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ABSTRACT 
In this paper we determined some characteristics of simple semiring and also proved some results on simple semirings 
which was introduced by Golan [1]. 
 
 
PRELIMINARIES 
 
A triple (S, +, .) is called a semiring if (S, + ) is a semigroup; (S,  .) is semigroup; a (b + c) =  ab + ac and                     
(b + c) a =  ba + ca for every a, b, c in S. (S, +) is said to be band if a + a = a for all a in S. A (S, +) semigroup is said to 
be rectangular band if a + b + a = a for all a, b in S. A semigroup (S, .) is said to be a band if a = a2 for all a in S. A 
semigroup (S, .) is said to be rectangular band if aba = a.  
 
Definition 1.1: A semigroup (S, .) is said to be left ( right ) singular if ab = a (ab = b) for all a, b in S. 
 
Definition 1.2: A semigroup (S, +) is said to be left (right) singular if a + b = a (a + b = b) for all a, b in S. 
 
Definition 1.3: A semiring (S, +, .) is said to be zero square semiring if x2 = 0 for all x in S. 
 
Definition 1.4: An element ‘a’ of ‘S’ is called E - inverse if there is an element ‘x’ of S such that ax + ax = ax,  
i.e ax ε E (S), where E (S) is the set of all idempotent elements of S. 
 
Definition 1.5: A semigroup ‘S’ is called an E - inverse semigroup if every element of S is an E- inverse. 
 
Definition 1.6: A semigroup (S, +) is said to be left regular if aba = ab. 
 
Definition 1.7: A viterbi semiring is a semiring in which S is additively idempotent and multiplicatively 
subidempotent. i.e., a + a = a and a + a2 = a for all a in S. 
 
Definition 1.8: A semiring (S, +) is said to be Additively Idempotent Semiring if a + a = a for all a in S. 
 
Definition 1.9: [3] A semiring S is called simple if a + 1 = 1 + a = 1 for any a∈S. 
 
Theorem 1.10: Let (S, +,⋅) be a simple semiring then following are true. 

(i) ab + a = a = a + ab (ii) ab + a + ab = a  (iii) a + ab + a = a(iv) a2 + a = a = a + a2 
 
Proof: Since (S, +,⋅) be a simple semiring b + 1 = 1 for every b in  (S, +,⋅) ⇒ a.(b + 1) = a.1 ⇒ ab + a = a.  
 
Similarly, a + ab = a. 
ii) ab + a = a ⇒ ab + a.1 =a ⇒ ab + a(1 + b) = a ⇒  ab + a + ab = a 
iii) a + ab + a = a(1 + b) + a = a.1 + a = a + a = a( 1 + 1) = a.1 = a ⇒ a + ab + a = a 
iv)  a = a ⇒ a.1 = a ⇒ a(a + 1) = a ⇒ a2+ a = a. 
 
Similarly, a + a2 = a. therefore, a2 + a = a = a + a2 
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Theorem 1.11: Let (S, +,⋅) be a simple semiring then (S, +) is a band. 
 
Proof: Since (S, +, ⋅) be a simple semiring b + 1 = 1 for every b in (S, +, ⋅) ⇒ a. (b + 1) = a.1 ⇒ ab + a = a, for all a in S 
⇒ a.1 + a = a (taking b = 1) ⇒ a + a = a∴ (S, +) is a b and. 
 
Theorem 1.12: Let (S, +, ⋅) be a simple semiring then (S, +, ⋅) is viterbi semiring. 
 
Proof: From the theorem 1.10, S satisfies a2 + a = a = a + a2. 
 
From the theorem 2, (S, +) is a band.  
 
Therefore, S is viterbi semiring. 
 
Theorem 1.13: Let S be a simple semiring. If (S, +) is a cancellative then (i) (S, ⋅) is a band. (ii) (S, ⋅) is a rectangular 
band. 
 
Proof: Since From the theorem 1.10, a2 + a = a⇒a2+ a = a + a ⇒ a2 = a ((S, +) is cancellative) ⇒(S, ⋅) is a band. 
 
Since from the theorem 1, a + ab = a⇒ (a + ab)a = a.a⇒ a2+ aba = a2⇒ a + aba = a ⇒ a + aba = a + a ⇒ aba = a. 
((S, +) is cancellative) ⇒ (S, ⋅) is a rectangular band. 
 
Theorem 1.14: If S is a simple semiring and (S, .) is a left singular then (S, +) is a band. 
 
