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ABSTRACT 
In this manuscript we introduce PART III some applications of Fuzzy Kalangi non-associated Γ-semi sub near-field 
space of a Γ-near-field space over near-field, Fuzzy Kalangi non-associated Γ-semi sub near-field space ideal, Fuzzy 
Kalangi non-associated Γ-semi sub near-field space prime ideal and several analogous properties done in case of Γ-
near-field spaces.  
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SECTION 1: Introduction and Preliminaries on Part III some applications of Fuzzy Kalangi non-associative Γ-
semi sub near-field space of a Γ-near-field space over near-field. 
In this paper we together introduced a maiden effort to bring the two probable existing applications in PART III some 
applications of Fuzzy Kalangi non-associative Γ-semi sub near-field spaces of a Γ-near-field space over near-field.  
 
We are not widely speaking about the applications of Fuzzy Kalangi non-associative Γ-semi sub near-field spaces of a 
Γ-near-field space we only discuss here the two applications one in automatons and the other in the construction of 
error correcting codes. 
 
The concept of fuzzy was introduced by Zadeh L.A. later several authors has developed it to fuzzy Kalangi non-
associative Γ-semi sub near-field spaces of a Γ-near-field space over near-field. Till date there are only about a dozen 
articles in fuzzy near-rings, near-fields, near-field spaces. Here we introduce and give the basic definitions needed to 
define this concept.  
 
Basics on Fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field. 
We just recall the basic known and available fuzzy notions about definitions of fuzzy Kalangi non-associative Γ-semi 
sub near-field spaces. To the best of our knowledge we have only a very few papers or articles on fuzzy Γ-semi sub 
near-field spaces of a Γ-near-field space over near-field that too mainly dealing with fuzzy ideals. 
 
Definition 1.1: fuzzy Kalangi non-associative Γ-semi sub near-field space. Let N be a Kalangi non-associative        
Γ-semi sub near-field space. A mapping δ : N → [0, 1] is called a fuzzy Kalangi non-associative Γ-semi sub near-field 
space of N. 
 
Definition 1.2: Product of fuzzy Kalangi non-associative Γ-semi sub near-field spaces. Let σ and θ be two fuzzy 
Kalangi non-associative Γ-semi sub near-field spaces of N. we define the product of these fuzzy Kalangi                   
non-associative Γ-semi sub near-field spaces (denoted by σ  ο θ) as follows: 
(σ  ο θ) (x) = sup { min ((σ(y) , θ(z)) } if x can be expressible as a product yz. 
(σ  ο θ) (x) = 0, otherwise. 
 
Definition 1.3:  Let D and E be any two fuzzy Kalangi non-associative Γ-semi sub near-field spaces of N and f, a 
function of D into E. Let µ and σ be fuzzy Kalangi non-associative Γ-semi sub near-field spaces of D and E 
respectively. Then f ( µ ) the image of µ, under f , is a fuzzy Kalangi non-associative Γ-semi sub near-field space of E 
defined by  







=

≠
=

−

−

00
)()(sup

))((
1

1

fif
efifd

ef
φµ

µ    and f -1 (σ) is the pre image of σ under f   is a fuzzy Kalangi                

non-associative Γ-semi sub near-field space of D defined by ( f -1 (σ) ) ( d ) = σ(f(d)) for all d ∈ D. 
 
Note 1.4: Let µ and σ be any two fuzzy Kalangi non-associative Γ-semi sub near-field spaces of N then we write µ ⊆ σ 
if µ (x) σ (x)  for all x ∈ N. 
 
Definition 1.5: fuzzy Kalangi ideal. Let µ be a non-empty fuzzy Kalangi non-associative Γ-semi sub near-field space 
of a Γ-near-field space over near-field N. i.e. µ(x) ≠ 0 for some x ∈ N then µ is said to be a fuzzy Kalangi ideal of N if 
it satisfies the following conditions: 

a. µ ( x + y ) ≥ min { µ ( x ) , µ ( y ) } 
b. µ ( - x ) = µ ( x ) 
c. µ ( x ) = µ ( y + x - y ) 
d. µ ( xy ) ≥ µ (  x  )  and 
e. µ { x(y + i ) – xy } ≥ µ ( i ) for all x, y and i ∈ N. 

1. If µ is a fuzzy Kalangi ideal of N then µ ( x + y ) = µ ( y + x ) 
2. If µ is a fuzzy Kalangi ideal of N then µ ( 0 ) ≥ µ ( x ) for all x ∈ N.  
The above two statements can be easily verified for if we put z = x + y. then µ ( x + y ) = µ ( z ) = µ ( - x + z + x ) since 
µ is a fuzzy Kalangi ideal µ ( - x + x + y + x ) = µ (  y + x ) since z = x + y. 

a. Likewise for the second statement µ ( 0 ) = µ ( - x + x ) ≥ min {µ ( x ),µ ( -x )} 
= µ ( x ) Since µ is a fuzzy Kalangi ideal )  µ ( -x ) = µ ( x )  by the very definition of fuzzy Kalangi ideal.  

