
������������	
������	
�
�����������	
��������������
�����
�����
����������
 Available online through www.ijma.info  �������������	
��

International Journal of Mathematical Archive- 2 (10), Oct. – 2011                                                                                              1909 

 

On vg-closed sets 
 

S. Balasubramanian* 
 

Department of Mathematics, Government Arts College (Autonomous), Karur-639 005 (T.N), India 

E-mail: mani55682@rediffmail.com 

 
(Received on: 14-09-11; Accepted on: 05-10-11) 

________________________________________________________________________________________________ 

 

ABSTRACT 

The object of the present paper is to study the notions of minimal vg-closed set, maximal vg-open set, minimal vg-open 

set and maximal vg-closed set and their basic properties are studied. 
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1. INTRODUCTION: 

 

Norman Levine introduced the concept of generalized closed sets in topological spaces. After him many authors 

concentrated in this direction and defined more than 25 types of generalized closed sets. Nakaoka and Oda have 

introduced minimal open sets and maximal open sets, which are subclasses of open sets. A. Vadivel and K. 

Vairamanickam introduced a new class of sets called maximal rgα-open sets by maximal rgα-closed sets in topological 

spaces. They are the subclasses of rgα-closed sets respectively. Some of the properties are obtained. It was proved that 

the complement minimal rgα-open sets is maximal rgα-closed set. Also, maximal rgα-open sets and minimal rgα-

closed sets in topological spaces are introduced. It is observed that the complement of maximal rgα-open is minimal 

rgα-closed sets in his paper. The Author of this paper studied about vg-closed sets, vg-continuity, and vg-separation 

axioms. Recently the Author of the paper introduced a new class of sets called minimal v-open sets and maximal v-open 

sets in topological spaces. Inspired with these developments the author of the present paper further study a new type of 

closed and open sets namely minimal vg-closed sets, maximal vg-open sets, minimal vg-open sets and maximal vg-

closed sets   Throughout the paper a space X means a topological space (X, τ). The class of vg-closed sets are denoted 

by vGC(X).  For any subset A of X its complement, interior, closure, vg-interior, vg-closure are denoted respectively by 

the symbols A
c
, A

o
, A

–
, vg(A)

0
 and vg(A)

 –
. 

 
2. PRELIMINARIES: 

 

Definition 2.01: A ⊂ X is said to be regularly open if A = (A–) 0 [resp: semi open; v-open] if ∃∃∃∃ an [resp: regular] open 

set U such that U⊂A⊂U –]. The complement of v-open set is denoted as v-closed set.  

 

Note 1: Clearly RO(X)⊂ vO(X)⊂ SO(X) .but the reverse implications do not hold well.  

 

Definition 2.02: Let A⊂X. 

(i)   A point x∈A is the vg-interior point of A iff ∃ G∈vgO(X, τ) such that x∈G⊂A. 

(ii)  A point Xx ∈ is said to be an vg-limit point of A iff for each U∈vgO(X), U∩(A∼{x}) ≠ φ. 

(iii) A point x∈A is said to be vg-isolated point of A if ∃ U∈vgO(X) such that U∩A = {x}. 

 

Definition 2.03: Let A⊂ X.   

(i)  Then A is said to be vg-discrete if each point of A is vg-isolated point of A.  The set of all vg-isolated points of A is 

denoted by Ivg(A). 

(ii)  For any A⊂ X, the intersection of all vg-closed sets containing A is called the vg-closure of A and is denoted by 

vg(A)–. 

(iii) For any A⊂ X, A ∼ vg(A)0 is said to be vg-border or vg-boundary of A and is denoted by Bvg(A). 

(iv) For any A⊂ X, vg[vg(X∼A)–]0 is said to be the vg-exterior A ⊂ X and is denoted by vg(A)e. 

 

Definition 2.04: The set of all vg-interior points A is said to be vg-interior of A and is denoted by vg(A)0. 

------------------------------------------------------------------------------------------------------------------------------------------------ 
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Theorem 2.01: (i) Let A⊆Y⊆X and Y is regularly open subspace of X then A∈vgO(Y, τ/Y) iff Y is vg-open in X 

(ii) Let Y⊆X and A is a vg- neighborhood of x in Y.  Then A is vg-neighborhood of x in Y iff Y is vg-open in X. 

