International Journal of Mathematical Archive-11(5), 2020, 13-16 MAAvailable online through www.ijma.info ISSN 2229 - 5046

ON NEW CLASS OF AXIOMS IN TOPOLOGICAL SPACES

SANJIVAPPA K DEMBARE*

Assistant Professor in Mathematics & Head of Dept of Mathematics, Government First Grade College, Sector No-43, Navanagar, Bagalkot-587103, Karnataka India.

(Received On: 31-03-20; Revised & Accepted On: 13-04-20)

ABSTRACT

In this paper, we study some separation axioms namely, SG- T_0 -space, SG $-T_1$ -space and SG $-T_2$ -space and their properties. We also obtain some of their characterizations.

Key Words: $SG-T_O$ -Space, $SG-T_1$ -Space, $SG-T_2$ -Space.

2010 Mathematics Subject Classification: 54A05, 54D05, 54C10.

1. INTRODUCTION

In the year 1987, [1] P.Bhattacharya and B.K.Lahiri introduced and studied SG-closed and SG-open sets respectively. In this paper we define and study the properties of a new topological axioms called SG- T_0 -space, SG- T_1 – space, SG-T₂-space.

II. PRELIMINARIES

Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), A^c,P-Cl(A) and P-int(A) denote the Closure of A, Interior of A, Compliment of A, pre-closure of A and pre-interior of (A) in X respectively.

Definition 2.1: A subset A of a topological space (X, τ) is called

- 1. Semi Generalised Closed Set [1] if Scl(A) \subseteq U whenever A \subseteq U and U is Semi-open in X
- 2. A pre generalized pre regular ω eakly closed set (briefly pgpr ω -closed set) if pCl(A) [3] whenever A \subseteq U and U is rg α -open in (X, τ).
- 3. A subset A of a topological space (X, τ) is called pre generalized pre regular weakly open (briefly pgprw-open) [4] set in X if A^c is pgpr ω -closed in X.

- **Definition 3:** A map $f: (X, \tau) \rightarrow (Y, \sigma)$ is called (i) SG-continuous map [2] if $f^{-1}(v)$ is SG closed in (X, τ) for every closed V in (Y, σ) .
 - (ii) SG-irresolute map [2] if $f^{-1}(v)$ is SG closed in (X,τ) for every SG-closed V in (Y, σ) .
 - (iii) SG-closed map [2] if $f^{-1}(v)$ is SG closed in (X,τ) for every closed V in (Y, σ) .
 - (iv) SG-open map [2] if $f^{-1}(v)$ is SG closed in (X,τ) for every closed V in (Y, σ) .

4. SEMI GENERALISED SPACE:

Definition 4.4.1: A topological space (X, τ) is called SG -T_o-space if for any pair of distinct points x, y of (X, τ) there exists an SG-open set G such that $x \in G$, $y \notin G$ or $x \notin G$, $y \in G$.

Example 4.4.2: Let X = {a, b}, $\tau = \{\varphi, \{b\}, X\}$. Then (X, τ) is SG-T₀- space, since for any pair of distinct points a, b of (X,τ) there exists an SG-T_o open set {b} such that $a \notin \{b\}, b \in \{b\}$.

Corresponding Author: Sanjivappa K Dembare* Assistant Professor in Mathematics & Head of Dept of Mathematics. Government First Grade College, Sector No-43, Navanagar, Bagalkot-587103, Karnataka India. **Remark 4.4.3:** Every SG-space is SG-T_o-space.

Theorem 4.4.4: Every subspace of a SG-T_o-space is SG-T_o-space.

Proof: Let (X,τ) be a SG $-T_0$ -space and (Y,τ_y) be a subspace of (X,τ) . Let Y_1 and Y_2 be two distinct points of (Y,τ_y) . Since (Y,τ_y) is subspace of $(X,\tau),Y_1$ and Y_2 are also distinct points of (X,τ) . As (X,τ) is SG- T_0 -space, there exists an SG-open set G such that $Y_1 \in G$, $Y_2 \notin G$. Then $Y \cap G$ is SG-open in (Y,τ_y) containing but Y_1 not Y_2 . Hence (Y,τ_y) is SG- T_0 -space.

