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ABSTRACT 
In this paper, some translation theorems of bipolar valued multi fuzzy subsemigroups of a semigroup is studied and 
prove some results on these. 
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INTRODUCTION 
 
In 1965, Zadeh [10] introduced the notion of a fuzzy subset of a set, fuzzy sets are a kind of useful mathematical 
structure to represent a collection of objects whose boundary is vague. Since then it has become a vigorous area of 
research in different domains, there have been a number of generalizations of this fundamental concept such as 
intuitionistic fuzzy sets, interval-valued fuzzy sets, vague sets, soft sets etc. Lee [6] introduced the notion of bipolar-
valued fuzzy sets. Bipolar-valued fuzzy sets are an extension of fuzzy sets whose membership degree range is enlarged 
from the interval [0, 1] to [−1, 1]. In a bipolar-valued fuzzy subset, the membership degree 0 means that elements are 
irrelevant to the corresponding property, the membership degree (0, 1] indicates that elements somewhat satisfy the 
property and the membership degree [−1, 0) indicates that elements somewhat satisfy the implicit counter property. 
Bipolar valued fuzzy sets and intuitionistic fuzzy sets look similar each other. However, they are different each other 
[7]. Multi fuzzy sets was introduced by Sabu Sebastian, T.V.Ramakrishnan [8]. Bipolar valued fuzzy subgroups of a 
group, homomorphism in bipolar valued fuzzy subgroups of a group and bipolar valued fuzzy normal subgroups of a 
group was  introduced by M.S.Anitha et al.[1, 2, 3]. Bipolar valued multi fuzzy subgroups of a group have defined and 
introduced by Santhi.V.K and G.Shyamala[9]. The papers were useful for developing the research paper. Indira.R and 
K.Arjunan [5] defined about using function in bipolar valued multi fuzzy subsemigroups of a semigroup. In this paper, 
some translation theorems are stated and proved. These theorems will be useful to further research. 
 
1. PRELIMINARIES 
 
Definition 1.1[6]: A bipolar valued fuzzy set (BVFS) A in X is defined as an object of the form A = {< x, A+(x), A−(x) 
>/ x∈X}, where A+

 : X→ [0, 1] and A−
 : X→ [−1, 0]. The positive membership degree A+(x) denotes the satisfaction 

degree of an element x to the property corresponding to a bipolar-valued fuzzy set A and the negative membership 
degree A−(x) denotes the satisfaction degree of an element x to some implicit counter-property corresponding to a 
bipolar-valued fuzzy set A.  
 
Example 1.2: A = {< a, 0.8, −0.4 >, < b, 0.4, −0.9 >, < c, 0.2, −0.7 >} is a bipolar valued fuzzy subset of X= {a, b, c}. 
 
Definition 1.3[9]: A bipolar valued multi fuzzy set (BVMFS) A in X is defined as an object of the form                       
A = {< x, A1

+(x), A2
+(x), …, An

+(x), A1
−(x), A2

−(x), …, An
−(x) >/ x∈X}, where Ai

+
 : X→[0, 1] and Ai

−
 : X→[−1, 0] for 

all i = 1, 2, …, n. The positive membership degrees Ai
+(x) denote the satisfaction degree of an element x to the property 

corresponding to a bipolar valued multi fuzzy set A and the negative membership degrees Ai
−(x) denote the satisfaction 

degree of an element x to some implicit counter-property corresponding to a bipolar valued multi fuzzy set A. It is 
denoted as A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−, …, An
− 〉. 
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Example 1.4: A = {< a, 0.4, 0, 6, 0.4, −0.3, −0.5, −0.5 >, < b, 0.2, 0.6, 0.6, −0.7, −0.4, −0.8 >, < c, 0.4, 0.3, 0.7, −0.4, 
−0.6, −0.5 >} is a bipolar valued multi fuzzy subset of X = {a, b, c}. 
 
