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ABSTRACT 
In this paper we introduce and solve the radical quintic functional equation. 

( ) ( ) ( )5 5 5q u v q u q v ,+ = +  

in a quasi-β-Banach spaces and stability by using a subadditive function for the quintic functional equation in (β, p) - 
Banach spaces. 
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1. INTRODUCTION 
 
The problem of stability of functional equations originated from a question of S. M. Ulam [25] concerning the stability 
of group homomorphisms: 
 
“Let G1 be a group and G2 be a metric group with the metric d( . , . ). Given ε> 0, does there exists aδ> 0 such that if a 
mapping h:G1→G2 satisfies the inequality ( ) ( ) ( )( )d h u *v ,h u *h v ,< δ  for all u,v∈ G1, then there exist a 

homomorphism H:G1→G2with ( ) ( )( )d h u *H u ,< ε  for all u∈ G1?” 
 
If the answer is affirmative, we say that the equation of homomorphism 
 ( ) ( ) ( )H u * v H u *H v ,=  
is stable. The concept of stability for a functional equation comes when we replace the functional equation comes when 
we change the functional equation by an inequality which acts as a perturbation of the equation. Thus the stability 
problem of functional equations is how do the solutions of the inequality differ from those of the given functional 
equation? 
 
The first answer to Ulam’s question came within a year when D. H. Hyers [13] has excellently answered this problem 
of Ulam for Banach Spaces.  
 
“Let E1 and E2be Banach spaces. Consider f: E1→E2satisfies 
  

( ) ( ) ( )q u v q u q v ,+ − − ≤ ε  

for all u, v∈ E1and∈> 0. Then there exists a unique additive mapping T: E1→E2such that ( ) ( )q u T u ,− ≤ ε  for 

allu∈ E1. Then Aoki [1] and Bourgin [3] solved the stability problem with unbounded Cauchy differences.” 
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In 1978, an approach was made to weaken the condition for the bound of the norm of the Cauchy difference by Th. M. 
Rassias [21]. In 1991, Z. Gajda [7] as well as by Rassias and Semrl [22] that one cannot prove a stability theorem of the 
additive equation for a specific function. P. Gavruta [8] gave a further generalization by replacing the Cauchy 
differences by a Control mapping in the spirit of Rassias approach. In the last few years several mathematicians have 
published on various generalizations and applications of generalized Hyers-Ulam stability to a number of functional 
equations and mappings (see for instance [4, 9-11, 6, 14-16, 19, 23]). In 2005, Lee, Im and Hawng [18] solved the 
cubic functional equation satisfying the mapping ( ) 3q x dx= is a solution of that cubic functional equation.  
 
“In 2010, Cho, Kang and Koh [27] used the following functional equation 
 

( )2q 2u v+ + ( )2q 2u v− + ( ) ( )q u 2v q u 2v+ + − 20= ( ) ( )q u v q u v+ + −   ( )90q u .+
   

(1.1) 

It is easy to see that the mapping ( ) 5q x du=  is a solution of the functional equation (1.1), which is called the quintic 
functional equation.” 
 
Recently, the stability problem of the radical functional equations in various spaces was proved in [26, 27, 5, 2]. 
 
Before we present our results, we may define some basic definitions. 
 
Definition 1.1: [27] “Let E1 be a linear space and let E2 be a real complete linear space. Then a mapping f: E1→E2 is 
called quintic if the quintic functional equation. 
   ( ) ( )2q 2u v 2q 2u v+ + − ( ) ( )q u 2v q u 2v+ + + − = 20 ( ) ( )q u v q u v+ + −   ( )90q u ,+

    

(1.2) 

holds for all u, v∈ E1. 
 
Note that the mapping f is called quintic because of the following algebraic identity. 

( ) ( ) ( ) ( )5 5 5 52 2u v 2 2u v u 2v u 2v+ + − + + + − = ( ) ( )5 520 u v u v + + − 
590u ,+

               

(1.3) 

holds for every u, v∈ E1.” 
 
Let β be a real number with 0 1< β ≤  and K be either R or C. 
 
