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ABSTRACT 
This paper extends the concepts of interior and closure of a set in the point set topology to the I-rough topological 
spaces by introducing the concepts of I-rough interior and I-rough closure of an I-rough set. I-rough dense subset and 
I-rough boundary of an I-rough set are also introduced and their properties are discussed. A necessary and sufficient 
condition for an I-rough subset is an I-rough dense subset is studied. In order to swot up the new concepts in to the 
relative I-rough topology this paper also explores some properties of I-rough subspaces. The structure of I-rough open 
sets and I-rough closed sets in the relative I-rough topology are studied. 
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INTRODUCTION 
 
Rough set theory proposed by Pawlak [8] is a mathematical tool to deal with incomplete and imprecise data. Rough set 
theory expresses vagueness by employing a boundary region of a set by a pair of lower and upper approximations. If 
the boundary region is empty then the set is crisp, and if it is non-empty the set is a rough set. The non-empty boundary 
region represents our knowledge about the set is not sufficient to define the set precisely. The successful applications of 
rough set models in a variety of problems have amply demonstrated their usefulness and versatility [9, 10].  
 
Iwinski [1] presented the set oriented view of rough set in an algebraic method using a pair of definable sets. It is by the 
help of a complete sub-algebra of the Boolean algebra of power set of a non-empty set [1]. A beautiful and elaborated 
review can be seen in Yao [14]. Also a review that compares constructive and algebraic approaches in the study of 
rough sets can be seen in Yao [15].  
 
A topology on a non-empty set is a collection of subsets of it, satisfying certain axioms. A detailed study and historical 
notes of topology can be seen in Willard [12]. Many theories and applications are presented in Munkres [7]. Some 
works are done regarding the combinations of topology and generalizations of rough set theory [3, 13]. Some work 
regarding topological structures of rough sets induced by an equivalence relation can be seen in Kondo & Dudek [2]. 
Also Thuan [11] studied the covering based rough sets from a topological point of view. 
 
Mathew and John [4, 5, 6] introduced some general topological structure on an arbitrary rough universe and several 
topological properties of the resultant I-rough topological spaces are studied. They focused on the topological 
properties of the rough universe based on the set oriented view of rough set given by Iwinski [1].  

 
This paper is an attempt to extend the concepts of the I-rough topological space introduced by Mathew & John [5]. The 
structure of I-rough open sets and I-rough closed sets in the relative I-rough topology are studied. I-rough interior and I-
rough closure of an I-rough set and I-rough dense subsets are introduced and their properties are discussed. A necessary 
and sufficient condition for an I-rough subset is an I-rough dense subset is introduced. Also I-rough clopen sets and I-
rough boundary of an I-rough set are defined and a characterization of the I-rough boundary of an I-rough clopen set is 
discussed. By the investigation of these ideas this paper is an attempt to strengthen the I-rough topological spaces, the 
topology of the rough universe. 
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PRELIMINARIES 
 
Some of the basic definitions for our further study need to be quoted before introducing the new concepts. 
 
Let U be any non-empty set and let β  be a complete sub-algebra of the Boolean algebra 2U of subsets of .U Then the 

pair ( ),U β is called a rough universe [1]. Let ( ),U β  be a given fixed rough universe. Let R  be a relation on β  
defined by ( )1 2,A A A R= ∈

 
iff 1 2,A A β∈ and 1 2A A⊆ . The elements of R  are called rough sets and the 

elements of β are called exact sets [1]. In order to distinguish this definition of rough sets from Pawlak’s definition, 
this rough set is named as an I-rough set [14]. 
 
The element ( ),X X R∈ is identified with the element X β∈  and hence an exact set is a rough set in the sense of 

the above definition. But a rough set need not be exact. For example, if U is non-empty, then ( ),Uφ  is a rough set 
which is not exact [1]. 
 
Set theoretic operators on the rough sets are defined component wise using ordinary set operations as follows [1]. Let 

( )1 2,X X X=  and ( )1 2,Y Y Y=  be any two I-rough sets in the rough universe ( ),U β . Then, 

( )1 1 2 2,X Y X Y X Y∪ = ∪ ∪  

( )1 1 2 2,X Y X Y X Y=    

X Y⊆ if X Y X= .That is X Y⊆ if 1 1X Y⊆ and 2 2X Y⊆  

( )1 2 2 1,X Y X Y X Y− = − − . 
 