Definition 1.5[5]: Let S be a semigroup. A bipolar valued multi fuzzy subset A = 〈 A1

+, A2
+, …, Ai

+, A1
−, A2

−, …, Ai
− 〉 

of S is said to be a bipolar valued multi fuzzy subsemigroup of S (BVMFSSG) if the following conditions are satisfied 
(i) Ai

+(xy) ≥ min{ Ai
+(x), Ai

+(y) } 
(ii) Ai

−(xy) ≤ max{ Ai
−(x), Ai

−(y) }for all x, y in S and for all i. 
 
Example 1.6: Let S = { 1, −1, i, −i } be a semigroup with respect to the ordinary multiplication. Then A = {< 1, 0.7, 
0.8, 0.6, −0.8, −0.7, −0.5 >, < −1, 0.6, 0.7, 0.5, −0.7, −0.6, −0.4 >, < i, 0.4, 0.5, 0.4, −0.6, −0.5, −0.3 >, < −i, 0.4, 0.5, 
0.4, −0.6, −0.5, −0.3 > } is a bipolar valued multi fuzzy subsemigroup of S. 
 
Definition 1.7: Let A = 〈A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 be a bipolar valued multi fuzzy subset of X. Then the 

following translations are defined as 
(i) ?(A) = 〈?A1

+, ?A2
+, …, ?An

+, ?A1
−, ?A2

−,…, ?An
− 〉,  

where ?Ai
+(x) = min{½, Ai

+(x)} and ?Ai
−(x) = max { −½, Ai

−(x) }, for all x in X and for all i. 
(ii) !(A) = 〈!A1

+, !A2
+,…, !An

+, !A1
−, !A2

−,…, !An
− 〉,  

where !Ai
+(x) = max { ½, Ai

+(x) } and !Ai
−(x) = min { −½, Ai

−(x) }, for all x in X. 
(iii) (iii) Qα, β(A) = 〈 Qα, β(A1)+, Qα, β(A2)+, …,Qα, β(An)+, Qα, β(A1)−, Qα, β(A2)−,…,Qα, β(An)− 〉,  

where Qα, β(Ai)+(x) = min { αi, Ai
+(x) } and Qα, β(Ai)−(x) = max { βi, Ai

−(x) }, for all x in X and αi in [0, 1] and 
βi in [−1, 0] and for all i. 

(iv) Pα, β(A) = 〈 Pα, β(A1)+, Pα, β(A2)+, …, Pα, β(An)+, Pα, β(A1)−, Pα, β(A2)−,…, Pα, β(An)− 〉,  
where Pα, β(Ai)+(x) = max { αi, Ai

+(x) } and Pα, β(Ai)−(x) = min { βi, Ai
−(x) }, for all x in X and αi in [0, 1] and βi 

in [−1, 0] and for all i.   
(v) Gα, β(A) = 〈Gα, β(A1)+, Gα, β(A2)+,…,Gα, β(An)+, Gα, β(A1)−, Gα, β(A2)−,…, Gα, β(An)− 〉,  

where Gα, β(Ai)+(x) = αi Ai
+(x) and Gα, β(Ai)−(x) = −βi Ai

−(x), for all x in X and αi in [0, 1] and βi in [−1, 0] and 
for all i. 

 
Theorem 1.8: If A = 〈 A1

+, A2
+,…, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈 B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are two bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then their intersection A∩B is a bipolar valued multi fuzzy 
subsemigroup of S. 
 
2. SOME THEOREMS 
 
Theorem 2.1: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then ?(A) is a bipolar valued multi fuzzy subsemigroup of S.   
 
Proof: For every x, y in S, for all i, ?Ai

+(xy) = min{ ½, Ai
+(xy) } ≥ min{ ½, min{Ai

+(x), Ai
+(y)}} = min{ min{ ½, 

Ai
+(x) }, min{ ½, Ai

+(y) }}= min{ ?Ai
+(x), ?Ai

+(y) }. Therefore ?Ai
+(xy) ≥ min{ ?Ai

+(x), ?Ai
+(y) }, for all x and y in S. 

For every x, y in R, for all i, ?Ai
−(xy) = max{ −½, Ai

−(xy) } ≤ max{ −½, max{ Ai
−(x), Ai

−(y) }}= max{ max{ −½, 
Ai

−(x) }, max{ −½, Ai
−(y) }}= max{ ?Ai

−(x), ?Ai
−(y) }. Therefore ?Ai

−(xy) ≤ max {?Ai
−(x), ?Ai

−(y) }, for all x and y in 
S. Hence ?A is a bipolar valued multi fuzzy subsemigroup of S. 
 