 
Definition 1.6: Characterize function of fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-
field space over near-field N. Let J be a fuzzy Kalangi ideal of fuzzy Kalangi non-associative Γ-semi sub near-field  
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space of a Γ-near-field space over near-field N. we define λ1 : N → [ 0, 1 ] as λ1 ( x ) = 


 =

otherwise
xif

0
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 λ1 ( x ) is 

called the characterize function of fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space 
over near-field on J.  
 
Lemma 1.7: Let N be a fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-
field and λ1 the characteristic function on a  Γ-semi sub near-field space J of N. Then λ1 is a fuzzy Kalangi ideal of N if 
and only if J is a fuzzy Kalangi ideal of N. 
 
Definition 1.8: level Γ-semi sub near-field space. Let µ be a non-empty fuzzy Kalangi non-associative Γ-semi sub 
near-field space of a Γ-near-field space over near-field N. then the set µk of all t ∈ [0, 1] , defined by µt = {x ∈ N :        
µ (x) ≥ t} is called the level Γ-semi sub near-field space of t for the Γ-near-field space over near-field N. 
 
Definition 1.9: level fuzzy Kalangi non-associative Γ-semi sub near-field space ideal. Let N be fuzzy Kalangi non-
associative Γ-semi sub near-field space of a Γ-near-field space over near-field and µ be a fuzzy Kalangi non-associative 
Γ-semi sub near-field space ideal of N. Then the level Γ-semi sub near-field space µt of N for all t ∈ [0, t], t ≤ µ(0) is a 
fuzzy Kalangi ideal of N if and only if µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of N. 
 
Definition 1.10: Fuzzy Kalangi non-associative Γ-semi sub near-field space prime. A fuzzy Kalangi non-
associative Γ-semi sub near-field space ideal µ of N is called fuzzy Kalangi non-associative Γ-semi sub near-field 
space prime if for any two fuzzy Kalangi non-associative Γ-semi sub near-field space ideals σ  and θ of N σ ο θ ⊆ µ 
implies σ ⊆ µ or θ ⊆ µ. 
 
Now we use the concept of fuzziness in Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space 
over near-field. 
 
Theorem 1.11: If µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of a Γ-near-field space over 
near-field N and a ∈ N then µ ( x ) ≥ µ ( a ) ∀x ∈ < a >. 
 
Proof: Is obvious. 
 
Definition 1.12: Product of fuzzy Kalangi non-associative Γ-semi sub near-field space. Let µ and σ be any two 
fuzzy Kalangi non-associative Γ-semi sub near-field spaces of N. Then the product of fuzzy Kalangi non-associative   
Γ-semi sub near-field space ( σ ο τ ) (x) = sup {min (σ(y), τ(z))} if x is expressible as a product x = yz where y, z ∈ N 
and   (σ ο τ) (x) = 0 otherwise. 
 
Definition 1.13: Fuzzy Kalangi IFP (Insertion of Finite Property). A fuzzy Kalangi non-associative Γ-semi sub 
near-field space ideal µ of a Γ-near-field space over near-field N is said to have fuzzy Kalangi IFP(Insertion of Finite 
Property)  if µ ( a n b ) ≥ µ ( ab ) for all a, b, n ∈ N. 
 
Definition 1.14: Let µ be a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of N, µ has fuzzy Kalangi 
IFP if and only if µk is a fuzzy Kalangi non-associative Γ-semi sub near-field space IFP ideal of N for all 0 ≤ k ≤ 1.  
 
Definition 1.15: Strong Fuzzy Kalangi IFP(Insertion of Finite Property).Fuzzy Kalangi non-associative Γ-semi sub 
near-field spaces of N has strong Kalangi IFP if and only if every fuzzy Kalangi non-associative Γ-semi sub near-field 
space ideal of N has fuzzy Kalangi IFP(Insertion of Finite Property).   
 
Theorem 1.16: If µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of N then Nµ = {x ∈ N : µ (x ) 
= µ ( 0 ) } is a Kalangi non-associative Γ-semi sub near-field space IFP ideal of N. 
 
Proof: We have µ ( 0 ) ≥ µ ( x ) for all x ∈ N, we write t = µ ( 0 ). Now Nµ = µr and by definitions µr has Kalangi non-
associative Γ-semi sub near-field space IFP ideal of N. Therefore, Nµ is a Kalangi non-associative Γ-semi sub near-
field space IFP ideal of N. 
This completes the proof of the theorem. 
 
Note 1.17: Let µ be a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of N. for any s ∈ [0, 1] define γs 

: N → [ 0, 1 ] by µγs (x) = 
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. Since γs depends on µ, we also define γs by µγs. 
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SECTION 2: Part III some Results of Fuzzy Kalangi non-associative Γ-semi sub   near-field space of a Γ-near-
field space over near-field. 
 
