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ABSTRACT 
In this manuscript we introduce Bi-Invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field lies in some maximal torus of Nagendram Γ-semi sub near-field space.   
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SECTION-1: INTRODUCTION AND PRELIMINARIES. 
 
In this paper author introduced PART III characters of Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-
near-field space over near-field. 
 
Definition 1.1: Let N be a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field, and V be a 
finite dimensional vector space over a filed F which in classical invariant theory was usually assumed to be the 
complex numbers. A representation N in V is a Nagendram Γ-semi sub near-field space homomorphism π : N → 
NL(V) which induces a near-field space action of N on V. If F (V) is the near-field space of polynomial functions on V 
then the near-field space action of N on V produces an action on F ( V )  by ( n. f ) ( x) := f(n-1(x)) ∀ x ∈ V, n ∈ N and f 
∈ F ( V ). 
 
With this action it is natural to consider the subspace of all polynomial functions which are invariant under this group 
action, in other words the set of polynomials such that n . f = f  for all n ∈ N. This Nagendram Γ-semi sub near-field 
space of a Γ-near-field space over near-field is called a Bi-invariant Nagendram Γ-semi sub near-field space of a         
Γ-near-field space over near-field is denoted by F [V]N. 
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Definition 1.2: Let M ≤ N be a be Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field. The normalizer NG(M) = N(M) of M in N is N(M) = {n ∈ N / nMn-1 = M}.   
 
Note 1.3:  Let M ⊆ N(M) and N(M) is a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space 
over near-field. 
 
Definition 1.4: Let N be a compact Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field, S ⊆ N a maximal torus. The Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space       
B = B (S, N) is B = N(S) /S. 
 
Note 1.5: B acts on S: (nS) . b = nbn-1 for all b ∈ S ,nS ∈ B. We will see that S/B = N/∼ (tilde) where N//∼ (tilde) is the 
quotient of Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field N by the 
conjugation action. 
 
Definition 1.6: Let N be a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. 
A function f  ∈ C∞ (N) is a class function if f (y) = f ( hyh-1 ) for y, h ∈ N. we denote the space of all class functions by 
C0 ( N ) N. 
 
Definition 1.7: Let N be Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field 
and M ⊆ N a Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. The centralizer Z (N) of 
M in N is Z (M) = { n ∈ N / nmn-1 = M for all m ∈ M }. 
 
Definition 1.8: Suppose ρ : N → NL (n, C) is a representation of a Bi-invariant Nagendram Γ-semi sub near-field 
space of a Γ-near-field space over near-field. Let rij : Mn ( C )denote standard co-ordinate functions. The functions         
r i j  ο ρ : N → C  are called the matrix coefficients of the representation ρ.  
 
More abstractly, the representation coefficients may be realized as (r i j ο ρ) (n) = < ei

*, ρ(n) e j > where {e1, e2, . . . , en} 
is a basis of Cn and {e1

*, e2
*, . . ., en

*} is the associated dual basis for Bi-invariant Nagendram Γ-semi sub near-field 
space of a Γ-near-field space over near-field. 
 
Definition 1.9: Let N be a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. 
A function f  : N → C is representative function an abstract matrix coefficient if there is a representation                        
ρ : N → NL(V) such that f (n) = <  l, ρ(n) ξ >  for some ξ ∈ V, l  ∈ V *  and for all n ∈ N. we usually such a function 
by f V, l, ξ. 
 
SECTION-2:  MAIN RESULTS ON BI-INVARIANT CHARACTERS OF NAGENDRAM GAMMA SEMI 
SUB NEAR-FIELD SPACES OF A GAMMA NEAR-FIELD SPACE OVER A NEAR-FIELD. 
 
In this section, author present theorem as main results on bi-invariant characters of Nagendram Gamma semi sub near-
field spaces of a Gamma near-field space over a near-field.  
 
Proposition 2.1: Let N be a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-
field and M ≤ N a closed Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field. 
Then, N(M) is closed in N and is hence a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space 
over near-field of N. 
 
