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ABSTRACT 
In this paper, we focus our discuss on Intuitionistic Fuzzy Partial Isometry Operator (IF-Partial Isometry operator) on 
an intuitionistic fuzzy Hilbert space (IFH-space). In this discuss, the definition of IF-Partial Isometry operator acting 
on an IFH-space is discussed and some important characteristics are examined. AnIntuitionistic fuzzy continuous  
linear operator ℙ on an IFH-space ℍ is said to be IF-Partial Isometry operator if there exists closed subspace ℳ,such 
that𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) for any 𝑢𝑢 ∈ ℳand ℙ𝑢𝑢 = 0 for any 𝑢𝑢 ∈ ℳ⏊, where ℳ is said to be the initial space of ℙ 
and 𝒩𝒩 = ℛ(ℙ) is said to be the finial space of ℙ, which are related to IFU-operator. 
 
Keywords: Intuitionistic Fuzzy Partial Isometry operator (IF-Partial Isometry operator), Intuitionistic Fuzzy Normal 
operator (IFN-operator), Intuitionistic Fuzzy Self-Adjoint operator (IFSA-operator), Intuitionistic Fuzzy Unitary 
operator (IFU-operator), Intuitionistic Fuzzy Adjoint operator (IFA-operator), Intuitionistic Fuzzy Projection operator 
(IF-Projection operator). 
 
 
I. INTRODUCTION 
 
In very first, the concept of intuitionistic fuzzy set was introduced by Atanossov [11] in 1986. The notion of 
intuitionistic fuzzy metric space (ℍ, M, N,∗,⋄) with the use of continuous t-norm * and continuous t-conorm ⋄ was 
introduced by Park [10], in 2004. From this, using the intuitionistic fuzzy metric space in IFH-space was introduced by 
Saadati and Park [18] in 2005.Majumdar and Samanta [15] in 2007, gave the definition of IFIP-space and some of their 
properties using (ℍ, 𝜇𝜇, 𝜇𝜇∗). Goudarzi et al. [12] introduced the new idea of the notion of intuitionistic fuzzy normed 
spaces and introduced the  modified  definition of intuitionistic fuzzy inner product space (IFIP-space) with the help of 
continuous t-representable (𝒯𝒯) in 2009, as a triplet (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) where ℍ is a real Vector Space,  𝒯𝒯 is a continuous          
t-representable and ℱ𝜇𝜇 ,𝑣𝑣  is an Intuitionistic Fuzzy set on ℍ2 × ℝ. 
 
The definition of IFH-space first introduced by Radharamani et al. [1], [2] in 2018, and also discussed some properties 
of IFA & IFSA operators in IFH-space. An operatorℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ)is said to be IFA-operator, if there exists unique 
ℙ∗ ∈IFB(ℍ) such that 〈ℙ𝑥𝑥,𝑦𝑦〉 = 〈𝑥𝑥,ℙ∗𝑦𝑦〉 ∀𝑥𝑥,𝑦𝑦 ∈ ℍ, where 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ) denotes the set of all Intuitionistic Fuzzy Bounded 
(continuous) linear operators onℍ. Also, ℙ is an IFSA-operator, if ℙ = ℙ∗. 
 
In 2020, Radharamani et al. [3] introduced the concept of Intuitionistic Fuzzy Normal operator. If ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ) is 
called IFN-operator, if it commutes with its Intuitionistic fuzzy adjoint. i.e, ℙℙ∗ = ℙ∗ℙ.In 2020, Radharamani et al. [4] 
introduced the definition of Intuitionistic Fuzzy Unitary operator (IFU-operator) on IFH-space ℍ, if ℙℙ∗ = 𝐼𝐼 = ℙ∗ℙ 
and gave some important properties of IFU-operator in IFH-space and also the relation with isometric isomorphism of 
ℍ on to itself.  
 