 

Theorem 2.02 Arbitrary intersection of vg-closed sets is vg-closed. More Precisely, Let {Ai: i ∈  I} be a collection of 

vg-closed sets, then ∩i∈ IAi is again vg-closed.  

 

Note 2: Finite union and finite intersection of vg-closed sets is not vg-closed in general.    

 

Theorem 2.03: Let X = X1×X2. Let A1∈vgC(X1) and A2∈vgC(X2), then A1×A2∈vgC(X1×X2). 

 

3. Minimal vg-open Sets and Maximal vg-closed Sets: 

 

 We now introduce minimal vg-open sets and maximal vg-closed sets in topological spaces as follows.  

 

Definition 3.1: A proper nonempty vg-open subset U of X is said to be a minimal vg-open set if any vg-open set 

contained in U is φ or U. 

 

Remark 1: Every Minimal open set is a minimal vg-open set but converse is not true:  

 

Example 1: Let X = {a, b, c, d}; τ = {φ, {a}, {a, b, c}, X}. {a} is both Minimal open set and  Minimal vg-open set but 

{b} and {c} are Minimal vg-open but not Minimal open.  

 

Remark 2: From the above example and known results we have the following implications 

 

Theorem 3.1: 

(i) Let U be a minimal vg-open set and W be a vg-open set. Then U ∩ W= φ or U ⊂  W. 

(ii) Let U and V be minimal vg-open sets. Then U ∩ V=φ or U=V. 

 

Proof:  

(i) Let U be a minimal vg-open set and W be a vg-open set. If U ∩ W = φ, then there is nothing to prove. 

If U ∩ W ≠≠≠≠ φ.  Then U ∩W ⊂ U. Since U is a minimal vg-open set, we have U ∩ W = U. Therefore U ⊂  W. 

 

(ii) Let U and V be minimal vg-open sets. If U∩V ≠≠≠≠ φ, then U ⊂  V and V ⊂  U by (i). Therefore U = V.   

 

Theorem 3.2: Let U be a minimal vg-open set. If x∈U, then U ⊂ W for any regular open neighborhood W of x.  

 

Proof: Let U be a minimal vg-open set and x be an element of U. Suppose ∃ a regular open neighborhood W of x such 

that U ⊄ W. Then U ∩ W is a vg-open set such that U ∩ W ⊂  U and U ∩ W ≠≠≠≠ φ. Since U is a minimal vg-open set, 

we have U∩ W =U. That is U ⊂  W, which is a contradiction for U ⊄ W. Therefore U ⊂ W for any regular open 

neighborhood W of x.    

 

Theorem 3.3: Let U be a minimal vg-open set. If x∈U, then U ⊂ W for some vg-open set W containing x. 

 

Theorem 3.4: Let U be a minimal vg-open set. Then U = ∩{W: W∈vgO(X, x)} for any element x of U.  

 

Proof: By theorem[3.3] and U is vg-open set containing x, we have U ⊂ ∩{ W: W∈vgO(X, x)} ⊂ U.  

 

Theorem 3.5: Let U be a nonempty vg-open set. Then the following three conditions are equivalent. 

 

(i) U is a minimal vg-open set 

(ii) U ⊂ vg(S) – for any nonempty subset S of U 

(iii) vg(U) – = vg(S) – for any nonempty subset S of U.  

 

Proof: (i) � (ii) Let x∈U; U be minimal vg-open set and S(≠≠≠≠ φ) ⊂ U. By theorem[3.3], for any vg-open set W 

containing x, S ⊂ U ⊂ W � S ⊂ W. Now S = S∩U ⊂ S∩W. Since S≠≠≠≠ φ, S∩W ≠≠≠≠ φ. Since W is any vg-open set 

containing x, by theorem [5.03], x∈vg(S) –. That is x∈U � x∈vg(S) – � U ⊂ vg(S) –  for any nonempty subset S of U. 

 

(ii) � (iii) Let S be a nonempty subset of U. That is S ⊂ U � vg(S) – ⊂ vg(U) – → (1). Again from (ii) U ⊂ vg(S) – for 

any S(≠≠≠≠ φ) ⊂ U � vg(U) – ⊂ vg(vg(S) –)– = vg(S) –. That is vg(U) – ⊂ vg(S) – → (2).  