Proof:  For c ∈ M consider the mapping ψc : N → N ; ψc(n) = ncn-1. Since M is closed Bi-invariant Nagendram Γ-semi 
sub near-field space of a Γ-near-field space over near-field and ψc is smooth, ψc

-1 (M) is closed for all c∈M. Now, 

N(M) = { }


Mc

MncnNn
∈

− ∈∈ 1/   = { }


Mc
c M

∈

− )(1ϕ  and so N(M) is closed Bi-invariant Nagendram   

Γ-semi sub near-field space of a Γ-near-field space over near-field.  
 
Theorem 2.2: Let N be a compact Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field, S ⊆ N a maximal torus. Then, the Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field 
space over near-field N = N (S, N) is N = N(S)/S. 
 
Proof: We will argue that the connected component N(S)0 of 1 in N(S) is S. This will be enough since | N(S)/N(S)0 | is 
the number of connected components of N(S). 
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Now, N(S)0 acts on S by conjunction for all n ∈ N(S)0 and d ∈ S, we have ndn-1 = cn (d) ∈ S. Hence, dnn

1(t) ⊆ t.  
 
In other words,  Ad(n)(t) ⊆ t. Thus, we get a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field 
space over near-field map Ad (.)|t : N(S0) → NL(t) and n   Ad(n)|t. 
 
Also, for any n ∈ N(S)0.                          
       Ad(n) 

        t                       t 
 

                                                                         exp                           exp 
       
 
                                                                                cn 
             T                      T 
 
Commutes since cn is a Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field 
map. Therefore, Ad(n) (ker exp) ⊆ ker exp for all n ∈ N(S)0.  
 
Recall that ZT := ker {ker : t → S} ≅ Zm where m = dim S. So, the image of Ad|t in NL(ZΓ) ≅ NL(m, Z) is discrete. But, 
N(S)0 is connected and so for all n ∈ N(S)0, Ad(n)|t = id. Thus, for all X ∈ Nag( N(S)0 ) [ Nag = Nagendram Γ-semi sub 
near-field space of a Γ-near-field space over near-field ] and P ∈ t we have Ad(exp X) P = P and so [ X, P ] = 0. Since, 
t is maximal abelian, we must have Nag( N(S)0 ) ⊆ t. 
 
On the other hand, S ⊆ N(S)0 and so Nag (N(S)0) = t. Since both N(S)0 and S are connected, they must be therefore be 
equal. This completes the proof of the theorem. 
 
Remark 2.3: In fact, Aut(S) = {φ: S → S| φ is a Nag Γ Bi-NFS map}=NL (XΓ ). 
 
Lemma 2.4: Let N be a compact Bi-invariant Nagendram Γ-semi sub near-field space of a Γ-near-field space over 
near-field. Two elements y1, y2 of a maximal torus S are conjugate in N if and only if there is n ∈ N = N(S)/S so that n . 
y1 = y2. 
 
Proof: Suppose x, y ∈ S and y = nxn-1 for some n ∈ N. Then, Z(y) = nZ(y)n-1 = cn (Z(x)). Since, x ∈ S and S ⊆ Z(x) 
we have cn (S) ⊆ Z(y). 
 
Now, Z(y)0 is compact and connected and S, cn(S) ⊆ Z(y)0 are tori. Since, both tori are maximal Bi-invariant 
Nagendram Γ-semi sub near-field space of a Γ-near-field space over near-field in N, they are maximal in Z(y)0. Thus, 
there exists h ∈ Z(y)0 such that ch (nk (S) ) = S and so hn ∈ N(S). 
 
Also, chn (x) = hnxn-1 = hyh-1 = y since h ∈ Z(y). we conclude that hnS ∈ N(S) /S and (hnS) . x = y. If x1, x – 2 ∈ S and 
b = nS ∈ B with b . x1 = x2, then nx1n-1 = x2. So, x1 and x2 are conjugate in N. This completes the proof of the lemma. 
 
Remark 2.5:  Induced map S/B → N/∼ is a continuous bijection. Since S/B is compact Bi-invariant Nagendram Γ-semi 
sub near-field space of a Γ-near-field space over near-field and N/∼ is Hausdorff, this map is actually a 
homeomorphism. 
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