Theorem 4.4.5: Let f: $(X,\tau) \rightarrow (Y, \mu)$ be an injection, SG-irresolute map. If (Y,μ) is SG-T_o-space, then (X,τ) is SG-T_o-space.

Proof: Suppose (Y, μ) is SG-T₀-space. Let a and b be two distinct points $in(X,\tau)$. As f is an injection f(a) and f(b) are distinct points in (Y,μ) . Since (Y,μ) is SG-T₀-space, there exists an SG-open set G in (Y,μ) such that $f(a) \in G$ and $f(b)\notin G$. As f is SG-irresolute, $f^{-1}(G)$ is SG-open set in (X,τ) such that $a \in f^{-1}(G)$ and $b\notin f^{-1}(G)$. Hence (X,τ) is SG-T₀-space.

Theorem 4.4.6: If (X,τ) is SG-T_o-space, T_{SG}-space and (Y,τ_y) is SG-closed subspace of (X,τ) , then (Y,τ_y) is SG-T_o-Space.

Proof: Let (X,τ) be SG-T_o-space, T_{SG}-space and (Y,τ_y) is SG-closed subspace of (X,τ) . Let a and b be two distinct points of Y. Since Y is subspace of (X,τ) , a and b are distinct points of (X,τ) . As (X,τ) is SG-T_o -space, there exists an SG-open set G such that a∈G and b∉G. Again since (X,τ) is TSG-space, G is open in (X,τ) . Then Y∩Gis open. So Y∩G is SG-open such that a∈Y∩G and b∉Y∩G. Hence (Y,τ_y) is SG-T_o-space.

Theorem 4.4.7: Let f: $(X,\tau) \rightarrow (Y, \mu)$ be bijective SG-open map from a SG-T₀ Space (X,τ) onto a topological space (Y,τ_y) . If (X,τ) is T_{SG}-space, then (Y, μ) is SG-T₀ Space.

Proof: Let a and b be two distinct points of (Y,τ_y) . Since f is bijective, there exist two distinct points e and d of (X,τ) such that f(c) = a and f(d) = b. As (X,τ) is SG-T₀ Space, there exists a SG-open set G such that $c \in G$ and $d \notin G$. Since (X,τ) is T_{SG}-space, G is open in (X,τ) . Then f(G) is SG-open in (Y, μ) , since f is SG-open, such that $a \in f(G)$ and $b \notin f(G)$. Hence (Y,τ_y) is SG-T₀-space.

Definition 4.4.8: A topological space (X,τ) is said to be SG-T₁-space if for any pair of distinct points a and b of (X,τ) there exist SG-open sets G and H such that $a \in G, b \notin G$ and $a \notin H, b \in H$.

Example 4.4.9: Let $X = \{a, b\}$ and $\tau = \{\emptyset, \{a\}, X\}$. Then (X,τ) is a topological space. Here a and b are two distinct points of (X,τ) , then there exist SG-open sets $\{a\}, \{b\}$ such that $a \in \{a\}, b \notin \{a\}$ and $a \notin \{b\}, b \in \{b\}$. Therefore (X,τ) is SG-T₀ space.

Theorem 4.4.10: If (X,τ) is SG-T₁-space, then (X,τ) is SG-T_o-space.

Proof: Let (X,τ) be aSG-T₁-space. Let a and b be two distinct points of (X,τ) . Since (X,τ) is SG-T₁-space, there exist SG-open sets G and H such that $a \in G$, $b \notin G$ and $a \notin H$, $b \in H$. Hence we have $a \in G$, $b \notin G$. Therefore (X,τ) is SG-T₀-space. The converse of the above theorem need not be true as seen from the following example.

