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ABSTRACT 
The following paper provides a technique, with the help of which, one can easily and efficiently find remainders when 
a two or three-digit number is divided by 11. The paper provides logical and simple proofs to the formulae as well as 
verifies them with the help of examples. 
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INTRODUCTION 
 
Modular Arithmetic [1] 

When , where  is the quotient and  is the remainder upon dividing  by , we write mod .a n r=  
3 mod 2 1, since 3 1 2 1= = × +  
6 mod 2 0, since 6 2 3 0= = × +  
11 mod 3 2, since 11 3 3 2= = × +  
 
Definitions and Concepts Used 
• mod 11/modulo 11 implies the remainder obtained when a number, here a two or three-digit number, is divided 

by 11. 
• Let m be any multiple of 11, then mod 11 0m = . 
• Division Algorithm for integers: Suppose 0b >  and a  are integers. Then there exist unique integers q and r  

such that ,a bq r= +  where 0 .r b≤ <  The number q  is called the quotient and  is called the remainder. [2] 

• The set { }0,1,... 1nZ n= − for 1n ≥ is a group under addition modulo n . For any 0j > in nZ  the inverse of j  is 
.n j−  [3] 

 
FORMULATION, PROOFS, and EXAMPLES 
 
Let  be a two-digit number, where a  is the tens digit and b is the ones digit, then: 

( )mod 11
11

b a if a b
ab

a b if a b
− ≤

=  − − >
 

Proof:  
i) Given a b≤ ,  

ab  can be written as : 
10a b× +                                                                                                                                                   (1) 

Now, adding and subtracting  from (1), we get, 

( )11a b a× + −                                                                                                                                          (2) 
Equation (2) modulo eleven gives the remainder as .b a−  
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ii) Given a b>  

Equation (2) modulo eleven, in this case, leaves us with ( )mod11,b a−  where 

( )0 sin , .b a ce a b− < >  The remainder, however, cannot be negative and therefore here,  b a−  can be 

viewed as the additive inverse of ,a b− which will be ( )11 .a b− −  
 

(The set of remainders when a number is divided by 11 is { }0,1,2,3,4,5,6,7,8,9,10 which is the group 11Z  
 with the operation addition modulo 11. The additive inverse of an element j  is given by 11 ).j−  

 
Examples: 

1. Consider the number 24. Here, 2 4< and hence, the remainder is 4 2 2.− =   
It can be verified by dividing 24 by 11. 24 11 2 2,= × +  by division algorithm, which clearly gives 2  
as the remainder.  
 

2. Consider the number 42.  Here, 4 2> and hence, using the above formula, the remainder would be 
( )11 4 2 9.− − =  

It can be verified by dividing 42 by 11.  42 11 3 9,= × +  by division algorithm, which clearly gives 9  
as the remainder. 
 

Let abc be a three-digit number, where a is the hundreds digit, b is the tens digit and c  is the ones digit, then: 

mod11abc = ( )
( )

11

11

a c b if a c b
a c b if a c b

b a c if a c b

 + − + ≥
 + − − + ≥  
 − − + + <   

11
11

+ − ≤
+ − >

and a c b
and a c b  

 
Proof: 

(i)         ( ); 11a c b a c b+ ≥ + − ≤  
abc can be written in the expanded form as: 

100 10a b c× + × +                                                                                                                                       (3) 
Adding and subtracting 10a and b  in (1), we get, 
110 11 10a b c a b× + × + − × −                                                                                                                     (4) 
Writing 10 a− × as 11 a a− × +  in (2), we get, 
110 11 11a b c a a b× + × + − × + −                                                                                                                (5) 
Equation (5) modulo , gives the remainder as .a c b+ −  
 

(ii)         ( ); 11a c b a c b+ ≥ + − >  
Reducing equation (5) modulo 11, gives .a c b+ − Here, since, 11,a c b+ − >  it can be written as: 

( )11 11 ,a c b+  + − −    where ( ) 11 11a c b + − −  <                                                                           (6) 

(Since, the maximum value of a c b+ − can be 18, when 9a c= =  and 0.b = ) 
Equation (6) modulo 11, gives the remainder as ( ) 11.a c b+ − −   
 

(iii) a c b+ <  
Again, reducing equation (5) modulo 11,  we get, .a c b+ − Here, 0,a c b+ − < therefore, it can be 
viewed as the additive inverse of ( ) ,b a c− +  where ( ) 0,b a c− + >  which is given by 

( )11 .b a c−  − +    
 
These three cases are exhaustive; any three digit number will fit into either of the three cases. 
 

Examples: 
1. Consider the number 148 Using the above formula, we get the remainder as 1 8 4 5.+ − =   

It can be verified using the division algorithm: 
148 11 13 5,= × + which clearly gives the remainder as 5.  
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2. Consider the number 819 . Using the above formula, since 8 9 1 16 11,+ − = > therefore the remainder is, 

16 11 5.− =  
Using division algorithm, we get, 819 11 74 5,= × + which clearly gives the remainder as 5.  
 

3. Consider the number 191.  Using the above formula, the remainder will be ( )11 9 1 1 4.−  − +  =   

Using division algorithm, we get, 191 11 17 4,= × + which clearly gives the remainder as 4.  
 

Let 0a b be a three-digit number, where a is the hundreds digit, 0  is the tens digit and b  is the ones digit, then: 
11

0 mod 11
11 11

a b if a b
a b

a b if a b
+ + ≤

=  + − + >
 

This is, in particular, for a three digit number whose tens digit is zero. 
 
The formula for two-digits can also be obtained from the formula for three-digits by equating a  to 0.  
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