOL distribution 
is a flexible model which provides left-skewed, symmetrical, and reversed-J shaped densities. Its hazard rate function 
(HRF) can provide decreasing, constant, increasing and decreasing. 

  
Figure-3: Plot of the PDF and HRF of the MOL distribution. 

 
Discrete Burr type XII and discrete Lomax distributions have been introduced by Para and Jan (2016). Discrete Lomax 
(DL) distribution is helpful in modeling discrete data which exhibits heavy tails and can be useful in medical science 
and other fields.The PMF and CDF of DL distribution with parameters Ρ and ϑ are given respectively, as 

𝑃𝑃(𝑥𝑥;  Ρ, 𝜗𝜗) = Ρln�1+𝑥𝑥
𝜗𝜗� − Ρln�1+𝑥𝑥+1

𝜗𝜗 �;    𝑥𝑥 = ℕ0, 𝜗𝜗 > 0,0 < Ρ < 1, (1.4) 

𝐹𝐹(𝑥𝑥;Ρ, 𝜗𝜗) = 1 − Ρln�1+𝑥𝑥
𝜗𝜗 �. (1.5) 

In order to ensure members of the Argentina and Uganda society from the risks arising from the spread of Corona-
Virus in Argentina and Uganda, this study aims to model the daily new cases and deaths of the COVID-19 employing a 
new statistical tool. An aspect of the importance of research is the necessity of mathematical and statistical modeling of 
the extent and spread of the Coronavirus. The discrete Marshall-Olkin Lomax distribution will be introduced that can 
be denoted as DMOL distribution. In sampling tanique’s see Almongy and Almetwaly (2018) and Saleh et al. (2020). 
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The rest of the paper is organized as follows. In Section 2, the survival discretization method. Discrete Marshall-Olkin 
Lomax distribution and maximum likelihood estimation of DMOLareintroduced in Section 3. Section 4 Simulation 
study by using bias and MSE to inference MLE estimator. Daily new cases of COVID-19 in the case of Argentina and 
Ugandaare used to validate the use of models in fitting lifetime count data are presented in Section 5. Finally, 
conclusions are provided in Section 6. 
 
2. SURVIVAL DISCRETIZATION METHOD 
 
In the statistics literature, sundry methods are available to obtain a discrete distribution from a continuous one. The 
most commonly used technique to generate discrete distribution is called a survival discretization method, it requires 
the existence of cumulative distribution function (CDF), survival function should be continuous and non‐negative and 
times are divided into unit intervals. The PMF of discrete distribution is defined in Roy (2003, 2004) as follows 

𝑃𝑃(𝑋𝑋 = 𝑥𝑥) = 𝑃𝑃(𝑥𝑥 ≤ 𝑋𝑋 ≤ 𝑥𝑥 + 1) = 𝑆𝑆(𝑥𝑥) − 𝑆𝑆(𝑥𝑥 + 1); 𝑥𝑥 = 0,1,2, …, (2.1) 
Where 𝑆𝑆(𝑥𝑥) = 𝑃𝑃(𝑋𝑋 ≥ 𝑥𝑥) = 𝐹𝐹(𝑥𝑥;Φ), where 𝐹𝐹(𝑥𝑥;Φ) is a CDF of continuous distribution and Φ is a vector of 
parameters. The random variable X is said to have the discrete distribution if its CDF is given by 

𝑃𝑃(𝑋𝑋 < 𝑥𝑥) = 𝐹𝐹(𝑥𝑥 + 1;Φ). 
The hazard rate is given by ℎ𝑟𝑟(𝑥𝑥) = 𝑃𝑃(𝑋𝑋=𝑥𝑥)

𝑆𝑆(𝑥𝑥)
. The reversed failure rate of discrete distribution is given as 𝑟𝑟𝑟𝑟𝑟𝑟(𝑥𝑥) =

𝑃𝑃(𝑋𝑋=𝑥𝑥)
1−𝑆𝑆(𝑥𝑥)

. 
 