Definition 1.2[27]:  “Let E1 be a linear space over K. A quasi-β-norm .  is a real- valued function on E1 satisfying the 
following conditions: 

1. u 0≥ for all 1u E∈  and u 0=  if and only if u=0, 

2. u . uβλ = λ for allλ∈R and u∈ E1. 

3. There is a constant K ≥ 1 such that ( )u v K u v+ ≤ + for everyu,v∈ E1. 

Then ( )1E , .  is called a quasi- β -normed space with norm . .A quasi -β-Banach space is a complete quasi- β -

normed space.” 
 

A quasi – β -norm .  is called a (β, p) – norm ( )0 p 1< ≤  if
p pu v u v+ ≤ +  for everyu, v∈ E1. In this case, a 

quasi - β - Banach space is called a (β, p) – Banach space. For more information, readers are referred to [12, 17, 24]. 
 
In this paper, we introduce the following quintic functional equation. 

 ( ) ( ) ( )5 5 5"q u v q u q v ."+ = +                                                                        (1.4) 

 
We use a direct method to prove the Hyers-Ulam stability of the functional equation (1.4) in a quasi – β - normed 
spaces. 
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2. SOLUTION OF EQUATION (1.4) 
 
During this section, R, Z and Q denote the sets of real, integer and rational numbers respectively and E1 a linear space. 
 
Theorem 2.1: If a function 1q : R E→  satisfies the functional equation (1.4), then f is a quintic function.  
 
Proof: Lettingu = v = 0 in (1.4), we find q (0) = 0. 
 
Putting v = u in (1.4), we have ( ) ( )q u q u− = −  for every u∈ R.  
 

Letting v = u in (1.4), we find that ( ) ( )5q 2u 2q u=  for all u∈ R. Putting 5v 2 u= in (1.4) and using

( ) ( )5q 2u 2q u= ,we have ( ) ( )5 5q 3u 3q u= for all u∈R. By induction, we get ( ) ( )5 5q nu n q u=  for all 

u∈R and n∈ Z. We have 

  ( )5

u 1q q u ,
nn

  = 
 

 

and so, 

  ( )5
m mq q u ,
n n

 
=  

 
 

for all u∈ R and m, n ∈ Z. So, we get 

  ( ) ( )5q ru r q u ,=                                                                                        (2.1) 

for every u∈ R and r ∈ Q. 
 

Replacing u and v by 5 u and 5 v in (1.4) respectively, we get 

 ( ) ( )5 5 5q u v q u v+ = + ,                                                                                                                       (2.2) 

for all u, v∈ R. Putting u = 2u + v, v = 2u – vin (1.4), using (2.1)and (2.2), we have 

 
( ) ( ) ( )

( ) ( ) ( )
5 5 3 2 4

5 53 2 4

q 2u v q 2u v q 64u 160u v 20uv

64q u 160q u v 20q uv ,

+ + − = + +

= + +
                                                 (2.3)  

for all u, v∈ R. Now, putting u = u + 2v and v = u – 2v in (1.4) and using (2.1) and (2.2), we have 

 
( ) ( ) ( )

( ) ( ) ( )
5 5 3 2 4

5 53 2 4

q u v q u 2v q 2u 80u v 160uv

2q u 80q u v 160q uv ,

+ + − = + +

= + +
                                                    (2.4) 

for all u, v∈ R. Replacing u by u + v and v by u – v in (1.4), and using (2.1) and (2.2), we get 

 
( ) ( ) ( )

( ) ( ) ( )
5 5 3 2 4

5 53 2 4

q u v q u v q 2u 20u v 10uv

2q u 20q u v 10q uv ,

+ + − = + +

= + +
                                

(2.5)

 

for all u, v∈ R. Now using (2.3), (2.4) and (2.5), we obtain that q satisfies (1.1), that is      

 

( ) ( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )

5 53 2 4

2q 2u v 2q 2u v q u 2v q u 2v

130q u 400q u v 200q uv ,

20 q u v q u v 90q u ,

+ + − + + + −

= + +

= + + − +                                                                    (2.6)

 

 
Hence, q is quintic function and this completes the proof. 
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3. APPROXIMATION OF THE RADICAL CUBIC FUNCTIONAL EQUATION (1.4) 
 
During this section, we tend to modify the generalized Hyers-Ulam stability of the radical equation (1.4) in quasi – β -
normed spaces and (β, p) - Banach spaces respectively.    
 