Proof: From the theorem 1.10, a + ab = a. Since (S, .) is left singular implies ab = a ⇒ a + a = a ⇒ (S, +) is a b and 
 
 
Example 1.15: 

+ a 2a  . a 2a 
a a a a a a 
2a a 2a 2a 2a 2a 

 
Theorem 1.16: If S is a simple semiring and (S, +) is a right singular semigroup, then (S, +) is a rectangular band. 
 
Proof: From the theorem 1.10, a + ab = a, for all a, bin S ⇒ a + ab + b = a + b ⇒ a + ab + b=b (∵ (S, +) is a 
rightsingular) ⇒ a + ab + b + a = b + a ⇒ a + ab + b + a= a (∵ (S, +) is a right singular) ⇒ a + b + a= a. Hence (S, +) is 
a rectangular band. 
 
Theorem 1.17: If S is a zero square and simple semiring where 0 is the additive identity in S then aba = 0 and bab = 0 
for all a, b in S. 
 
Proof: a + ab = a for all a, b in S, from theorem1.10, ⇒ a2 + aba = a2⇒ 0 + aba=0 (∵ S is a zero square semiring,          
a2 = 0) ⇒ aba = 0 
 
Also,   b + ba = b for all b, a in S ⇒ b2 + bab = b2 ⇒ 0 + bab = 0 (∵ S is a zero square semiring, b2 =0) ⇒bab = 0. 
Hence, aba = 0 and bab = 0. 
 
Theorem 1.18: Let S be a simple Semiring. 

(i) If (S, .) is left regular semigroup and (S, .) is commutative then S is an E – inversesemigroup. 
(ii) If (S, .) is band, then S is an E – inversesemigroup. 

 
Proof:  
(i) From theorem1.10, a + ab = a for all a, b in S 
⇒ (a + ab) b = ab  ⇒  ab + ab2 = ab  ⇒  aba + ab2a =aba⇒ ab + a.bb.a= ab(∵  S is  leftregular)⇒ ab + (bab) a = ab ((S, .) 
is commutative ) ⇒ ab + baa = ab  ⇒  ab + aba=ab 
⇒ab + ab=ab(∵ S is leftregular)⇒S is an E – inverse semigroup. 
 
ii) From theorem 1.10, a + ab = a for all a, b in S 
⇒ (a + ab) b = ab ⇒ ab + ab2 = ab⇒ ab + ab=ab ((S, .) is band) 
⇒ S is an E – inverse semigroup. 
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Theorem 1.19: If S is a Simple Semiring with additive identity 0 then ab = o for all a, b in S when (S, +) is 
cancellative.  
 
Proof: From theorem 1.10, a + ab = a for all a, b in S  
⇒ a + a + ab = a + a ⇒ a + a + ab = a + a + 0 ⇒   ab = 0 (∵(S, +) is cancellative)  
 
Theorem 1.20: If a, b, c and d are elements of a simple semiring S satisfying a + c = b and b + d = a and (S, +) is 
commutative, then a = b. 
 
Proof: If S is a Simple Semiring, i.e, a = a + aNow, a = a + b+ d (∵ a = b +d) = a + a + c+d (∵ b = a +c) = a + c+ d     
(∵ a = a +a)  

= b + d + c+ d (∵ a = b +d) = b + d + d+ c (∵ (S, +) is Commutative) 
 

= b + d+ c (∵ d = d +d) = a + c =b (∵ b = a + c) 
 

Theorem 1.21: If S is a Simple Semiring then an+ 1 = 1 for every a in S. 
 
Proof: Let S be a simple semiring then we have a + 1 = 1 for every a in S. If n = 1 then proof is obvious. 
 
If n = 2 then a2 + 1 = aa + 1 = aa + a + 1 = a(a + 1) + 1 = a.1 + 1 = a + 1 = 1.  
 
If n = 2 then the statement is true. 
 
Assume that the statement is true for n = k the ak + 1 = 1. 
 
We have to prove that the statement is true for n = k + 1. 
 
Consider a K+1 + 1 =aKa + 1 = aka + a + 1 = a(ak + 1) + 1 = a.1 + 1 = a + 1 = 1. 
 
Hence the result is true for n = k + 1. 
 
Therefore, If S is a Simple Semiring then an+ 1 = 1 for every a in S. 
 
Theorem 1.22: If S is a Simple Semiring then ab+ 1 = 1 for every a, b in S. 
 
Proof: If S is a Simple Semiring then a+ 1 = 1 and b + 1 = 1 for every a, b in S. 
ab + 1 = ab + a + 1 = a(b + 1) + 1 = a.1 + 1 = a + 1 = 1. 
Hence, ab+ 1 = 1. 
 