3. DISCRETE MARSHALL-OLKIN LOMAX DISTRIBUTION  
 
In this Section, we introduce a new flexible discrete model, can be donated as discrete Marshall-OlkinLomax (DMOL) 
distribution. Parameter estimation of DMOL distribution are discussed by using MLE. 
1.1 The DMOL Distribution 
The continues Marshall-Olkin Lomax (MOL) distribution is introduced by Rao et al. (2009). The survival function, of 
the MOL distribution, is given by 

𝑆𝑆(𝑥𝑥;𝛾𝛾, 𝛿𝛿,𝜗𝜗) =
𝛾𝛾

�1 + 𝑥𝑥
𝜗𝜗
�
𝛿𝛿
− (1 − 𝛾𝛾)

;    𝑥𝑥 > 0,𝛾𝛾, 𝛿𝛿,𝜗𝜗 > 0, 

Using the survival discretization method and survival function of MOL distribution, we define the PMF of the DMOL 
distribution as given below 

𝑃𝑃(𝑥𝑥; 𝛾𝛾,𝛿𝛿, 𝜗𝜗) =
𝛾𝛾

�1 + 𝑥𝑥
𝜗𝜗
�
𝛿𝛿
− (1− 𝛾𝛾)

−
𝛾𝛾

�1 + 𝑥𝑥+1
𝜗𝜗
�
𝛿𝛿
− (1 − 𝛾𝛾)

; 𝑥𝑥 = 0,1,2, … 

Let 𝜌𝜌 = 𝑒𝑒−𝛿𝛿 then0 < 𝜌𝜌 < 1, the PMF can be rewritten as following 
𝑃𝑃(𝑥𝑥; 𝛾𝛾, 𝜗𝜗,𝜌𝜌) =

𝛾𝛾

𝜌𝜌−ln�1+𝑥𝑥
𝜗𝜗� − 1 + 𝛾𝛾

−
𝛾𝛾

𝜌𝜌− ln�1+𝑥𝑥+1
𝜗𝜗 � − 1 + 𝛾𝛾

. 

 
Figure 4 shows the PMF plots for different values of the model parameters. From Figure 4, the PMF of the DMOL 
distribution is unimodal and right-skewed. 

 
Figure-4: The PMF plots of the DMOL distribution. 
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The CDF of the DMOL distribution is given as below 

𝐹𝐹(𝑥𝑥; 𝛾𝛾,𝜗𝜗,𝜌𝜌) =
𝜌𝜌−ln�1+𝑥𝑥+1

𝜗𝜗 � − 1

𝜌𝜌−ln�1+𝑥𝑥+1
𝜗𝜗 � − (1 − 𝛾𝛾)

, 𝑥𝑥 ∈ ℕ0, 

Whereℕ0 = {0,1,2, … }. Survival function of the DMOL distribution is given by 
𝑆𝑆(𝑥𝑥; 𝛾𝛾, 𝜗𝜗,𝜌𝜌) =

𝛾𝛾

𝜌𝜌−ln�1+𝑥𝑥+1
𝜗𝜗 � − (1− 𝛾𝛾)

 

The hr function of the DMOL distribution is given by 

ℎ𝑟𝑟(𝑥𝑥;𝛾𝛾, 𝜗𝜗, 𝜌𝜌) =
𝜌𝜌− ln�1+𝑥𝑥+1

𝜗𝜗 � − 𝜌𝜌− ln�1+𝑥𝑥
𝜗𝜗 �

𝜌𝜌− ln�1+𝑥𝑥
𝜗𝜗� − 1 + 𝛾𝛾

, 𝑥𝑥 ∈ ℕ0. 

Figure 5 shows the HRF plots of the DMOL distribution. It is noted that the shape of the HRFis increasing, left-skewed 
and decreasing. 

 
Figure-5: The HRF plots of the DMOL distribution. 

1.2. Parameter Estimation 
The unknown parameters of the DMOL distribution are obtained by the maximum likelihood estimation (MLE) 
method. This method is based on the maximization of the log-likelihood for a given data set, assume that                   
𝒙𝒙 = (𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛 )𝑇𝑇  is a random sample of size n from a DMOL (𝛾𝛾,Ρ,𝜗𝜗) distribution. The log-likelihood function 
becomes 

𝑙𝑙(𝛾𝛾,𝜗𝜗, 𝜌𝜌) = 𝑛𝑛 ln(𝛾𝛾) +� ln �𝜌𝜌− ln�1+𝑥𝑥+1
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Hence, the likelihood equations are 
𝜕𝜕𝜕𝜕(𝛾𝛾, 𝜗𝜗, 𝜌𝜌)
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and  
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The estimate of the parameter by using MLE, which can be obtained by a numerical analysis such as the Newton–
Raphson algorithm. 