Example 4.4.11: Let $X = \{a, b\}$ and $\tau = \{\varphi, \{b\}, X\}$. Then (X,τ) is SG-T_o-space but not SG-T₁-space. For any two distinct points a, b of X and an SG-open set $\{b\}$ such that $a \notin \{b\}, b \in \{b\}$ but then there is no SG-open set G with $a \in G, b \notin G$ for $a \neq b$.

Theorem 4.4.12: If f: $(X,\tau) \rightarrow (Y,\tau_y)$ is a bijective SG-open map from a SG-T₁-space and T_{SG}-space (X,τ) on to a topological space (Y,τ_y) , then (Y,τ_y) is SG-T₁-space.

Proof: Let (X,τ) be a SG-T₁-space and T_{SG}-space. Let a and b be two distinct points of (Y,τ_y) . Since f is bijective there exist distinct points c and d of (X,τ) such that f(c) = a and f(d) = b. Since (X,τ) is SG-T₁-space there exist SG-open sets G and H such that $c \in G$, $d \notin G$ and $c \notin H$, $d \in H$. Since (X,τ) is T_{SG}-space, G and H are open sets in (X,τ) also f is SG-open f(G) and f(H) are SG-open sets such that $a = f(c) \in f(G)$, $b = f(d) \notin f(G)$ and $a = f(c) \notin f(H)$, $b = f(d) \in f(H)$. Hence (Y,τ_y) is SG-T₁-space.

Sanjivappa K Dembare*/ On New Class of Axioms in Topological Spaces / IJMA- 11(5), May-2020.

Theorem 4.4.13: If (X,τ) is SG T₁ space and T_{SG}-space, Y is a subspace of (X,τ) , then Y is SG T₁ space.

Proof: Let (X,τ) be a SG T₁ space and T_{SG}-space. Let Y be a subspace of (X,τ) . Let a and b be two distract points of Y. Since Y $\subseteq X$, a and b are also distinct points of X. Since (X,τ) is SG-T₁-space, there exist SG-open sets G and H such that $a \in G$, $b \notin G$ and $a \notin H$, $b \in H$. Again since (X,τ) is T_{SG}-space, G and H are open sets in (X,τ) , then Y $\cap G$ and Y $\cap H$ are open sets so SG-open sets of Y such that $a \in Y \cap G$, $b \notin Y \cap G$ and $a \notin Y \cap H$. Hence Y is SG T₁ space.

Theorem 4.4.14: If: $(X,\tau) \rightarrow (Y,\tau_y)$ is injective SG-irresolute map from a topological space (X,τ) into SG-T₁-space (Y,τ_y) , then (X,τ) is SG-T₁ - space.

Proof: Let a and b be two distinct points of (X,τ) . Since f is injective, f(a) and f(b) are distinct points of (Y,τ_y) . Since (Y,τ_y) is SG-T₁ space there exist SG-open sets G and H such that f(a) \in G, f(b) \notin G and f(a) \notin H, f(b) \in H.Since f is SG-irresolute, f⁻¹(G) and f⁻¹(H) are SG-open sets in (X,τ) such that $a \in f^{-1}(G)$, $b \notin f^{-1}(G)$ and $a \notin f^{1}(H)$, $b \in f^{-1}(H)$. Hence (X,τ) is SG-T₁space.

Definition 4.4.15: A topological space (X,τ) . is said to be SG-T₂- space(or T_{SG}-Hausdorff space) if for every pair of distinct points x, y of X there exist T_{SG}-open sets M and N such that x∈N, y∈M and N∩M = \emptyset .

Example 4.4.16: Let $X = \{a, b\}$, $\tau = \{\emptyset, \{a\}, \{b\}, X\}$. Then (X,τ) is topological space. Then (X,τ) is SG-T₂-space. T_{SG}-open sets are \emptyset , $\{a\}$, $\{b\}$, and X. Let a and b be a pair of distinct points of X, then there exist T_{SG} - open sets $\{a\}$ and $\{b\}$ such that $a \in \{a\}$, $b \in \{b\}$ and $\{a\} \cap \{b\} = \emptyset$. Hence (X,τ) is SG-T₂-space.