In this paper, we consider an Intuitionistic fuzzy self-adjoint operator in IFH- space and introduced the definition of 
Intuitionistic Fuzzy Partial isometry operator (IF-Partial Isometry operator) and we provided some characteristics of  
IF-Partial Isometry operator on IFH-space. And also introduce Intuitionistic Fuzzy Projection operator (IF-Projection 
operator) which is using in IF-Partial Isometry operator and also the relation between them, which all are discuss in 
detail. 
 

Corresponding Author: S. Maheswari*2 

2Department of Mathematics, Tiruppur Kumaran College for Women, India.  
 
 

http://www.ijma.info/�


A. Radharamani1, S. Maheswari*2/ Intuitionistic Fuzzy Partial Isometry Operator / IJMA- 11(6), June-2020. 

© 2020, IJMA. All Rights Reserved                                                                                                                                                       2 

 
II. PRELIMINARIES 
 
Definition 2.1: [12] IFIP-space 
Let 𝜇𝜇:ℍ2 × (0, +∞) → [0,1] and 𝜈𝜈:ℍ2 × (0, +∞) → [0,1] be Fuzzy sets, such that 𝜇𝜇(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) + 𝜈𝜈(𝑢𝑢,𝑣𝑣, 𝑡𝑡) ≤ 1,  
∀ 𝑢𝑢,𝑣𝑣 ∈ ℍ& 𝑡𝑡 > 0. An Intuitionistic Fuzzy Inner Product Space (IFIP-Space) is a triplet (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯), where ℍ is a real 
Vector Space, 𝒯𝒯 is a continuous t-representable and ℱ𝜇𝜇 ,𝑣𝑣  is an Intuitionistic Fuzzy set on ℍ2 × ℝ satisfying the 
following conditions for all u, 𝑣𝑣,𝑤𝑤 ∈ ℍ and s, 𝑟𝑟, 𝑡𝑡 ∈  ℝ: 
(IFI – 1) ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 0) = 0 and ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑢𝑢, 𝑡𝑡) > 0, for every 𝑡𝑡 > 0. 
(IFI - 2) ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) = ℱ𝜇𝜇 ,𝑣𝑣(𝑣𝑣, 𝑢𝑢, 𝑡𝑡). 

(IFI - 3) ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑢𝑢, 𝑡𝑡) ≠ 𝐻𝐻(𝑡𝑡) for some 𝑡𝑡 ∈ ℝ iff u≠ 0, where 𝐻𝐻(𝑡𝑡) = �1, if 𝑡𝑡 > 0
0, if 𝑡𝑡 ≤ 0

� 
(IFI - 4) For any 𝛼𝛼 ∈ ℝ,  

ℱ𝜇𝜇 ,𝑣𝑣(𝛼𝛼𝛼𝛼, 𝑣𝑣, 𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧ ℱ𝜇𝜇 ,𝑣𝑣 �𝑢𝑢, 𝑣𝑣,

𝑡𝑡
𝛼𝛼
� , 𝛼𝛼 > 0

𝐻𝐻(𝑡𝑡), 𝛼𝛼 = 0

𝒩𝒩𝑠𝑠 �ℱ𝜇𝜇 ,𝑣𝑣 �𝑢𝑢, 𝑣𝑣,
𝑡𝑡
𝛼𝛼
�� , 𝛼𝛼 < 0

� 

(IFI - 5) sup� 𝒯𝒯 �ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑤𝑤, 𝑠𝑠),ℱ𝜇𝜇 ,𝑣𝑣(𝑣𝑣, 𝑤𝑤, 𝑟𝑟)�� = ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢 +  𝑣𝑣, 𝑣𝑣, 𝑡𝑡). 
(IFI - 6) ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, ∙): ℝ → [0,1] is Continuous on ℝ ∖ {0}. 
(IFI - 7) lim𝑡𝑡→0 ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡)  =  1. 
 
Definition 2.2: [1], [12] IFH-space 
Let ( ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFIP-Space with IP: 〈𝑢𝑢, 𝑣𝑣〉 = sup�𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1� ,∀𝑢𝑢, 𝑣𝑣 ∈ ℍ. If (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) is 
complete in the norm 𝒫𝒫𝜇𝜇 ,𝑣𝑣 , then ℍ is an Intuitionistic Fuzzy Hilbert Space (IFH-Space). 
 