Gamal M. Ibrahim*/ Discrete Marshall–Olkin Lomax Distribution Application of COVID-19/ IJMA- 12(2), Feb.-2021. 

© 2021, IJMA. All Rights Reserved                                                                                                                                                                         11 

 
4. SIMULATION STUDY 

 
A simulation study is assumed to evaluate and compare the behavior of the estimates with respect to their bias and 
mean square error (MSE). We generate 10000 random sample 𝑥𝑥1,𝑥𝑥2, … ,𝑥𝑥𝑛𝑛  of sizes n = 50, 70, 130 and 200 from 
DMOL distribution. Different sets of parameters are obtained. 
 
The MLE of 𝛾𝛾,Ρ and 𝜗𝜗 are computed. Then, the bias and MSE of the estimates of the unknown parameters are 
computed. Simulated outcomes are listed in Tables 1-2 and the following observations are detected.  

 The bias and MSE decrease as sample sizes increase for all estimates (see Tables 1-2). 
 The bias and MSE of MLE for𝜌𝜌estimateisincreasing with increase 𝛾𝛾and fixed 𝜌𝜌, 𝜗𝜗. 
 The bias and MSE of MLE for𝜗𝜗,𝛾𝛾 estimates are decreasing with increase 𝛾𝛾 and fixed 𝜌𝜌, 𝜗𝜗. 
 The bias and MSE of MLE for𝜌𝜌 estimate is decreasing with increase 𝜌𝜌 and fixed 𝛾𝛾, 𝜗𝜗. 
 The bias and MSE of MLE for𝜗𝜗,𝛾𝛾 estimates are decreasing with increase 𝜗𝜗 and fixed 𝜌𝜌, 𝛾𝛾. 

 
Table-1: Bias and MSE of parameters of DMOL distribution when 𝜗𝜗 = 0.5 

𝛾𝛾 n 
P 0.3 0.5 0.7 
  Bias MSE Bias MSE Bias MSE 

0.25 

50 
𝛾𝛾 -0.1515 0.0414 -0.1537 0.0505 -0.0544 0.0192 
𝑃𝑃 0.4360 0.3316 0.2949 0.2211 0.0506 0.1091 
𝜗𝜗 0.6030 0.5218 0.4880 0.3437 0.5262 0.4554 

70 
𝛾𝛾 -0.1520 0.0387 -0.1494 0.0431 -0.0401 0.0127 
𝑃𝑃 0.4175 0.2767 0.2814 0.1759 -0.0082 0.0878 
𝜗𝜗 0.5568 0.4347 0.4397 0.2590 0.5172 0.4259 

130 
𝛾𝛾 -0.1504 0.0318 -0.1383 0.0320 -0.0254 0.0060 
𝑃𝑃 0.4043 0.2293 0.2230 0.1238 -0.1014 0.0452 
𝜗𝜗 0.5012 0.3338 0.4267 0.2167 0.4918 0.3872 

200 
𝛾𝛾 -0.1532 0.0301 -0.1304 0.0265 -0.0335 0.0050 
𝑃𝑃 0.3997 0.1936 0.1807 0.1049 -0.0360 0.0232 
𝜗𝜗 0.4660 0.2775 0.4070 0.1986 0.4640 0.2890 

0.85 

50 
𝛾𝛾 -0.1399 0.0297 -0.1395 0.0362 -0.0573 0.0150 
𝑃𝑃 0.7902 0.8076 0.5351 0.4654 0.1970 0.1701 
𝜗𝜗 0.5136 0.3677 0.4561 0.2842 0.6172 0.6072 

70 
𝛾𝛾 -0.1407 0.0275 -0.1388 0.0331 -0.0460 0.0102 
𝑃𝑃 0.7992 0.7841 0.5484 0.4771 0.0941 0.0945 
𝜗𝜗 0.4599 0.3057 0.4209 0.2311 0.5877 0.5549 