Theorem 4.4.17: Every SG-T₂- space is SG T₁space.

Proof: Let (X,τ) be a SG-T₂- space. Let x and y be two distinct points in X. Since (X,τ) is SG-T₂- space, there exist disjoint T_{SG}-open sets U and V such that x \in U, and y \in V. This implies, x \in U, y \notin U and x \in V, y \notin V. Hence (X,τ) is SG-T₂- space.

Theorem 4.4.18: If (X,τ) is SG-T₂-space, T_{SG}- space and (Y,τ_v) is subspace of (X,τ) , then (Y,τ_v) is also SG-T₂-space.

Proof: Let (X,τ) , be a SG-T₂ - space and let Y be a subset of X. Let x and y be any two distinct points in Y. Since $Y \subseteq X$, x and y are also distinct points of X. Since (X,τ) is SG-T₂ - space, there exist disjoint T_{SG} -open sets G and H which are also disjoint open sets, since (X,τ) is T_{SG} - space. So G∩Y andH∩Y are open sets and so T_{SG} - open sets in (Y,τ_y) . Also x∈G, x ∈Yimplies x∈G∩V and y∈H and y∈Y this implies y∈Y∩H, since G∩H = Ø, we have $(Y\cap G)\cap(Y\cap H) = Ø$. Thus G∩Y and H∩Y are disjoint T_{SG} -open sets in Y such that x∈G∩Y, y∈H∩Y and $(Y\cap G)\cap(Y\cap H) = Ø$. Hence (Y,τ_y) is SG-T₂ - space.

Theorem 4.4.19: Let (X,τ) , be a topological space. Then (X,τ) , is SG-T₂- space if and only if the intersection of all T_{SG}-closed neighbourhood of each point of X is singleton.

Proof: Suppose (X,τ) , is SG-T₂-space. Let x and y be any two distinct points of X. Since X is SG-T₂-space, there exist open sets G and H such that $x \in G$, $y \in H$ and $G \cap H = \emptyset$. Since $G \cap H = \emptyset$ implies $x \in G \subseteq X$ -H. So X-H is T_{SG}-closed neighbourhood of x, which does not contain y. Thus y does not belong to the intersection of all T_{SG}-closed neighbourhood of x. Since y is arbitrary, the intersection of all T_{SG}-closed neighbourhoods of x is the singleton {x}.

Conversely, let (x) be the intersection of all T_{SG} -closed neighbourhoods of an arbitrary point x \in X. Let y be any point of Xdifferent from x. Since y does not belong to the intersection, there exists aT_{SG} -closed neighbourhood N of x such that $y \notin N$. Since N is T_{SG} -neighbourhood of x, there exists an T_{SG} -open set G such x $\in G \subseteq X$. Thus G and X - N are T_{SG} -open sets such that $x \subseteq G$, $y \in X$ -N and $G \cap (X - N) = \emptyset$. Hence (X, τ) is SG- T_2 -space.

Theorem 4.4.20: Let f: (X,τ) , -» (Y,τ_y) be a bijective SG-open map. If (X,τ) is SG-T₂- space and T_{SG} space, then (Y,τ_y) is also SG-T₂- space.

Proof: Let (X,τ) , is SG-T₂⁻ space and T_{SG}⁻ space. Let y_1 and y_2 be two distinct points of Y. Since f is bijective map, there exist distinct points x_1 and x_2 of X such that $f(x_i) = y_j$ and $f(x_2) = y_2$. Since (X,τ) is SG-T₂⁻ space, there exist SG-open sets G and H such that $X_1 \in G$, $X_2 \in H$ and $G \cap H = \emptyset$. Since (X,τ) is T_{SG}⁻ space, G and H are open sets, then f(G) and f(H) are SG- open sets of (Y,τ_y) , since f is pprw-open, such that $y_1 = f(x_1) \in f(G)$, $y_2 = f(x_2) \in f(H)$ and $f(G) \cap f(H) = \emptyset$. Therefore we have $f(G) \cap f(H) = f(G \cap H) = \emptyset$. Hence (Y,τ_y) is SGT₂-space.