 

From (1) and (2), we have vg(U) – = vg(S) – for any nonempty subset S of U. 
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(iii) � (i) From (3) we have vg(U) – = vg(S) – for any nonempty subset S of U. Suppose U is not a minimal vg-open set. 

Then ∃ a nonempty vg-open set V such that V ⊂  U and V ≠≠≠≠ U. Now ∃ an element a in U such that a∉V � a∈Vc. That 

is vg({a})– ⊂ vg(Vc)– = Vc, as Vc is vg-closed set in X. It follows that vg({a})– ≠≠≠≠ vg(U)–. This is a contradiction for 

vg({a})– = vg(U) – for any {a}(≠≠≠≠ φ) ⊂ U. Therefore U is a minimal vg-open set.   

 

Theorem 3.6: Let V be a nonempty finite vg-open set. Then ∃ at least one (finite) minimal vg-open set U such that 

U ⊂ V. 

 

Proof: Let V be a nonempty finite vg-open set. If V is a minimal vg-open set, we may set U = V. If V is not a minimal 

vg-open set, then ∃ (finite) vg-open set V1 such that φ ≠≠≠≠ V1 ⊂ V. If V1 is a minimal vg-open set, we may set U = V1. If 

V1 is not a minimal vg-open set, then ∃ (finite) vg-open set V2 such that φ ≠≠≠≠ V2 ⊂  V1. Continuing this process, we have 

a sequence of vg-open sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process repeats only 

finitely. Then finally we get a minimal vg-open set U = Vn for some positive integer n.   

  

 [A topological space X is said to be locally finite space if each of its elements is contained in a finite open set.]  

 

Corollary 3.1: Let X be a locally finite space and V be a nonempty vg-open set. Then ∃ at least one (finite) minimal 

vg-open set U such that U ⊂  V.  

 

Proof: Let X be a locally finite space and V be a nonempty vg-open set. Let x in V. Since X is locally finite space, we 

have a finite open set Vx such that x in Vx. Then V∩Vx is a finite vg-open set. By Theorem 3.6 ∃ at least one (finite) 

minimal vg-open set U such that U ⊂  V∩Vx. That is U ⊂ V∩Vx ⊂ V. Hence ∃ at least one (finite) minimal vg-open 

set U such that U ⊂ V.    

 

Corollary 3.2: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal vg-open set U such that U ⊂ V.  

 

Proof: Let V be a finite minimal open set. Then V is a nonempty finite vg-open set. By Theorem 3.6, ∃ at least one 

(finite) minimal vg-open set U such that U ⊂ V.     

 

Theorem 3.7: Let U; Uλ be minimal vg-open sets for any element λ∈Γ. If U ⊂ ∪∪∪∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 

that U = Uλ.  

 

Proof: Let U ⊂ ∪∪∪∪λ∈ΓUλ. Then U ∩(∪∪∪∪λ∈ΓUλ) = U. That is ∪∪∪∪λ∈Γ(U ∩ Uλ) = U. Also by theorem [3.1] (ii), U ∩ Uλ = φ or 

U=Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ.      

 

Theorem 3.8: Let U; Uλ be minimal vg-open sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪∪∪∪λ∈ΓUλ) ∩ U= φ.  

 

Proof: Suppose that (∪∪∪∪λ∈ΓUλ) ∩ U≠≠≠≠ φ. That is ∪∪∪∪λ∈Γ(Uλ ∩ U) ≠≠≠≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠≠≠≠ φ. By 

theorem 3.1(ii), we have U=Uλ, which contradicts the fact that U ≠≠≠≠ Uλ for any  λ∈Γ. Hence (∪∪∪∪λ∈ΓUλ) ∩ U = φ.     

 

We now introduce maximal vg-closed sets in topological spaces as follows. 

 

Definition 3.2: A proper nonempty vg-closed F ⊂ X is said to be maximal vg-closed set if any vg-closed set containing 

F is either X or F.  

 

Remark 3: Every Maximal closed set is maximal vg-closed set but not conversely 

 

Example 2: In Example 1, {b, c, d} is Maximal closed and Maximal vg-closed but {a, b, d} and {a, c, d} are Maximal 

vg-closed but not Maximal closed.   