Definition 2.3: [2] IFA-operator 
Let �ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯� be an IFH-Space and let ℙ ∈ IFB(ℍ). Then there exists unique  
ℙ∗ ∈IFB(ℍ)∋ 〈ℙu, 𝑣𝑣〉 = 〈𝑢𝑢,ℙ∗𝑣𝑣〉 ∀ 𝑢𝑢, 𝑣𝑣 ∈ ℍ. 
 
Definition 2.4: [2] IFSA-operator 
Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-Space with IP:〈𝑢𝑢, 𝑣𝑣〉 = sup� 𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣( 𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1� ,∀ 𝑢𝑢, 𝑣𝑣 ∈ ℍ and let ℙ ∈ IFB(ℍ). 
Then ℙ is Intuitionistic Fuzzy Self-Adjoint Operator, if ℙ =  ℙ∗, where ℙ∗ is Intuitionistic Fuzzy Self-Adjoint of ℙ. 
 
Definition 2.5: [3] IFN-operator 
Let �ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯� be an IFH-space with an IP:〈𝑢𝑢, 𝑣𝑣〉 = sup�𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1� ,∀ 𝑢𝑢, 𝑣𝑣 ∈  ℍ and let ℙ ∈IFB(ℍ). 
Then ℙ is an Intuitionistic Fuzzy Normal Operator if it commutes with its IF-Adjoint. i.e.ℙℙ∗ = ℙ∗ℙ. 
 
Definition 2.6: [3] IFU-operator 
Let �ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯� be a IFH-space with IP:〈𝑢𝑢, 𝑣𝑣〉 = sup�𝑡𝑡 ∈ ℝ:ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1� ∀𝑢𝑢, 𝑣𝑣 ∈ ℍ and letℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ). Then ℙ 
is an Intuitionistic fuzzy unitary operator if it satisfies ℙℙ∗ = 𝐼𝐼 = ℙ∗ℙ. 
 
Definition 2.7: [3]𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈𝐈 Fuzzy Isometric Isomorphism 
Let X and Y be intuitionistic fuzzy normed linear spaces. AnIntuitionistic Fuzzy isometric isomorphism of X into Y is a 
one to one linear transformation ℙ of X into Y such that 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) for every 𝑢𝑢 ∈ 𝑋𝑋. 
 
Theorem 2.8: [3] Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space with IP: 〈𝑢𝑢, 𝑣𝑣〉 = sup�𝑡𝑡 ∈ ℝ:ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢,𝑣𝑣, 𝑡𝑡) < 1 � ∀𝑢𝑢, 𝑣𝑣 ∈ ℍ and let 
ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ). If ℙ is Intuitionistic Fuzzy Unitary operator if and only if it is an isometric isomorphism of ℍ onto itself. 
 
Definition 2.9: [12] IF-orthogonal 
Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space. 𝑢𝑢, 𝑣𝑣 ∈ ℍis saidto be IF-orthogonal to each other if ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) = 𝐻𝐻(𝑡𝑡), for each 
𝑡𝑡 ∈ ℝ and it is denoted by 𝑢𝑢 ⊥ 𝑣𝑣. 
 
Theorem 2.10: [12] Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯)be an IFH-space. The orthogonality has the following properties: 

(1) 0 ⊥ 𝑢𝑢,∀ 𝑢𝑢 ∈ ℍ. 
(2) If 𝑢𝑢 ⊥ 𝑣𝑣 then 𝑣𝑣 ⊥ 𝑢𝑢. 
(3) If 𝑢𝑢 ⊥ 𝑣𝑣 then 𝑢𝑢 = 0. 
(4) If 𝑢𝑢 ⊥ 𝑢𝑢𝑖𝑖  (𝑖𝑖 = 1,2, … ,𝑛𝑛) then 𝑢𝑢 ⊥ (∑ 𝑢𝑢𝑖𝑖𝑛𝑛

𝑖𝑖=1 ). 
(5) If 𝑢𝑢 ⊥ 𝑣𝑣 then for any 𝑎𝑎 ∈ ℝ,𝑢𝑢 ⊥ 𝑎𝑎𝑎𝑎. 
(6) Let ℱ𝜇𝜇 ,𝑣𝑣  be IF-continuous. If 𝑢𝑢𝑛𝑛

𝜏𝜏𝐹𝐹→𝑢𝑢, 𝑣𝑣 ⊥ 𝑢𝑢𝑛𝑛  (𝑛𝑛 = 1,2, … ) then 𝑣𝑣 ⊥ 𝑢𝑢. 
 