Theorem 4.4.21: Let (X,τ) be a topological space and let (Y,τ_y) be a SG-T₂-space. Let f: (X,τ) —> (Y,τ_y) be an injective SG-irresolute map. Then (X,τ) is SG-T₂-space.

Proof: Let \mathbf{X}_1 and X_2 be any two distinct points of X. Since f is injective, $x_1 \neq x_2$ implies $f(x_1) \neq f(x_2)$.Let $y_1 = f(x_1)$, $y_2 = f(x_2)$ so that $\mathbf{x}_1 = f^{-1}(y_1)$, $x_2 = f^{-1}(y_2)$. Then $y_1, y_2 \in Y$ such that $y_1 \neq y_2$. Since (Y, τ_y) is SG-T₂-space there exist T_{SG}-open sets G and H such that $y_1 \in G$, $y_2 \in G$ and $G \cap H = \emptyset$. As f is T_{SG}-irresolute $f^{-1}(G)$ and $f^{--1}(H)$ are T_{SG}-open sets of (X, τ) . Now $f^{-1}(G) \cap f^{-1}(H) = f^{-1}(G \cap H) = f^{-1}(\emptyset) = \emptyset$ and $y_1 \in G$ implies $f^{-1}(G)$ implies $X_1 \in f^{-1}(G)$, $y_2 \in H$ implies $f^{-1}(y_2) \in f^{-1}(H)$ implies $x_2 \in f^{-1}(H)$. Thus for every pair of distinct points x_1 , x_2 of X there exist disjoint T_{SG}-open sets $f^{-1}(G)$ and $f^{-1}(H)$ such that $X_1 \in f^{-1}(G)$, $x_2 \in f^{-1}(H)$. Hence (X, τ) is SG-T₂-space.

REFERENCES

- 1. P.Bhattacharya and B.K.Lahiri, Semi-generalized closed sets in topology, Indian J.Math., 29,376-382 (1987).
- 2. P.Sundram, Ph.D Thesis Bharathiar University, Coimbatore-1991.
- 3. S.P. Arya and T.M. Nour, Characterization of s- normal spaces, Indian. J.Pure and Appl. Math., 21(8),(1990), 717-719.
- 4. S.S.Benchalli and R.S Wali, on rω- Closed sets is Topological Spaces, Bull, Malays, Math, sci, soc30 (2007), 99-110.
- 5. S.S. Benchalli, T.D. Rayanagoudar and P.G. Patil, g*- Pre Regular and g*-Pre Normal Spaces, Int. Math. Forum 4/48(2010) 2399-2408.
- 6. S.S. Benchalli and P.G. Patil, Some New Continuous Maps in Topological Spaces, Journal of Advanced Studies in Topology 2/1-2 (2009) 53-63.
- 7. R. Devi, Studies on Generalizations of Closed Maps and Homeomorpisms inTopological Spaces, Ph.D. thesis, Bharatiyar University, Coimbatore (1994).
- 8. C. Dorsett, Semi normal Spaces, Kyungpook Math. J. 25 (1985) 173-180.
- 9. N. Levine, Generalized Closed sets in Topology, Rendi. Circ. Math. Palermo 19/2(1970) 89-96.
- 10. S.N. Maheshwar and R. Prasad, On s-normal spaces, Bull. Math. Soc. Sci.Math. R.S. Roumanie 22 (1978) 27-28.
- 11. B.M. Munshi, Separation axioms, Acta Ciencia Indica 12 (1986) 140-146.
- 12. T. Noiri and V. Popa, On g-regular spaces and some functions, Mem. Fac. Sci.Kochi Univ. Math 20 (1999) 67-74.Journal of New Results in Science 5 (2014) 96-103 103.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2020. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]