130 
𝛾𝛾 -0.1406 0.0243 -0.1370 0.0267 -0.0393 0.0052 
𝑃𝑃 0.7855 0.6964 0.5211 0.3931 0.0446 0.0284 
𝜗𝜗 0.4078 0.2312 0.3875 0.1721 0.4721 0.5189 

200 
𝛾𝛾 -0.1426 0.0237 -0.1312 0.0230 -0.0345 0.0045 
𝑃𝑃 0.7531 0.6301 0.4389 0.2636 0.0447 0.0150 
𝜗𝜗 0.4330 0.2257 0.4556 0.2332 0.4565 0.2673 

2 

50 
𝛾𝛾 -0.1224 0.0236 -0.1137 0.0263 -0.0507 0.0121 
𝑃𝑃 0.9215 1.1521 0.5627 0.5216 0.2652 0.2720 
𝜗𝜗 0.2527 0.1464 0.2473 0.1477 0.4834 0.7259 

70 
𝛾𝛾 -0.1227 0.0217 -0.1137 0.0249 -0.0429 0.0085 
𝑃𝑃 0.9049 1.0316 0.5072 0.5043 0.1689 0.1142 
𝜗𝜗 0.1820 0.1157 0.2744 0.1018 0.4517 0.6803 

130 
𝛾𝛾 -0.1242 0.0190 -0.1148 0.0198 -0.0403 0.0050 
𝑃𝑃 0.8821 0.9022 0.5274 0.3906 0.1640 0.0648 
𝜗𝜗 0.1333 0.0928 0.2541 0.0991 0.4448 0.3768 

200 
𝛾𝛾 -0.1230 0.0179 -0.1087 0.0164 -0.0369 0.0039 
𝑃𝑃 0.8241 0.7946 0.4676 0.2843 0.1847 0.0608 
𝜗𝜗 0.1851 0.0653 0.2261 0.0695 0.2709 0.1531 
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Table-2: Bias and MSE of parameters of DMOL distribution when 𝜗𝜗 = 1.5 

𝛾𝛾 𝑛𝑛 
𝑃𝑃 0.3 0.5 0.7 
  Bias MSE Bias MSE Bias MSE 

0.25 

50 
𝛾𝛾 -0.1481 0.0311 -0.1150 0.0244 -0.0212 0.0041 
𝑃𝑃 0.3245 0.1814 -0.0410 0.2402 -0.2424 0.2576 
𝜗𝜗 0.6917 0.6408 0.5741 0.4258 0.5388 0.5148 

70 
𝛾𝛾 -0.1472 0.0284 -0.1009 0.0204 -0.0221 0.0039 
𝑃𝑃 0.3016 0.1443 -0.0505 0.1114 -0.2165 0.2060 
𝜗𝜗 0.6491 0.5342 0.5020 0.3689 0.4604 0.3152 

130 
𝛾𝛾 -0.1421 0.0242 -0.1019 0.0156 -0.0280 0.0023 
𝑃𝑃 0.2565 0.0880 0.1333 0.0846 -0.1484 0.1405 
𝜗𝜗 0.5967 0.4252 0.5159 0.3030 0.3416 0.1810 

200 
𝛾𝛾 -0.1150 0.0206 -0.1036 0.0135 0.0006 0.0018 
𝑃𝑃 0.2082 0.0710 0.0997 0.0154 -0.0795 0.0571 
𝜗𝜗 0.5263 0.3457 0.4201 0.1971 0.2369 0.1615 

0.85 

50 
𝛾𝛾 -0.1188 0.0205 -0.0790 0.0133 -0.0188 0.0038 
𝜌𝜌 0.7455 0.7632 0.3334 0.2504 -0.0909 0.2665 
𝜗𝜗 0.8110 0.8771 0.5854 0.4763 0.6980 1.0220 

70 
𝛾𝛾 -0.1179 0.0185 -0.0677 0.0124 -0.0187 0.0034 
𝑃𝑃 0.7235 0.6241 0.0528 0.3256 -0.1037 0.1882 
𝜗𝜗 0.7541 0.7209 0.9016 1.0286 0.6208 0.6183 

