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ABSTRACT 

This paper introduces the criteria for the existence and uniqueness of solutions of two point boundary value problems 

associated with the nth order  matrix Lyapunov differential systems by applying the technique of Kronecker product of 

matrices and with the help of a Green’s matrix. 
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1. INTRODUCTION: 

 

The importance of boundary value problems in the theory of differential equations and their applications to different 

areas of science and technology are well known. The existence and uniqueness of solutions of matrix Lyapunov 

systems is an important area of current research and many concepts of existence and uniqueness solutions have been 

recently developed for first order Lyapunov matrix differential systems. 

 

In this paper is concerned with the problem of obtaining explicit solutions of two point boundary value problems with a 

system of matrix differential equation of the type 

)t(FB)t(ZB)t(ZAnB)t(ZAnB)t(ZAn)t(ZAZ nrrn
c

22n
c

1n
c

n)n(
r21

+++++++= −−−
��                                                                  

                                                                                                                                                             a bt ≤≤            (1.1) 

Satisfying 

                                            M Z(a)+N Z(b) = P                                                                                                             (1.2) 

Where A, B and F are  n× n real or complex valued matrices(members of R
nn×

 (C
nn×

 ) and ‘t’ in  the interval [a, b]. 

M, N and P are constant square matrices of order n. Also Z(t) ]RR[C nn×
+∈ is a variable matrix. 

 

The main tool used in this paper is the technique of Kronecker product of matrices, which has been successfully applied 

in various fields of matrix theory, group theory and particle physics. The corresponding homogeneous equation [F=0] 

has wide range of applications in mathematical physics. 

 

In section 2 we study various concepts of Kronecker products of matrices and develop primary results relating to 

corresponding boundary value problems. In section 3 we obtain existence and uniqueness solutions of two point 

boundary value problems with the help of a Green’s matrix. The properties of a Green’s Matrix are also studied in this 

section. 

 

2 PRELIMINARIES: 

 

In This section we study some properties and rules for kronecker products and basic results on related boundary value 

problems. 
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Definition: [2.1] [1]:  Let  R
nmC ×∈  and  T

qpC ×∈  then the kronecker product of R and T written R ⊗ T is 

defined to be partition matrix 
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Is an mp × nq matrix and is in  .C nqmp×
 

 

Definition: [2.2] [1] Let R 
nm

ij C}r{ ×∈=  we denote 
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The Kronecker product has the following properties and rules 

 

(I)  (R ⊗ T)*= R* ⊗ T*(R* denotes the transpose of complex conjugate of R) 

(II)
111 TR)TR( −−− ⊗=⊗  

(III) The mixed product rule   (R ⊗ T) (S ⊗ Q)= (RS ⊗ TQ) 

 

This rule holds good provided the dimensions of the matrices are such that the various expressions exit. 

(IV) Vec(RTS)=(S* ⊗ R) Vec T 

(V) Vec(RQI)=(I* ⊗ R) Vec Q 

(VI) If R and T matrices both of order n× n then 

 

i) Vec(RT)  = (I ⊗ R) Vec T 

ii) Vec(RT)  = (T* ⊗ R) Vec I 

 

Theorem: 2.1 [3] If   X is a fundamental matrix solution of  AZZ =′ then  X
)n(

is a fundamental matrix solution of 

Z
)n(

= A
n

Z  where ‘n’ is a positive integer. 

 

Proof: If X is a fundamental matrix of AZZ =′  if, and only if AXX =′ . This implies that 

).t(XA))t(AX(A)t(XAX 2==′=′′ This further implies that X'''(t)=A3X and so on.  

Hence X
)n(

(t)= A
n

X(t). Thus X(n) is also a fundamental matrix solution of Z
)n(

= A
n

Z. 

 

Theorem: 2.2 Let C be a constant square matrix of order  n× n. Then any solution of 

                                �
=

−=
n

0r

rrn
c

)n( B)t(ZAn)t(Z
r

                                                                                             (2.1) 

 

With A0=B0=I, is of the form Z(t) = X(t) C Y*(t), where X(t) is a fundamental matrix solution of )t(AZ)t(Z =′  and  

Y(t) is a fundamental matrix solution of )t(Z*B)t(Z =′ . 

 

Theorem: 2.3[3] Any solution Z(t) of 

                               )t(FB)t(ZAn)t(Z

n

0r

rrn
c

)n(
r

+= �
=

−
                                                                                  (2.2) 
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is of the form    Z(t) = X(t)CY*(t) +Zp(t). Where  Zp(t) is a particular solution of   (2.2) and 

).t(*Y]ds)s(Y)s(F)s(X)st(
)!1n(

1
)[t(X)t(Z

t

a

111n
p �

−−−−
−

=       

 

Theorem 2.4: Every solution Z (t) of the non homogeneous Lyapunov system (2.2) is of the form  

 

                                          Z(t)=X(t)C Y*(t) +Zp(t). 

 

Proof: for n=1, the homogeneous system (2.1) reduces to Z'=AZ+ZB. The general solution in terms of the variation 

parameters formula for Z'=AZ+ZB+ F has been established in [2]. 