A. Radharamani1, S. Maheswari*2/ Intuitionistic Fuzzy Partial Isometry Operator / IJMA- 11(6), June-2020. 

© 2020, IJMA. All Rights Reserved                                                                                                                                                       3 

 
Definition 2.11: [12] Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space and ℳ ⊂ ℍ. ℳ⏊ is the set of all 𝑣𝑣 ∈ ℍthat are orthogonal to 
every 𝑢𝑢 ∈ ℳ. 
 
Theorem 2.12: [12] Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space, ℱ𝜇𝜇 ,𝑣𝑣  be IF-continuous and ℳ be a subset of ℍ. Then ℳ⏊ is a 
closed subspace of ℍ and ℳ∩ℳ⏊ = {0}. 
 
Theorem 2.13: [12] The Pythagorean Theorem 
Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space and let 𝑢𝑢 ⊥ 𝑣𝑣. Then 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢 + 𝑣𝑣, 𝑡𝑡) =  𝒯𝒯(𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡),𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑣𝑣, 𝑡𝑡)). 
 
III. MAIN RESULTS 
 
In this section, we introduce the definition of Intuitionistic Fuzzy Partial Isometry operator in IFH-space as well as 
some elementary properties of Intuitionistic Fuzzy Partial Isometry operator in IFH-space are presented. First, we will 
give the definition of Intuitionistic Fuzzy projection (IF-projection) operator. 
 
Definition 3.1: Intuitionistic Fuzzy Projection operator 
Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space. ℍ can be decomposed into ℍ = ℳ⊕ℳ⏊, i.e. for any 𝑢𝑢 ∈ ℍ, 𝑢𝑢 = 𝑣𝑣 ⊕ 𝑤𝑤 where 
𝑣𝑣 ∈ ℳ&𝑤𝑤 ∈ ℳ⏊. An operator ℙfrom ℍ onto ℳ is said to be IF-projection if ℙ𝑢𝑢 = 𝑣𝑣. It is denoted by ℙℳ . 
 
Note: Let (ℍ,ℱ𝜇𝜇 ,𝑣𝑣 ,𝒯𝒯) be an IFH-space and ℳ ⊂ ℍ be a closed subspace. The IF-orthogonal projection (IF-Projection 
operator) of ℍ onto ℳ is an operator from ℍonto itself such that for 𝑢𝑢 ∈ ℍ, ℙℳ𝑢𝑢 is the unique element inℳ,             
i.e. ℙℳ𝑢𝑢 = 𝑣𝑣, 𝑣𝑣 ∈ ℳ. 
 
Definition 3.1: Intuitionistic Fuzzy Partial isometry operator  
An operator ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ) is said to be Intuitionistic Fuzzy (IF) partial isometry operator if there exists a closed 
subspace ℳ such that 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) for any 𝑢𝑢 ∈ ℳ and ℙ𝑢𝑢 = 0, for any 𝑢𝑢 ∈ ℳ⊥ , here ℳ is said to be the 
initial space of ℙ and 𝒩𝒩 = ℛ(ℙ) is said to be the final space of ℙ. 
 
Note: 

(i) The Intuitionistic Fuzzy projection on to the initial space and the final space are said to be the initial 
intuitionistic fuzzy projection and final intuitionistic fuzzy projection of ℙ. 