130 
𝛾𝛾 -0.1067 0.0132 -0.0737 0.0093 -0.0201 0.0017 
𝑃𝑃 0.5682 0.3464 0.1605 0.1702 0.0123 0.0633 
𝜗𝜗 0.6776 0.5074 0.7044 0.5663 0.3796 0.2470 

200 
𝛾𝛾 -0.1017 0.0124 -0.0652 0.0060 -0.0032 0.0016 
𝑃𝑃 0.5278 0.2959 0.2579 0.0848 -0.1134 0.0525 
𝜗𝜗 0.6099 0.4423 0.4782 0.2582 0.3587 0.1994 

2 

50 
𝛾𝛾 -0.0758 0.0116 -0.0462 0.0075 -0.0139 0.0030 
𝑃𝑃 0.8163 0.9825 0.3933 0.4264 0.0711 0.2387 
𝜗𝜗 0.5548 0.4890 0.3942 0.3141 0.3773 0.4650 

70 
𝛾𝛾 -0.0783 0.0104 -0.0443 0.0080 -0.0010 0.0014 
𝑃𝑃 0.8742 0.9933 0.3173 0.3755 -0.0524 0.1580 
𝜗𝜗 0.4859 0.4351 0.3581 0.2905 0.2501 0.1891 

130 
𝛾𝛾 -0.0715 0.0066 -0.0496 0.0055 -0.0136 0.0009 
𝑃𝑃 0.7120 0.5551 0.2306 0.2700 0.0860 0.0945 
𝜗𝜗 0.4402 0.2436 0.2956 0.2015 0.1733 0.0562 

200 
𝛾𝛾 -0.0527 0.0041 -0.0346 0.0024 0.0206 0.0005 
𝑃𝑃 0.5275 0.3321 0.2819 0.1090 -0.0730 0.0424 
𝜗𝜗 0.3677 0.1600 0.2702 0.0896 0.1090 0.0398 

5. APPLICATION ANALYSIS 
 
In this section, the DMOL distribution is fitted to more famous fields of survival times of Covid-19 with different 
country including as Argentina and Uganda. We compare the fits of the discrete Marshall-Olkin generalized 
exponential (DMOGEx) [Almetwally et al. (2020)] model, discrete generalized exponential (DGEx) [Nekoukhou et al. 
(2013)], natural discrete Lindley (NDL) [Al-Babtain et al. (2020)], discrete Gompertzexponential (DGzEx)                
[El-Morshedy et al. (2020)], discrete Burr (DB) [Krishna and Pundir (2009)], discrete Lindley (DLi) [Gómez-Déniz 
and Calderín-Ojeda (2011)], discrete Lomax (DLo) [Para and Jan (2016)] and Geometric models in Tables 3, 4. 
 
Tables 3, 4 provide values of Cram´er-von Mises (W*), Anderson-Darling (A*) and Kolmogorov- Smirnov (KS) 
statistic along with its P-value for the all models fitted based on Two real data sets. In addition, these tables contain the 
MLE and standard errors (SEs) of the parameters for the considered models. The fitted DMOL, PMF, CDF, PP-plot 
and QQ-plot of the four data sets are displayed in Figures 6, 7, respectively. These figures indicate that the DMOL 
distribution get the lowest values of W*, A*, KS and largest P-value, among all fitted models. 
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Firstly: This is a COVID-19 data belong to Argentina of 80 days, that is recorded from 12 march to 30 May 2020. This 
data formed of daily new cases. The data are as follows: 2, 12, 14, 0, 11, 9, 32, 0, 27, 30, 0, 67, 76, 0, 201, 0, 87, 101, 
55, 75, 146, 88, 79, 132, 88, 98, 103, 74, 87, 80, 134, 46, 0, 277, 84, 141, 121, 96, 90, 55, 121, 113, 124, 143, 139, 222, 
137, 54, 127, 182, 103, 172, 56, 149, 118, 123, 154, 229, 225, 150, 244, 110, 244, 285, 410, 161, 345, 326, 263, 303, 
438, 474, 648, 718, 704, 723, 552, 600, 705, 769. 