 

Remark 4: From the known results and by the above example we have the following implications: 

 

Theorem 3.9: A proper nonempty subset F of X is maximal vg-closed set iff X-F is a minimal vg-open set. 

 

Proof: Let F be a maximal vg-closed set. Suppose X-F is not a minimal vg-open set. Then ∃∃∃∃ vg-open set U ≠≠≠≠ X-F such 

that φ ≠≠≠≠ U ⊂  X-F. That is F ⊂  X-U and X-U is a vg-closed set which is a contradiction for F is a minimal vg-open set. 

 

Conversely let X-F be a minimal vg-open set. Suppose F is not a maximal vg-closed set. Then ∃∃∃∃ vg-closed set E ≠≠≠≠ F 

such that F ⊂  E ≠≠≠≠ X. That is φ ≠≠≠≠ X-E ⊂  X-F and X-E is a vg-open set which is a contradiction for X-F is a minimal 

vg-open set. Therefore F is a maximal vg-closed set.   

 

Theorem 3.10:  

(i) Let F be a maximal vg-closed set and W be a vg-closed set. Then F∪W = X or W ⊂ F. 
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(ii) Let F and S be maximal vg-closed sets. Then F ∪ S=X or F=S. 

 

Proof: (i) Let F be a maximal vg-closed set and W be a vg-closed set. If F∪ W=X, then there is nothing to prove. 

Suppose F ∪ W ≠≠≠≠ X. Then F ⊂  F ∪ W. Therefore F∪W = F � W ⊂ F. 

 

(ii) Let F and S be maximal vg-closed sets. If F∪S ≠≠≠≠ X, then we have F ⊂ S and S ⊂ F by (i). Therefore F = S.  

 

Theorem 3.11: Let F be a maximal vg-closed set. If x is an element of F, then for any vg-closed set S containing x, F ∪ 

S=X or S ⊂  F. 

 

Proof: Let F be a maximal vg-closed set and x is an element of F. Suppose ∃∃∃∃ vg-closed set S containing x such that F ∪ 

S ≠≠≠≠ X. Then F ⊂  F ∪ S and F ∪ S is a vg-closed set, as the finite union of vg-closed sets is a vg-closed set. Since F is a 

vg-closed set, we have F ∪ S=F. Therefore S ⊂  F.    

 

Theorem 3.12: Let Fα, Fβ, Fδ be maximal vg-closed sets such that Fα ≠≠≠≠ Fβ. If Fα ∩ Fβ ⊂  Fδ, then either Fα = Fδ or Fβ = 

Fδ 

 

Proof: Given that Fα ∩ Fβ ⊂  Fδ. If Fα = Fδ then there is nothing to prove.  

 

If Fα ≠≠≠≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 3.10 (ii)) = Fβ 

∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)   

= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂  Fδ) = (Fα ∪ Fδ) ∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal vg-closed sets by 

theorem[3.10](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ =Fβ � Fβ ⊂  Fδ Since Fβ and Fδ are maximal vg-closed sets, we 

have Fβ = Fδ Therefore Fβ = Fδ  

 

Theorem 3.13: Let Fα, Fβ and Fδ be different maximal vg-closed sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 

 

Proof: Let (Fα ∩ Fβ) ⊂  (Fα ∩ Fδ) � (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂  (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) � (Fα ∪ Fδ) ∩ Fβ ⊂  Fδ ∩  

(Fα ∪ Fβ). Since by theorem 3.10(ii), Fα ∪ Fδ=X and Fα ∪ Fβ=X � X ∩ Fβ ⊂  Fδ ∩ X � Fβ ⊂  Fδ From the definition 

of maximal vg-closed set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to 

each other. Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).   

 

Theorem 3.14: Let F be a maximal vg-closed set and x be an element of F. Then F= ∪ {S: S is a vg-closed set 

containing x such that F ∪ S ≠≠≠≠ X}. 

 

Proof: By theorem 3.12 and fact that F is a vg-closed set containing x, we have F ⊂ ∪{S: S is a vg-closed set 

containing x such that F ∪ S ≠≠≠≠ X} – F. Therefore we have the result. 