(ii) ℙ is Intuitionistic Fuzzy isometry if and only if ℙ is Intuitionistic Fuzzy partial isometry and ℳ = ℍ. 
(iii) ℙ is Intuitionistic Fuzzy Unitary if and only if ℙ is Intuitionistic Fuzzy partial isometry and ℳ = 𝒩𝒩 = ℍ. 

 
Theorem 3.2: ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ) is an IF-isometry operator if and only if ℙ∗ℙ = 𝐼𝐼. 
 
Proof: Let ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ) be IF-isometry. Then 
 〈ℙ∗ℙ𝑢𝑢, 𝑣𝑣〉 = sup⁡{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ∗ℙ𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1} 

= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢,ℙ𝑣𝑣, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1} 

           ∴ 〈ℙ∗ℙ𝑢𝑢, 𝑣𝑣〉 = 〈𝑢𝑢, 𝑣𝑣〉 ∀ 𝑢𝑢. 𝑣𝑣 ∈ ℍ 
    ⟹ℙ∗ℙ = 𝐼𝐼. 
 
Conversely, suppose that ℙ∗ℙ = 𝐼𝐼. 
 𝒫𝒫𝜇𝜇 ,𝑣𝑣

2(ℙ𝑢𝑢, 𝑡𝑡) = 〈ℙ𝑢𝑢,ℙ𝑢𝑢〉 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢,ℙ𝑢𝑢, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ∗ℙ𝑢𝑢,𝑢𝑢, 𝑡𝑡) < 1} 
= 〈𝑢𝑢,𝑢𝑢〉 

            ∴ 𝒫𝒫𝜇𝜇 ,𝑣𝑣
2(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣

2(𝑢𝑢, 𝑡𝑡) 
           ⟹𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) 
Hence ℙ is an IF-isometry operator. 
 
Theorem 3.3: Let ℙ ∈ 𝐼𝐼𝐼𝐼𝐼𝐼(ℍ). ℙ is an IFU-operator iff ℙ∗ℙ = ℙℙ∗ = 𝐼𝐼. 
 
Proof: By theorem 2.8, it is enough to proveℙ is Intuitionistic Fuzzy Unitary iff ℙ is an Intuitionistic Fuzzy isometry 
on ℍ. 
 
So ℙ∗ℙ = 𝐼𝐼 and for any 𝑢𝑢 ∈ ℍ, there exists 𝑣𝑣 ∈ ℍ, such that ℙ𝑣𝑣 = 𝑢𝑢. 
 
Now, ℙ∗𝑢𝑢 = ℙ∗ℙ𝑣𝑣 = 𝐼𝐼𝐼𝐼 = 𝑣𝑣. 
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So that 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ∗𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑣𝑣, 𝑡𝑡) 

 = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑣𝑣, 𝑡𝑡) 
 = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) 

          ∴ 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ∗𝑢𝑢, 𝑡𝑡) =  𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) 
 
Thus ℙ∗is Intuitionistic Fuzzy Isometry and ℙℙ∗ = (ℙ∗)∗ℙ∗ = 𝐼𝐼. 
 
Conversely, assume that ℙ∗ℙ = ℙℙ∗ = 𝐼𝐼. 
 
Then ℙ is Intuitionistic Fuzzy isometry and for any 𝑢𝑢 ∈ ℍ,𝑢𝑢 = ℙℙ∗,𝑢𝑢 ∈ ℛ(ℙ), where  ℛ(ℙ) is the range of ℙ. 
 
Thus, ℙ is intuitionistic Fuzzy isometry operator on ℍ. 
 
Theorem 3.4: Let ℙ be an Intuitionistic Fuzzy Partial isometry operator on an IFH-space with the initial space ℳ and 
the final space 𝒩𝒩. Then the following hold: 

1) ℙℙℳ = ℙ and ℙ∗ℙ = ℙℳ  
2) 𝒩𝒩 is a closed subspace of ℍ. 
3) ℙ∗is an Intuitionistic Fuzzy Partial isometry with the initial space 𝒩𝒩 and final space ℳ,  

i.e.  ℙℙ𝒩𝒩 = ℙ∗&ℙℙ∗ = ℙ𝒩𝒩. 
 