Theorem 2.2: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then !(A) is a bipolar valued multi fuzzy subsemigroup of S.   
 
Proof: For every x, y in S, for all i, !Ai

+(xy) = max{ ½, Ai
+(xy) } ≥ max{ ½, min{ Ai

+(x), Ai
+(y) }} = min{ max{ ½, 

Ai
+(x) }, max{ ½, Ai

+(y)}}= min{!Ai
+(x), !Ai

+(y) }. Therefore !Ai
+(xy) ≥ min{!Ai

+(x), !Ai
+(y) }, for all x and y in S. For 

every x, y in S, for all i, !Ai
−(xy) = min{ −½, Ai

−(xy) } ≤ min{ −½, max{ Ai
−(x), Ai

−(y) }} = max{ min{ −½, Ai
−(x) }, 

min{ −½, Ai
−(y) }} = max{ !Ai

−(x), !Ai
−(y) }. Therefore !Ai

−(xy) ≤ max{ !Ai
−(x), !Ai

−(y) }, for all x and y in S. Hence 
!A is a bipolar valued multi fuzzy subsemigroup of S. 
 
Theorem 2.3: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then Qα, β(A) is a bipolar valued multi fuzzy subsemigroup of S.   
 
Proof: For every x, y in S, αi in [0, 1] and for all i, Qα, β(Ai)+(xy) = min{ αi, Ai

+(xy) } ≥ min{ αi, min{ Ai
+(x), Ai

+(y) }} 
= min{ min{ αi, Ai

+(x) }, min{ αi, Ai
+(y) }} = min{ Qα, β(Ai)+(x), Qα, β(Ai)+(y) }. Therefore Qα, β(Ai)+(xy) ≥ min { Qα, 

β(Ai)+(x), Qα, β(Ai)+(y) }, for all x, y in S. For every x, y in S, βi in [−1, 0] and for all i, Qα, β(Ai)−(xy) = max { βi, Ai
−(xy) 

} ≤ max{ βi, max{ Ai
−(x), Ai

−(y) }} = max{ max{ βi, Ai
−(x) }, max{ βi, Ai

−(y) }}= max{ Qα, β(Ai)−(x), Qα, β(Ai)−(y) }. 
Therefore Qα, β(Ai)−(xy) ≤ max{ Qα, β(Ai)−(x), Qα, β(Ai)−(y) }, for all x, y in S. Hence Qα ,β(A) is a bipolar valued multi 
fuzzy subsemigroup of S. 
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Theorem 2.4: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then Pα, β(A) is a bipolar valued multi fuzzy subsemigroup of S.   
 
Proof: For every x, y in S, αi in [0, 1] and for all i, Pα, β(Ai)+(xy) = max{ αi, Ai

+(xy) } ≥ max{ αi, min{ Ai
+(x), Ai

+(y) }}= 
min{ max{ αi, Ai

+(x) }, max{ αi, Ai
+(y) }} = min{ Pα, β(Ai)+(x), Pα, β(Ai)+(y) }. Therefore Pα, β(Ai)+(xy) ≥ min{ Pα, 

β(Ai)+(x), Pα, β(Ai)+(y) }, for all x, y in S. For every x, y in S, βi in [−1, 0] and for all i, Pα, β(Ai)−(xy) = min{ βi, Ai
−(xy} ≤ 

min{βi, max{Ai
−(x), Ai

−(y)}} = max{ min{ βi, Ai
−(x) }, min{ βi, Ai

−(y) }}= max { Pα, β(Ai)−(x), Pα, β(Ai)−(y)}. Therefore 
Pα, β(Ai)−(xy) ≤ max{ Pα, β(Ai)−(x), Pα, β(Ai)−(y)}, for all x, y in S. Hence Pα ,β(A) is a bipolar valued multi fuzzy 
subsemigroup of S. 
 