 

Theorem 3.15: Let F be a proper nonempty cofinite vg-closed set. Then ∃ (cofinite) maximal vg-closed set E such that 

F ⊂  E. 

 

Proof: If F is maximal vg-closed set, we may set E=F. If F is not a maximal vg-closed set, then ∃ (cofinite) vg-closed 

set F1 such that F ⊂ F1 ≠≠≠≠ X. If F1 is a maximal vg-closed set, we may set E = F1. If F1 is not a maximal vg-closed set, 

then ∃ a (cofinite) vg-closed set F2 such that F ⊂ F1 ⊂ F2 ≠≠≠≠ X. Continuing this process, we have a sequence of vg-

closed, F ⊂  F1 ⊂ F2 ⊂  ... ⊂ Fk ⊂  .... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a 

maximal vg-closed set E = En for some positive integer n.   

 

Theorem 3.16: Let F be a maximal vg-closed set. If x is an element of X-F. Then X-F ⊂  E for any vg-closed set E 

containing x. 

 

Proof: Let F be a maximal vg-closed set and x in X-F. E ⊄ F for any vg-closed set E containing x. Then E ∪ F = X by 

theorem  3.10(ii). Therefore X-F ⊂  E.  

 

4. Minimal vg-Closed set and Maximal vg-open set: 

 

 We now introduce minimal vg-closed sets and maximal vg-open sets in topological spaces as follows.  

 

Definition 4.1: A proper nonempty vg-closed subset F of X is said to be a minimal vg-closed set if any vg-closed set 

contained in F is φ or F. 

 

Remark 5: Every Minimal closed set is minimal vg-closed set but not conversely: 
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Example 3: Let X = {a, b, c, d}; τ = {φ, {b}, {a, b}, {b, c}, {a, b, c}, X}. {d} is both Minimal closed set and  Minimal 

vg-closed set but {a}, {b} and {c} are Minimal vg-closed but not Minimal closed.  

 

Definition 4.2: A proper nonempty vg-open U ⊂ X is said to be a maximal vg-open set if any vg-open set containing 

U is either X or U.  

 

Remark 6: Every Maximal open set is maximal vg-open set but not conversely. 

 

Example 4: In Example 3. {a, b, c} is Maximal open set and maximal vg-open set but {a, b, d}, {a, c, d} and {b, c, d} 

are Maximal vg-open but not maximal open.  

 

Theorem 4.1: A proper nonempty subset U of X is maximal vg-open set iff X-U is a minimal vg-closed set. 

 

Proof: Let U be a maximal vg-open set. Suppose X-U is not a minimal vg-closed set. Then ∃ vg-closed set V ≠≠≠≠ X-U 

such that φ ≠≠≠≠ V ⊂  X-U. That is U ⊂  X-V and X-V is a vg-open set which is a contradiction for U is a minimal vg-

closed set. Conversely let X-U be a minimal vg-closed set. Suppose U is not a maximal vg-open set. Then ∃ vg-open set 

E ≠≠≠≠ U such that U ⊂  E ≠≠≠≠ X. That is φ ≠≠≠≠ X-E ⊂  X-U and X-E is a vg-closed set which is a contradiction for X-U is a 

minimal vg-closed set. Therefore U is a maximal vg-closed set. 

 

Lemma 4.1: 

(i) Let U be a minimal vg-closed set and W be a vg- closed set. Then U ∩ W= φ or U subset W. 

(ii) Let U and V be minimal vg- closed sets. Then U ∩ V=φ or U=V. 

 

Proof:  

(i) Let U be a minimal vg-closed set and W be a vg-closed set. If U ∩ W = φ, then there is nothing to prove. 

If U ∩ W ≠≠≠≠ φ.  Then U ∩W ⊂ U. Since U is a minimal vg-closed set, we have U ∩ W = U. Therefore U ⊂  W. 

 

(ii) Let U and V be minimal vg-closed sets. If U∩V ≠≠≠≠ φ, then U ⊂  V and V ⊂  U by (i). Therefore U = V.   

 

Theorem 4.2: Let U be a minimal vg-closed set. If x∈U, then U ⊂ W for any regular open neighborhood W of x.  