Proof: Given that ℙ is an intuitionistic Fuzzy partial isometry operator on IFH-space ℍ. 

1) To prove ℙℙℳ = ℙ and ℙ∗ℙ = ℙℳ 
For 𝑢𝑢 ∈ ℍ,𝑢𝑢 = ℙℳ𝑢𝑢⊕𝑤𝑤,∀ 𝑤𝑤 ∈ ℳ⊥  
And ℙ𝑢𝑢 = ℙℙℳ𝑢𝑢⊕ ℙ𝑤𝑤 = ℙℙℳ𝑢𝑢 
Hence, ℙ = ℙℙℳ , since ℙ𝑤𝑤 = 0. 

       Now since 〈ℙ𝑢𝑢,ℙ𝑣𝑣〉 = 〈𝑢𝑢, 𝑣𝑣〉 for 𝑢𝑢, 𝑣𝑣 ∈ ℳ and ℙℳ𝑢𝑢, ℙℳ𝑣𝑣 ∈ ℳ for any 𝑢𝑢, 𝑣𝑣 ∈ ℍ, 
〈ℙ∗ℙ𝑢𝑢, 𝑣𝑣〉 = sup⁡{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ∗ℙ𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1} 

= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢,ℙ𝑣𝑣, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙℙℳ𝑢𝑢,ℙℙℳ𝑣𝑣, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ∗ℙℙℳ𝑢𝑢,ℙℳ𝑣𝑣, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙℳ𝑢𝑢,ℙℳ𝑣𝑣, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙℳ𝑢𝑢, 𝑣𝑣, 𝑡𝑡) < 1} 
= 〈ℙℳ𝑢𝑢, 𝑣𝑣〉 

                          ⟹ℙ∗ℙ = ℙℳ  
2) To prove 𝒩𝒩 is a closed subspace of ℍ. 
Since 𝒩𝒩 = ℛ(ℙ) = ℙℛ(ℙℳ) = ℙℳ, for any 𝑢𝑢 ∈ 𝒩𝒩� , there exists a sequence {𝑣𝑣𝑛𝑛} ⊂ℳ,∋ ℙ𝑣𝑣𝑛𝑛 → 𝑢𝑢 and 
𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑛𝑛 , 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑣𝑣𝑚𝑚 − ℙ𝑣𝑣𝑛𝑛 , 𝑡𝑡) → 0 as 𝑚𝑚,𝑛𝑛 → ∞. 
Thus, by the completeness of ℍ, there exists 𝑣𝑣 ∈ ℍ, such that 𝑣𝑣𝑛𝑛 → 𝑣𝑣 and ℙ𝑣𝑣𝑛𝑛 → ℙ𝑣𝑣 ⟹ 𝑢𝑢 = ℙ𝑣𝑣 ∈ 𝑁𝑁, 
Hence, 𝒩𝒩 = 𝒩𝒩� . 
3) To prove that ℙ∗ is Intuitionistic Fuzzy partial isometry with the initial space 𝒩𝒩 and final space ℳ. 
 
For any 𝑢𝑢 ∈ 𝒩𝒩, there exists 𝑣𝑣 ∈ ℳ, such that ℙ𝑣𝑣 = 𝑢𝑢 and 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑣𝑣, 𝑡𝑡). 
And ℙ∗𝑢𝑢 = ℙ∗ℙ𝑣𝑣 = ℙℳ𝑣𝑣 = 𝑣𝑣. 
 
So that 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ∗𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡),           …(a) 
 
For any 𝑢𝑢 ∈ 𝒩𝒩⊥ , since ℙ𝑣𝑣 ∈ 𝒩𝒩 for any 𝑣𝑣 ∈ ℍ, 

       ⟹ 〈ℙ∗ℙ𝑢𝑢, 𝑣𝑣〉 = 〈𝑢𝑢,ℙ𝑣𝑣〉 = 0 
       ⟹ℙ∗𝑢𝑢 = 0    …(b) 
Therefore ℙ∗ is Intuitionistic Fuzzy partial isometry with the initial space 𝒩𝒩 and final space ℳ, because  

ℛ(ℙ∗) = ℙ∗𝒩𝒩 = ℙ∗ℛ(ℙ) = ℙ∗ℙℍ = ℙℳℍ = ℳ. 
 