 

Now by applying the Vec operator to the homogeneous boundary value problem 

�
=

−=
n

0r

rrn
c

)n( B)t(ZAn)t(Z
r

 

Satisfying 

                     M Z(a) + N Z(b)=0                                                                                                                                    (2.3) 

 

and by using Kronecker product properties we have 

 

)t(Ẑ}I*BA*BnA*BnA*BnAI{)t(Ẑ n
nrnr

c
2n2

c
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c
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n
)n(

r21
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   = )t(Ẑ)A*Bn(

n

0r

rnn
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−⊗

                                                                                                               (2.4) 

Satisfying 

                                      

ˆ ˆ( ) ( ) ( ) ( ) 0                                             I M Z a I N Z b⊗ + ⊗ =

                              (2.5) 

 

Let us denote   G= �
=

−⊗
n

0r

rnn
c )A*Bn(

r

  

 

 

and    )t(Ẑ)t(� =  then the boundary value problem(2.4) satisfying (2.5) can be written in the form 

 

                                      )t(�G)t(�
)n( =                                                                                                                   (2.6) 

Satisfying 

 

 

( ) ( ) ( ) ( ) 0                                                                 I M a I N bψ ψ⊗ + ⊗ =

                                           (2.7)

 

Now we confine our attention to the homogeneous boundary value problem (2.6)satisfying(2.7). The corresponding non 

homogeneous boundary value problem (1.1) satisfying (1.2) is given by 

 

                                                     
( ) ˆ                                             n

G Fψ ψ= +                                                  (2.8) 

 

ˆ( ) ( ) ( ) ( )                                                                           I M a I N b Pψ ψ⊗ + ⊗ =

                                (2.9)

 

Where           vecPP̂    and   vecFF̂ ==   

 

 

Definition: 2.3 The dimension of the solution space of a boundary value problem is called the index of compatibility of 

the problem. If the index of the compatibility is zero then we say that the boundary value problem is incompatible. 
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The terms Fundamental matrix, Characteristic matrix are used in the usual sense [3]. 

 

Lemma: 2.1 Let X (t) and Y(t) stands for the fundamental matrix solutions of )t(AZ)t(Z =′  and  Z(t)*B(t)Z =′
 

respectively. Then any solution �(t)=(Y*(t)
⊗

 X(t)) is a solution of(2.6) for  any constant C of order n2 and every 

solution is of this form. 

 

Proof:  Let   �(t)=(Y*(t)
⊗

 X(t))C 

 

Consider  

                 
C))t(X)t(*Y](AII*B[)t(� nn ⊗⊗+⊗=′

 
 

implies 

=)n(
� �

=

− ⊗⊗
n

0r

rnn
c X(t))C(t)*(Y  )A*Bn(

r

 
 

Hence  �(t) is a solution of (2.6) and it can be easily seen that every solution is of this form. 

 

Theorem: 2.5 Let Y*(t)
⊗

 X(t)) be a fundamental matrix of the homogeneous system (2.6). Then any solution then 

any solution of the non-homogeneous system (2.8) is of this form 

.]ds)s(F̂)s))(s(X)s(*Y(()st(
)!1n(

1
))[t(X)t(*Y(C))t(X)t(*Y()t(�

t

a

111n
�

−−− ⊗−
−

⊗+⊗=
 

where C is any constant vector of order  n2. 

 

Proof: The proof is similar to that of theorems 3.31 &3.32 0f [3]. 

 

Theorem: 2.6 [4] If the homogeneous boundary value problem (2.6) satisfying (2.7) has a characteristic matrix 

 D= )MI( ⊗ ))a(X)a(*Y( ⊗ � )NI( ⊗ ))b(X)b(*Y( ⊗ �����������‘r’ then its index of compatibility is  n2-r.�

�

3.  MAIN RESULT 

 

In this section, we shall be concerned with the existence and uniqueness of solutions to the boundary value problems 

(2.8) satisfying (2.9). 

 

Theorem: 3.1Let ))t(X)t(*Y( ⊗  be a fundamental matrix of (2.6) and suppose that the homogeneous boundary 

value problem is incompatible and the characteristic matrix D is non-singular. Then there exists a unique solution to the 

non-homogeneous boundary value problem (2.8) satisfying (2.9) and is of the form 

�+⊗= −
b

a

1 ds)s(F̂)s,t(HP̂D)t(X)t(*Y()t(�  

where H(t, s) is the green’s matrix for the homogeneous boundary value problem. 

 

Proof:  From Theorem 2.5 any solution of (2.8) is of the form 

  

.]ds)s(F̂)s))(s(X)s(*Y(()st(
)!1n(

1
))[t(X)t(*Y(C))t(X)t(*Y()t(�

t

a

111n
�

−−− ⊗−
−

⊗+⊗=  

where ))t(X)t(*Y( ⊗  be a fundamental matrix  for the homogeneous system and C is any constant vector of   order  

n2 and will be determined uniquely from the fact that the solution �(t) must satisfy the boundary condition (2.9). 

Substituting the general form of �(t) in boundary condition (2.9) we have 

	 )MI( ⊗ ))a(X)a(*Y( ⊗ � )NI( ⊗ ))b(X)b(*Y( ⊗ 
���������

�����������������������������������������
11

DP̂D
−− − �

−−
−

⊗
−

−
⊗⊗

b

a

11
1n

ds)s(F̂))s(X)s(*Y(
)!1n(

)sb(
   ))b(X)b(*Y)(NI( �
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Corollary: 3.1 When F=0 the boundary value problem(2.6) satisfying (2.9) has a unique solution is given   by 

                                P̂D)t(X)t(*Y()t(�
1−⊗= . 

 

Theorem 3.2: The Greens matrix H(t,s) has the following properties 

 

(i) H(t, s) has a function of ‘t’ with fixed ‘s’ having continuous derivatives everywhere except at t=s,  H(t, s) has a 

jump discontinuity of unit magnitude and is given by�

                      

                                         H(s+, s)- H(s-, s)= In
2. 

 

(ii)  H (t, s) is a formal solution of homogeneous boundary value problem(2.6)satisfying (2.7). H (t, s) fails to be a true 

solution because of the discontinuity at  t=s. 

 

(iii) H (t, s) satisfying the properties (i) and (ii) is unique. 
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