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ABSTRACT 
In the present paper we will discuss refinements of Bernstein’s Inequality for the polynomials and will prove  
some results which will among other things also generalize. 
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INTRODUCTION  
 
Suppose )(xF be a polynomial of degree m and )(xF ′ be its derivative. Concerning the estimate modulus of )(xF ′
on the unit circle 1=x we know the inequality called as Bernstein’s inequality  
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Concerning the estimate modulus of )(xF on a large circle ,1>= Rx we get 
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Inequality (1.1) is an consequence of S.Bernstein’s theorem on the derivative of a trigonometric polynomials. 
Inequality (1.2) is a simple deduction consequence of maximum modulus principle. 
 
For the both (1.1) and (1.2) holds for the polynomial ,0,)( ≠= ββ mxxF that is, if and only if )(xF has all its 

zeros at the origin. It has been proved by Frappier, Ruscheweyh and Rahman that if )(xF is a polynomial of degree m, 
then  
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Equation (1.3) clears represents a refinement of (1.1). since the maximum of )(xF on the 1=x may be large than 

the maximum of )(xF taken over the thn2 roots of unity. take an example .0,)( >+= bibxxF m As it has been 
proved by the A.Aziz interesting refinement of (1.3) and hence Bernstein’s Inequality (1.1) as well. 
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Theorem 1.1: If )(xF is a polynomial of degree m, then for every given real β  
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πβ +M is obtained from (1.5) by replacing β by πβ + . The result is best possible and equality in (1.4) holds for 

11,)( ≤≤+= rrexxF im β . 

 
Theorem 1.2: If )(xF  is a polynomial of degree m, then for all real β and R >1. 
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The result is best possible and equaliy in (1.6) holds for the polynomial 11,)( ≤≤−+= rrexxF im β . If we 

restrict ourselves to the class of polynomials having no zero in 1<x , inequality (1.1) is sharpened. In fact P.Erdos 
conjectured and later P.D.Lax [5] verified that 
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Theorem 1.3: If )(xF is a polynomial of degree having no zero in 1<x , then for every real β  
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The result is best possible and equality in (1.8) holds for βim exxF +=)( . 
 
Theorem 1.4: If )(xF is a polynomial of degree m having no zero in 1<x , then for every real β and R>1 
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The result is sharp and equality in (1.9) holds for βim exxF +=)(  
 
Now we will prove the theorem one by one. 
 
Theorem A:  If )(xF is a polynomial of degree m having all its zeros in ,1≥≥ kx then 
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Where βM is defined by (1.5) 
 
Taking k=1, Theorem A reduces to Theorem 1.3. 
 
Theorem B: If )(xF is a polynomial of degree n having all its zeros in ,1≥≥ kx then for all real α and R>1,                            
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Where πββ ++ MM are defined as in Theorem 1.1 
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Corollary 1: If )(xF is a polynomial of degree m, then for all real β  and ,1≤r  
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Theorem C: If )(xF is a polynomial of degree m having all its zeros in 1, ≤< kkx then 
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Theorem D: If )(xF is a polynomial of degree m having all its zeros on ,1, ≤≤ kkx then for all real α and R>1, 
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Theorem E: If )(xF is self inverse polynomial of degree m, then 

,
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where βM is defined by (1.5) 
 
Proof of theorem: for the proof of these theorems we need the following leemas 
 
Leema 1: If )(xF is a polynomial of degree m, then for 1=x ad for every real β ,                          
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Where [ ]22
πββ ++ MM  are defined as in Theorem 1. 

 
Leema 2: If )(xF is a polynomial of degree m having all its zeros in ,1≥≥ kx then 
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Leema3: If )(xF is a polynomial of degree m having all its zeros in ,1, ≤< kkx then 
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Where Q(x) is as mentioned in Leema 2. 
 

Proof of theorem A: Let )1()(
x

FxnxQ = . Then 
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By using (1.10), we will get 
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From equation (1.17) with s=1, we have 
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Hence  
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Hence proved Theorem A. 
 
Proof of Theorem B: We have 1≥∀t  and πθ 20 ≤≤  
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Now applying Theorem 1 to the polynomial F(x) which is of degree m-1, we will get 
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This gives 
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Hence we get the required result. 
 
Proof of Theorem C: We have from Leema 1 
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Hence completes the Proof of the theorem. 
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Proof of Theorem D: 
 
We have 1≥∀t  and πθ 20 ≤≤  
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Now applying Theorem 1 to the polynomial F(x) which is of degree m-1, we will get 
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Hence we get the required result. 
 

Proof of Theorem E: Now )1()(
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By using lemma 1 we have 
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