First, let E1 be a quasi – β -Banach space and letφ: R × R → [0, ∞) be a function. A function q: R → E1 is said to be    
“φ- approximately radical quintic function” if  

 ( ) ( ) ( ) ( )5 5 5q u v q u q v u, v .+ − − ≤ φ                                                                        (3.1) 

 
Theorem 3.1: Let q: R → E1 be a “φ - approximately radical quintic function” with q(0) = 0. Consider a function          
φ: R → [0, ∞) satisfies 

 ( )
j j j

5 5

j 1

1u 2 u,2 v ,
2

∞

β
=

   Φ = φ < ∞     
∑  

and 

  ( )n n
5 5

nn

1lim 2 u, 2 v 0,
2β→∞

φ =  

for all u, v ∈ R, then the limit 

 ( ) ( )n
5

nn

1Q* u lim q 2 u ,
2→∞

=  

exists for all u ∈ R and there exists a  function Q*: R → E1 fulfilling the functional equation (1.4) and the inequality  

 ( ) ( ) ( )Kq u Q* u u ,
2β− ≤ Φ                                                                                                                    (3.2) 

for every u ∈ R. 
 
Proof: Substituting v = u in (3.1), we have 

 ( ) ( ) ( )5q 2u 2q u u,u ,− ≤ φ                                                                                                                   (3.3) 

and so 

 ( ) ( ) ( )51 1q u q 2u u,u ,
2 2β− ≤ φ                                                                                                            (3.4) 

for every u ∈ R. For any integers m, k with m > k ≥ 0, 

 ( ) ( )
jm 1 j jk m

5 52 2
k m

j k

1 1 K 1q 2 u q 2 u 2 u,2 u ,
2 2 2 2

−

β β
=

   − ≤ φ     
∑                                                            (3.5) 

for every u ∈ R. Then a sequence ( )n
2

n

1 q 2 u
2

 
 
 

 is a Cauchy sequence in a quasi – β – Banach space E1 and so it 

converges. We can define a function Q*: R → E1 by 

 ( ) ( )n
5

nn

1u lim q 2 u
2

Q ,*
→∞

=  

for every u ∈ R. From (3.1), the following inequality holds: 

 

( ) ( ) ( )

( ) ( ) ( )
( )

5 5 5

n n5 n 5 n 5 5 5
nn

n n
5 5

nn

Q* Q* Q*

Q* Q*

u v u v

1lim 2 u 2 v 2 u 2 v
2
1lim 2 u, 2 v 0,

2

Q*β→∞

β→∞

+ − −

= + − −

= φ =

 

for all u, v ∈ R. Hence 

 ( ) ( ) ( )5 5 5Q* Qu v u ,* v 0Q*+ − − =  
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and by Theorem 2.1, F is a radical quintic function. Putting the limit m tends to ∞ in (3.5), with k equal to zero, we get 
a function F satisfies 

 ( ) ( ) ( )Kq u u* uQ .
2β− ≤ Φ  

Now, we consider that there exists another quintic function G: R → E1 which assures the functional equation (1.4) and 

inequality (3.2). Since G satisfies (3.2), it is straight forward to point out that ( ) ( )
n n5G 2 u 2 G u ,=  for every u ∈ R 

and n ≥ 1. Then we get 

 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

( )

n n
5 5

n n

n n n n
5 5 5 5

n

n
5

n

1 1u G u 2 u G 2 u
2 2

K 2 u q 2 u q 2 u G 2 u
2
K 2 u , for all u R

Q*

.
2

Q*

Q*β

β

− = −

 ≤ − + − 
 

≤ Φ ∈

 

Making n tends to ∞, we have Q* (u) = G(u) for all u ∈ R. 
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