 

Proof: Let U be a minimal vg-closed set and x be an element of U. Suppose ∃ an regular open neighborhood W of x 

such that U ⊄ W. Then U ∩ W is a vg-closed set such that U ∩ W ⊂  U and U ∩ W ≠≠≠≠ φ. Since U is a minimal vg-

closed set, we have U∩ W =U. That is U ⊂  W, which is a contradiction for U ⊄ W. Therefore U ⊂ W for any regular 

open neighborhood W of x.    

 

Theorem 4.3: Let U be a minimal vg-closed set. If x∈U, then U ⊂ W for some vg-closed set W containing x. 

 

Theorem 4.4: Let U be a minimal vg-closed set. Then U = ∩{W: W∈vgO(X, x)} for any element x of U.  

 

Proof: By theorem[4.3] and U is vg-closed set containing x, we have U ⊂ ∩{ W: W∈vgO(X, x)} ⊂ U.  

 

Theorem 4.5: Let U be a nonempty vg-closed set. Then the following three conditions are equivalent. 

(i) U is a minimal vg-closed set 

(ii) U ⊂ vg(S) – for any nonempty subset S of U 

(iii) vg(U) – = vg(S) – for any nonempty subset S of U.  

 

Proof: (i) � (ii) Let x∈U; U be minimal vg-closed set and S(≠≠≠≠ φ) ⊂ U. By theorem[4.3], for any vg-closed set W 

containing x, S ⊂ U ⊂ W � S ⊂ W. Now S = S∩U ⊂ S∩W. Since S≠≠≠≠ φ, S∩W ≠≠≠≠ φ. Since W is any vg-closed set 

containing x, by theorem[4.3], x∈vg(S) –. That is x∈U � x∈ vg(S) – � U ⊂  vg(S) –  for any nonempty subset S of U. 

 

(ii) � (iii) Let S be a nonempty subset of U. That is S ⊂ U � vg(S) – ⊂ vg(U) – → (1). Again from (ii) U ⊂ vg(S) – for 

any S(≠≠≠≠ φ) ⊂ U � vg(U) – ⊂ vg(vg(S) –)– = vg(S) –. That is vg(U) – ⊂ vg(S) – → (2). From (1) and (2), we have vg(U) – = 

vg(S) – for any nonempty subset S of U. 

 

(iii) � (i) From (3) we have vg(U) – = vg(S) – for any nonempty subset S of U. Suppose U is not a minimal vg-closed 

set. Then ∃ a nonempty vg-closed set V such that V ⊂  U and V ≠≠≠≠ U. Now ∃ an element a in U such that a∉V � a∈Vc. 

That is vg({a})– ⊂ vg(Vc)– = Vc, as Vc is vg-closed set in X. It follows that vg({a})– ≠≠≠≠ vg(U)–. This is a contradiction for 

vg({a})– = vg(U) – for any {a}(≠≠≠≠ φ) ⊂ U. Therefore U is a minimal vg-closed set.   

 

Theorem 4.6: Let V be a nonempty finite vg-closed set. Then ∃ at least one (finite) minimal vg-closed set U such that 

U ⊂ V. 
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Proof: Let V be a nonempty finite vg-closed set. If V is a minimal vg-closed set, we may set U = V. If V is not a 

minimal vg-closed set, then ∃ (finite) vg-closed set V1 such that φ ≠≠≠≠ V1 ⊂ V. If V1 is a minimal vg-closed set, we may 

set U = V1. If V1 is not a minimal vg-closed set, then ∃ (finite) vg-closed set V2 such that φ ≠≠≠≠ V2 ⊂  V1. Continuing this  

process, we have a sequence of vg-closed sets V ⊃ V1 ⊃ V2 ⊃ V3⊃ ..... ⊃ Vk ⊃ ...... Since V is a finite set, this process 

repeats only finitely. Then finally we get a minimal vg-closed set U = Vn for some positive integer n.   

  

Corollary 4.1: Let X be a locally finite space and V be a nonempty vg-closed set. Then ∃ at least one (finite) minimal 

vg-closed set U such that U ⊂  V.  