Theorem 2.5: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then Gα, β(A) is a bipolar valued multi fuzzy subsemigroup of S.   
 
Proof: For every x, y in S, αi in [0, 1] and for all i, Gα, β(Ai)+(xy) = αi Ai

+(xy) ≥ αi ( min {Ai
+(x), Ai

+(y) }) = min{ αi 
Ai

+(x), αi Ai
+(y) }= min{ Gα, β(Ai)+(x), Gα, β(Ai)+(y) }. Therefore Gα, β(Ai)+(xy) ≥ min  { Gα, β(Ai)+(x), Gα, β(Ai)+(y) }, for 

all x, y in S. For every x, y in S, βi in [−1, 0] and for all i, Gα, β(Ai)−(xy) = −βi Ai
−(xy) ≤ −βi ( max{ Ai

−(x), Ai
−(y) })                       

= max{ −βi Ai
−(x), −βi Ai

−(y) } = max{ Gα, β(Ai)−(x), Gα, β(Ai)−(y) }. Therefore Gα, β(Ai)−(xy) ≤ max{ Gα, β(Ai)−(x),         
Gα, β(Ai)−(y) }, for all x, y in S. Hence Gα ,β (A) is a bipolar valued multi fuzzy subsemigroup of S. 
 
Theorem 2.6. If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then !(A B) = !(A) !(B) is also a bipolar valued multi fuzzy 
subsemigroup of S.  
 
Proof: The proof follows from the Theorems 1.8 and 2.2.  
 
Theorem 2.7: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then ?(A B) = ?(A)  ?(B) is also a bipolar valued multi fuzzy 
subsemigroup of S.  
 
Proof: The proof follows from the Theorems 1.8 and 2.1.  
 
Theorem 2.8: If A= 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a semigroup 

S, then !(?(A)) = ?(!(A)) = 〈½, ½, …, ½, −½, −½,…, −½ 〉 is also a bipolar valued multi fuzzy subsemigroup of S.    
 
Proof: For every x in S and for all i, ?Ai

+(x) = min{ ½, Ai
+(x) }≤ ½ and !Ai

+(x) = max { ½, Ai
+(x) }≥ ½, so !(?(Ai

+)) = 
?(!(Ai

+)) = ½. And ?Ai
−(x) = max{ −½, Ai

−(x) } ≥ −½ and !Ai
−(x) = min{ −½, Ai

−(x) }≤ −½, so !(?(Ai
−)) = ?(!(Ai

−)) = 
−½. Hence !(?(A)) = ?(!(A))= 〈½, ½, …, ½, −½, −½,…, −½ 〉 is a bipolar valued multi fuzzy subsemigroup of S.   
 
Theorem 2.9: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then Pα, β(A B) = Pα, β(A)  Pα, β(B) is also a bipolar valued multi 
fuzzy subsemigroup of S.  
 
Proof: The proof follows from the Theorems 1.8 and 2.4.  
 
Theorem 2.10: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then Qα, β (A B) = Qα, β(A)  Qα, β(B) is also a bipolar valued 
multi fuzzy subsemigroup of S.  
 
Proof.: The proof follows from the Theorems 1.8 and 2.3.  
 
Theorem 2.11: If A= 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 is a bipolar valued multi fuzzy subsemigroup of a 

semigroup S, then Pα, β( Qα, β(A) ) = Qα, β( Pα, β(A) ) = 〈 α1, α2, …, αn, β1, β2,…, βn 〉 is also a bipolar valued multi fuzzy 
subsemigroup of S.    
 
Proof: The proof follows from the Theorems 2.3 and 2.4. 
 
Theorem 2.12: If A = 〈 A1

+, A2
+, …, An

+, A1
−, A2

−,…, An
− 〉 and B = 〈B1

+, B2
+, …, Bn

+, B1
−, B2

−,…, Bn
− 〉 are bipolar 

valued multi fuzzy subsemigroups of a semigroup S, then Gα, β(A B) = Gα, β(A)  Gα, β(B) is also a bipolar valued multi 
fuzzy subsemigroup of S.  
 
Proof: The proof follows from the Theorems 1.8 and 2.5.  
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