 
Table-3: ML estimates, K-S, P-values, W* and A* for COVID-19 data in Argentina data 

Argentina   Estimate SE KS P-Value W* A* 

DMOL 
𝛾𝛾 7.9364 1.6938 

0.0852 0.6066 0.2099 1.3987 𝜗𝜗 67.7191 29.1580 
𝜌𝜌 0.1154 0.0663 

DB 𝛾𝛾 0.9540 0.2332 0.4032 0.0000 1.3864 7.9660 𝜗𝜗 0.7927 0.0486 
DLi D 0.9892 0.0008 0.1725 0.0171 0.2132 1.4183 

DGE 𝛾𝛾 0.9957 0.0006 0.1568 0.0392 0.2440 1.4638 𝜗𝜗 0.6938 0.0992 

DMOGE 
𝛼𝛼 0.2110 0.2130 

0.1196 0.2027 0.2958 1.7068 𝛾𝛾 8.0661 1.8739 
𝜗𝜗 0.0066 0.0011 

Geometric 𝜌𝜌 0.0055 0.0006 0.1024 0.3715 0.2409 1.4504 

DLo 𝛾𝛾 563.0061 269.7579 0.1336 0.1151 0.2991 1.7895 𝜗𝜗 0.0199 0.0131 
NDL 𝜌𝜌 0.0107 0.0008 0.1779 0.0127 0.2134 1.2840 

 
Figure-6: Estimated PMF, CDF, PP-plot and QQ-plot of DMOL for COVID-19 data in Argentina data 

 
Secondly: This is a COVID-19 data belong to Uganda of 37 days, that is recorded from 17 August to 22 September 
2020. This data formed of daily new cases. The data are as follows: 66, 60, 43, 53, 94, 0, 416, 97, 99, 64, 98, 0, 232, 0, 
132, 84, 65, 75, 176, 65, 186, 128, 109, 124, 201, 190, 86, 326, 96, 179, 145, 143, 114, 210, 427, 270 and 181. 
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Table-4: ML estimates, K-S, P-values, W* and A* for COVID-19 data in Uganda data 

Uganda   Estimate SE KS P-Value W* A* 

DMOL 
1 28.0782 30.3923 

0.0794 0.9739 0.0975 0.8405 2 79.0892 66.5930 
3 0.0234 0.0301 

DB 1 0.8884 0.2903 0.4924 0.0000 1.0596 5.9993 2 0.7781 0.0700 
DLi D 0.9856 0.0017 0.0932 0.9049 0.1896 1.3911 

DGE 1 0.9927 0.0015 0.2240 0.0488 0.2321 1.6519 2 1.0057 0.2245 

DMOGE 
1 0.0919 0.1045 

0.1233 0.6272 0.0990 0.8603 2 60.9921 71.9193 
3 0.0153 0.0027 

Geometric D 0.0073 0.0012 0.2253 0.0467 0.2320 1.6513 

DLo 1 563.0447 266.5164 0.2503 0.0194 0.3590 1.7250 2 0.0082 0.0168 
NDL D 0.0144 0.0017 0.0895 0.9281 0.1901 1.3944 

 

 
Figure-7: Estimated PMF, CDF, PP-plot and QQ-plot of DMOL for COVID-19 data in Uganda data 

 
6. CONCLUDING REMARKS 
 
In this article, with the aim of managing the risk of spreading Coronavirus in Argentina and Uganda, we proposed and 
studied the discrete Marshall–Olkin Lomax distribution. The maximum likelihood estimation method is discussed to 
estimate the parameter of DMOL distribution. Monte Carlo Simulations are obtained to evaluate the restricted sample 
properties of the DMOL distribution. We prove empirically that the DMOL model reveals its superiority over other 
competitive models as Marshall-Olkin generalized exponential, discrete generalized exponential, natural discrete 
Lindley, discrete Gompertz exponential, discrete Burr, discrete Lindley, discrete Lomax and Geometric for analysis 
daily new cases of the COVID-19 in the case of Argentina and Uganda. These figures indicate that the DMOL 
distribution gets the lowest values of W*, A*, KS, and the largest P-value, among all fitted models. 
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