Here in section 2, we recall the some results of fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-
field space over near-field and also given some interesting definitions of them.  
 
Result 2.1:  

(a). γs (x) ≤ s for all x ∈ N 
(b). γs is a fuzzy Kalangi non-associative Γ-semi sub near-field space of a Γ-near-field space over near-field of N. 
(c). if µ (0)  = t, then s ≥ t if and only if µt = (γs )t. 

 
Proof: Proof of result is clear from basic definition and so obvious. 
 
Definition 2.2: µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space IFP ideal of N if and only if γs is a 
fuzzy Kalangi non-associative Γ-semi sub near-field space IFP ideal for all s ∈ [0, 1]. 
 
Result 2.3: A fuzzy Kalangi non-associative Γ-semi sub near-field space ideal µ of N if and only if N( γs) has fuzzy 
Kalangi IFP for all s ∈ [ 0, 1 ]. 
 
Definition 2.4: Fuzzy Kalangi non-associative Γ-semi sub near-field space ideal µ. Let µ : M → [0, 1]. µ is said to 
be a  fuzzy Kalangi non-associative Γ-semi sub near-field space ideal µ of M if it satisfies the following conditions: 

a. µ ( x + y ) ≥ min { µ ( x ) ,  µ ( y )}  
b. µ ( - x ) = µ ( x )   
c. µ ( x ) = µ ( y + x - y )  
d. µ ( x α y ) ≥ µ ( x ) and finally  
e. µ { x α ( y + z ) – x α y } ≥ µ ( z ) for all x, y, z ∈ M and α ∈ Γ. 

 
Note 2.5: All results true in case of fuzzy Kalangi non-associative Γ-semi sub near-field space ideal µ of N are true in 
case of fuzzy Kalangi non-associative Γ-semi sub near-field space ideals of M with some minor modifications. The 
results can be proved by routine applications of definitions. 
 
Theorem 2.6: Let µ be a fuzzy Kalangi non-associative Γ-semi sub near-field space of M. Then the level fuzzy 
Kalangi non-associative Γ-semi sub near-field spaces µt = { x ∈ M : µ ( x ) ≥ t }, t ∈ im µ, are  fuzzy Kalangi non-
associative Γ-semi sub near-field space ideals of M if and only if µ is a fuzzy Kalangi non-associative Γ-semi sub near-
field space ideal of M. 
 
Proof: is obvious. 
 
Theorem 2.7: Let M and M| be two fuzzy Kalangi non-associative Γ-semi sub near-field spaces, h : M  → M| be an     
Γ-epi-morphism and µ,  σ be fuzzy Kalangi non-associative Γ-semi sub near-field space ideals of M and M| 
respectively then  

a. h( h-1 ( σ ) ) = σ. 
b. h-1 (h(µ ))  ⊃ µ. 
c. h-1 (h(µ )) ≠ µ if µ is constant on ker k. 

 
Definition 2.8: Fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal.  
A fuzzy Kalangi non-associative Γ-semi sub near-field space ideal µ of M is said to be a fuzzy Kalangi non-associative 
Γ-semi sub near-field space prime ideal of M if µ is not a constant function. And for any two fuzzy Kalangi non-
associative Γ-semi sub near-field space ideals σ and Γ of M,  σ ο Γ  ⊆ µ. ⇒ either σ ⊆ µ. Or Γ  ⊆ µ. 
 
Theorem 2.9: If µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal of M then Mµ = { x ∈ M 
: µ ( x ) = µ ( 0 ) } is a  fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal of M. 
 
Proof: It is obvious it can be proved with the help of definitions. 
 
 
Definition 2.10: Let J be a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of M. Then λl is a fuzzy 
Kalangi non-associative Γ-semi sub near-field space prime ideal of M if and only if l is a fuzzy fuzzy Kalangi non-
associative Γ-semi sub near-field space prime ideal of M. 
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Proposition 2.11: Let J be a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of M and s ∈ [ 0,1 ]. Let 

µ be a fuzzy Kalangi non-associative Γ-semi sub near-field space of M, defined by  µ (x) = 


 ∈

otherwises
Jxif1

.   Then 

µ is a fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal of M if J is a fuzzy Kalangi non-
associative Γ-semi sub near-field space prime ideal of M. 
 
Proof: Using the fact µ is a non-constant fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of M we can 
prove the proposition result as a matter of routine using the basic definitions. This completes the proof of the 
proposition. 
 
Definition 2.12: Let J be a fuzzy Kalangi non-associative Γ-semi sub near-field space ideal of M. Then λl is a fuzzy 
Kalangi non-associative Γ-semi sub near-field space prime ideal of M if and only if l is a fuzzy Kalangi non-associative 
Γ-semi sub near-field space prime ideal of M. 
 
Result 2.13: if µ is a fuzzy fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal of M then µ (0) = 1. 
 
Result 2.14: If µ is a fuzzy fuzzy Kalangi non-associative Γ-semi sub near-field space prime ideal of M then |Im µ|=2. 
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