 

Proof: Let X be a locally finite space and V be a nonempty vg-closed set. Let x in V. Since X is locally finite space, we 

have a finite open set Vx such that x in Vx. Then V∩Vx is a finite vg-closed set. By Theorem 4.6 ∃ at least one (finite) 

minimal vg-closed set U such that U ⊂  V∩Vx. That is U ⊂ V∩Vx ⊂ V. Hence ∃ at least one (finite) minimal vg-closed 

set U such that U ⊂ V.    

 

Corollary 4.2: Let V be a finite minimal open set. Then ∃ at least one (finite) minimal vg-closed set U such that 

U ⊂ V.  

 

Proof: Let V be a finite minimal open set. Then V is a nonempty finite vg-closed set. By Theorem 4.6, ∃ at least one 

(finite) minimal vg-closed set U such that U ⊂ V.     

 

Theorem 4.7: Let U; Uλ be minimal vg-closed sets for any element λ∈Γ. If U ⊂ ∪∪∪∪λ∈ΓUλ, then ∃ an element λ ∈Γ such 

that U = Uλ.  

 

Proof: Let U ⊂ ∪∪∪∪λ∈ΓUλ. Then U ∩(∪∪∪∪λ∈ΓUλ) = U. That is ∪∪∪∪λ∈Γ(U ∩ Uλ) = U. Also by lemma[4.1] (ii), U ∩ Uλ = φ or 

U=Uλ for any λ∈Γ. It follows that ∃ an element λ∈Γ such that U = Uλ.      

 

Theorem 4.8: Let U; Uλ be minimal vg-closed sets for any λ∈Γ. If U = Uλ for any λ∈Γ, then (∪∪∪∪λ∈ΓUλ) ∩ U= φ.  

Proof: Suppose that (∪∪∪∪λ∈ΓUλ) ∩ U≠≠≠≠ φ. That is ∪∪∪∪λ∈Γ(Uλ ∩ U) ≠≠≠≠ φ. Then ∃ an element λ∈Γ such that U ∩ Uλ ≠≠≠≠ φ. By 

lemma[4.1](ii), we have U=Uλ, which contradicts the fact that U ≠≠≠≠ Uλ for any λ∈Γ. Hence (∪∪∪∪λ∈ΓUλ)∩U = φ.     

 

Theorem 4.9: A proper nonempty subset F of X is maximal vg-open set iff X-F is a minimal vg-closed set. 

 

Proof: Let F be a maximal vg-open set. Suppose X-F is not a minimal vg-open set. Then ∃∃∃∃ vg-open set U ≠≠≠≠ X-F such 

that φ ≠≠≠≠ U ⊂  X-F. That is F ⊂  X-U and X-U is a vg-open set which is a contradiction for F is a minimal vg-closed set. 

 

Conversely let X-F be a minimal vg-open set. Suppose F is not a maximal vg-open set. Then ∃∃∃∃ vg-open set E ≠≠≠≠ F such 

that F ⊂  E ≠≠≠≠ X. That is φ ≠≠≠≠ X-E ⊂  X-F and X-E is a vg-open set which is a contradiction for X-F is a minimal vg-

closed set. Therefore F is a maximal vg-open set.   

 

Theorem 4.10:  

(i) Let F be a maximal vg-open set and W be a vg-open set. Then F∪W = X or W ⊂ F. 

(ii) Let F and S be maximal vg-open sets. Then F ∪ S=X or F=S. 

 

Proof: (i) Let F be a maximal vg-open set and W be a vg-open set. If F∪ W=X, then there is nothing to prove. Suppose 

F ∪ W ≠≠≠≠ X. Then F ⊂  F ∪ W. Therefore F∪W = F � W ⊂ F. 

(ii) Let F and S be maximal vg-open sets. If F∪S ≠≠≠≠ X, then we have F ⊂ S and S ⊂ F by (i). Therefore F = S.  

 

Theorem 4.11: Let F be a maximal vg-open set. If x is an element of F, then for any vg-open set S containing x, F ∪ 

S=X or S ⊂  F. 

 

Proof: Let F be a maximal vg-open set and x is an element of F. Suppose ∃∃∃∃ vg-open set S containing x such that F ∪ S 

≠≠≠≠ X. Then F ⊂  F ∪ S and F ∪ S is a vg-open set, as the finite union of vg-open sets is a vg-open set. Since F is a vg-

open set, we have F ∪ S=F. Therefore S ⊂  F.    