Theorem 1.23: If S is a Simple Semiring then a1 a2 a3 a4 …..an+ 1 = 1 for every ai in S. 
 
Theorem 1.24: Let S be a simple semiring and (S, +) be commutative. Then (S, .) is commutative if 
 (S, +) is not a rectangularband. 
 
Proof: Suppose (S, +) is a rectangular band 
 
Consider ab + a = a, for all a, b in S⇒ ab + a + ab = a + ab⇒ a (b + 1 + b) = ab + a (Since (S, +) is commutative)  
⇒ ab = ab+ a (Since (S,+) is a rectangularband) ⇒ ab = a 
 
Now ab + a = a (Put a = 1) then ⇒ 1. b + 1=1⇒ b + 1=1, for all b in S 
 
Also ba + b =b, for all a, b in S ⇒ ba + b + ba = b + ba⇒ b (a + 1 + a) = ba + b (Since (S,+) is commutative) 
⇒ba = ba+b (Since (S,+) is a rectangularband)⇒ba = b⇒  ab ≠ba, which proves the result. Also ab = a 
⇒ab + b = a + b⇒ (a + 1) b = a + b⇒ 1. b = a+b (from b + 1 =1)⇒ b = a + b = b + a 
 
This is evident from the following example 
 
Example 1.25:  

+ 1 A b  . 1 a b 
1 1 1 1 1 1 a b 
A 1 A b a a a a 
B 1 B b b b a b 
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Theorem 1.26: Let S be a simple semiring. Let (S, +) be commutative and (S, .) is rectangular band then ab = a and   
ba =b 
 
Proof: Consider ab + a = a for all a, b in S and ba + b = b for all b, a inS 
⇒ ab = a (ba + b) ⇒ ab = aba + ab ⇒ ab = a+ ab (Since (S, .) is a rectangularband) 
⇒ ab = ab+ a (Since (S,+) is commutative) ⇒ ab = a  
Also ba = b (ab + a) ⇒ba = bab + ba⇒ba = b+ba (Since (S, .) is a rectangular band)⇒ba = ba+b (Since (S,+) is 
commutative) ⇒ ba = b. Therefore, ab = a andba = b for all a, b in S. 
 
Theorem 1.27: Let S be a  simple semiring and (S,⋅) be a left singular, then (S, +) is a right singularsemigroup. 
 
Proof: By hypothesis ab = a, for all a, b in S ((S,⋅) is left singular) ⇒ ab + b = a + b ⇒ (a + 1) b = a + b ⇒ 1. b = a+b

 (S is simple semiring) ⇒ b = a + b Also ba = b ⇒ba + a = b + a ⇒ (b + 1) a = b + a ⇒ 1. a = b+a               

               (S is simple semiring) ⇒ a = b + a⇒ 
a + b = b and b + a = a, for all a, b in S. Hence (S, +) is a right singular semigroup. 
 
Theorem 1.28: Let S be a simple semiring. If (S, +) is a right singular semigroup, then (S, +) is a rectangular band. 
 
Proof: By hypothesis a + b = b, for all a, b in S ( (S, +) is rightsingular) ⇒ a + b + a = b + a⇒ a + b + a = a, for all a, 

b in S, which proves the theorem. ((S, +) is a right singular semigroup) i.e., (S, +) is a rectangular band. 
 
Theorem 1.29: Let S be a totally ordered simple semiring. If (S, +)  is p.t.o (n.t.o.) and (S, ⋅) is commutative, then (S, ⋅) 
is n.t.o.(p.t.o.). 
 
Proof: Since S istotally ordered simple semiring ab + a = a, for all a, b in S⇒ a = ab + a≥ab ((S, +) is p.t.o.) ⇒ a≥ ab  
 
Suppose ab > b⇒ ab + a ≥ b + a⇒a  ≥ b+ a (ab + a =a)⇒ b + a ≤ a 
 
Which contradicts the hypothesis that (S, +) is p.t.o.⇒ ab ≤ b 
∴ab ≤ a & ab ≤ b Hence (S,⋅) is n.t.o. 
 
Similarly we can prove that (S,⋅) is p.t.o if (S, +) is n.t.o. 
 
Theorem 1.30: If S be a simple semiring then (S, +) is weakly seperative semigroup. 
 
Proof: If S be a simple semiring then (S, +) is a band. 
 
Consider a + a = a + b = b + b ⇒ a = a + b = b ⇒ a = b ⇒  (S, +) is weakly seperative semigroup. 
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