From (a) by replacing ℙ by ℙ∗ and ℳ by 𝒩𝒩. 
 
Theorem 3.5: Let ℙ be an operator on an IFH-space ℍ. Then the following statements are equivalent to one another. 

(a) ℙ is an intuitionistic Fuzzy partial isometry operator. 
              (a1) ℙ∗ is an Intuitionistic Fuzzy partial isometry operator. 

(b) ℙℙ∗ℙ = ℙ. 
(b1) ℙ∗ℙℙ∗ = ℙ∗. 
(c) ℙ∗ℙ is an Intuitionistic Fuzzy projection operator. 
(c1) ℙℙ∗ is an Intuitionistic Fuzzy projection operator. 
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Proof: Given ℙ is an operator on IFH-space ℍ. 
(a) ⟹ (b): 
Assume ℙ is intuitionistic Fuzzy partial isometry. Then by theorem 3.3 (1), 

ℙℙ∗ℙ = ℙℙℳ = ℙ [∵  ℙℙℳ = ℙ&ℙ∗ℙ = ℙℳ] 
⟹ℙℙ∗ℙ = ℙ 

Hence, (a) ⟹ (b). 
(b) ⟹ (c): To prove that ℙ∗ℙ is Intuitionistic Fuzzy projection. 
Let ℙℙ∗ℙ = ℙ. 
Then, ℙ∗ℙℙ∗ℙ = ℙ∗ℙ. 
i.e. ℙ∗ℙ is idempotent and intuitionistic fuzzy self-adjoint (IFSA), so that ℙ∗ℙ is an intuitionistic Fuzzy projection 
operator. 
Hence, (b) ⟹ (c) 
(c) ⟹ (a): 
 
Let ℙ∗ be an Intuitionistic Fuzzy projection operator. Put ℙ∗ℙ = ℙℳ. 
 
Now for any 𝑢𝑢 ∈ ℍ, 
 𝒫𝒫𝜇𝜇 ,𝑣𝑣

2(ℙ𝑢𝑢, 𝑡𝑡) = 〈ℙ𝑢𝑢,ℙ𝑢𝑢〉 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢,ℙ𝑢𝑢, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙ∗ℙ𝑢𝑢,𝑢𝑢, 𝑡𝑡) < 1} 
= sup{𝑡𝑡 ∈ ℝ: ℱ𝜇𝜇 ,𝑣𝑣(ℙℳ𝑢𝑢,𝑢𝑢, 𝑡𝑡) < 1} 
= 𝒫𝒫𝜇𝜇 ,𝑣𝑣

2(ℙℳ𝑢𝑢, 𝑡𝑡) 
 
So that 𝒫𝒫𝜇𝜇 ,𝑣𝑣(ℙ𝑢𝑢, 𝑡𝑡) = 𝒫𝒫𝜇𝜇 ,𝑣𝑣(𝑢𝑢, 𝑡𝑡) for any 𝑢𝑢 ∈ ℳ and ℙ𝑢𝑢 = 0, for any 𝑢𝑢 ∈ ℳ⊥. 
 
Hence, the equivalence relation among (a), (b) & (c) is proved. 
 
Similarly, the equivalence relation among (a1), (b1) & (c1) can be proved easily and (b) ⇔ (b1) is obtained by taking 
adjoint of both sides. 
 
IV.CONCLUSION 
 
The new idea of Intuitionistic Fuzzy Partial isometry operator (IFPI- operator) on IFH-space is introduced. And also 
discuss different dimensions of relation between IFU-operator and IFP-operator. These relations are very new and 
helpful for the further study of functional analysis on intuitionistic fuzzy concept. Some characteristics of                 
IFPI- operator have been investigated. Some results and theorems will be useful for the further research in functional 
analysis. 
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