 

Theorem 4.12: Let Fα, Fβ, Fδ be maximal vg-open sets such that Fα ≠≠≠≠ Fβ. If Fα ∩ Fβ ⊂  Fδ, then either Fα = Fδ or Fβ = 

Fδ 

 

Proof: Given that Fα ∩ Fβ ⊂  Fδ. If Fα = Fδ then there is nothing to prove.  

 

If Fα ≠≠≠≠ Fδ then we have to prove Fβ = Fδ . Now Fβ ∩ Fδ = Fβ ∩ (Fδ ∩ X) = Fβ ∩ (Fδ ∩ (Fα ∪ Fβ)(by thm. 4.10 (ii)) = Fβ 

∩ ((Fδ ∩ Fα) ∪ (Fδ ∩ Fβ)) = (Fβ ∩ Fδ ∩ Fα) ∪ (Fβ ∩ Fδ ∩ Fβ)   
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= (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) (by Fα ∩ Fβ ⊂  Fδ) = (Fα ∪ Fδ) ∩ Fβ = X ∩ Fβ (Since Fα and Fδ are maximal vg-open sets by 

theorem[4.10](ii), Fα ∪ Fδ = X) = Fβ. That is Fβ ∩ Fδ =Fβ � Fβ ⊂  Fδ Since Fβ and Fδ are maximal vg-open sets, we 

have Fβ = Fδ Therefore Fβ = Fδ  

 

Theorem 4.13: Let Fα, Fβ and Fδ be different maximal vg-open sets to each other. Then (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ). 

 

Proof: Let (Fα ∩ Fβ) ⊂  (Fα ∩ Fδ) � (Fα ∩ Fβ) ∪ (Fδ ∩ Fβ) ⊂  (Fα ∩ Fδ) ∪ (Fδ ∩ Fβ) � (Fα ∪ Fδ) ∩ Fβ ⊂  Fδ ∩ (Fα 

∪ Fβ). Since by theorem 4.10(ii), Fα ∪ Fδ=X and Fα ∪ Fβ=X � X ∩ Fβ ⊂  Fδ ∩ X � Fβ ⊂  Fδ From the definition of 

maximal vg-open set it follows that Fβ = Fδ, which is a contradiction to the fact that Fα, Fβ and Fδ are different to each 

other. Therefore (Fα ∩ Fβ) ⊄ (Fα ∩ Fδ).   

 

Theorem 4.14: Let F be a maximal vg-open set and x be an element of F. Then F= ∪ { S: S is a vg-open set containing 

x such that F ∪ S ≠≠≠≠ X}. 

 

Proof: By theorem 4.12 and fact that F is a vg-open set containing x, we have F ⊂ ∪{ S: S is a vg-open set containing x 

such that F ∪ S ≠≠≠≠ X} – F. Therefore we have the result.   

 

Theorem 4.15: Let F be a proper nonempty cofinite vg-open set. Then ∃ (cofinite) maximal vg-open set E such that F 

⊂  E. 

 

Proof: If F is maximal vg-open set, we may set E=F. If F is not a maximal vg-open set, then ∃ (cofinite) vg-open set F1 

such that F ⊂ F1 ≠≠≠≠ X. If F1 is a maximal vg-open set, we may set E = F1. If F1 is not a maximal vg-open set, then ∃ a 

(cofinite) vg-open set F2 such that F ⊂ F1 ⊂ F2 ≠≠≠≠ X. Continuing this process, we have a sequence of vg-open, F ⊂  

F1 ⊂ F2 ⊂  ... ⊂ Fk ⊂  .... Since F is a cofinite set, this process repeats only finitely. Then, finally we get a maximal vg-

open set E = En for some positive integer n.   

 

Theorem 4.16: Let F be a maximal vg-open set. If x is an element of X-F. Then X-F ⊂  E for any vg-open set E 

containing x. 

 

Proof: Let F be a maximal vg-open set and x in X-F. E ⊄ F for any vg-open set E containing x. Then E ∪ F = X by 

theorem 4.10(ii). Therefore X-F ⊂  E.  

 

Conclusion: The Author is thankful to the referees for their critical comments and suggestions for the development of 

the paper. 
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