Hence ( ) ( ) ( ) ( )1 2 2 1 2 1, , , ,C C CX U U X X U X U X X X= − = − − = . 

 
These operations satisfy De Morgan’s Laws, and ( ), ,R ∪ ∩  is a complete distributive lattice with zero element 

( ),φ φ and unit element ( ),U U  [1]. 
 
Ordinary set operations are frequently needed and hence for avoiding further confusions, the above set operations on I-
rough sets are necessary to be named as I-rough union, I-rough intersection, I-rough inclusion, I-rough difference and I-
rough complement respectively [5].  
 
A topology on a set X is a collection τ of subsets of X, called the open sets, satisfying the following: 

1) Any union of elements of τ belongs to .τ  
2) Any finite intersection of elements of τ belongs to .τ  
3) φ  and X belongs to .τ  [12]. 

 
If τ is a topology on X then (X,τ ) is a topological space. If (X,τ ) is a topological space, then E ⊆X is closed iff X-
E is open [12].  
 
Let X be any non-empty set. Let { }, Xτ φ= . Then τ is a topology on X, the indiscrete topology on X. Let τ be the 
collection of all subsets of X. Then τ is a topology on X, the discrete topology on X [12]. 
 

Let ( ),U β  be a fixed rough universe associated with the complete sub-algebra β of the Boolean algebra 2U . Then a 

sub collection τ of R , the set of all I-rough sets in ( ),U β  is an I-rough topology on ( ),U β if the following 1, 2 and 
3 hold. 

1. ( ),φ φ τ∈ and ( ),U U τ∈  
2. τ   is closed under finite I-Rough intersection 
3. τ is closed under arbitrary I-Rough union [5]. 
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If τ be an I-rough topology on the rough universe ( ),U β . Then the triple ( ), ,U β τ  is an I-rough topological space. 

An I-rough set ( )1 2,A A A=  is an I-rough open set in an I-rough topological space ( ), ,U β τ  if  ( )1 2,A A A τ= ∈  

and an I-rough set ( )1 2,A A A=  is an I-rough closed set if its I-rough complement ( )2 1,CA U A U A= − −
 
is I-

rough open [5]. 
 

Theorem: [5] Let F be the family of all I-rough closed sets of an I-rough topological space ( ), ,U β τ . Then F  has 
the following properties. 

(i) ( ),φ φ ∈ F  and ( ),U U ∈ F  

(ii) F  is closed under finite I-Rough union 
(iii) F is closed under arbitrary I-Rough intersection. 

 
Every topological space ( ),U τ can be considered as an I-rough topological space, since there is a space ( ), ,U β τ  

induced from ( ),U τ . The converse is not true. Hence topological spaces are properly contained inside the collection 
of all I-rough topological spaces [5]. 
 
A subfamily B  of τ in an I-rough topological space ( ), ,U β τ  is an I-rough base for τ if every member of τ can be 
expressed as the I-rough union of some sub collections of members of B . That is τ can be recovered from B  by taking 
all possible I-rough unions of sub collections from B [5]. 
 
A family S of I-rough sets of the rough universe ( ),U β is an I-rough sub-base for the I-rough topological space 

( ), ,U β τ  if the family of all finite I-rough intersections of members of S is an I-rough base for τ [5]. 
 
Let τ be an I-rough topology defined on the rough universe ( ),U β . Let A is an exact subset of ( ),U β .Then 

( ) ( ){ }1 2 1 2/ , / ,A G A G A G A G G Gτ τ= ∩ = ∩ = ∈
 is an I-rough topology on the rough universe 

( ), /A Aβ  induced by τ , where { }/ /A X A Xβ β= ∩ ∈  is the complete sub-algebra β of the Boolean algebra 

2U restricted to A . Then / Aτ  is known as the relative I-rough topology on A  or the subspace I-rough topology on 
A  and ( ), / , /A A Aβ τ  is known as an I-rough subspace of the I-rough topological space ( ), ,U β τ [5]. 

 
This paper uses the notations of crisp set operations on two different contests. While dealing with crisp sets, these 
notations represents ordinary crisp set operations and when dealing with I-rough sets they denotes I-rough set 
operations. For example the notation DC ∩  means C  and D  are crisp sets and ∩  is the ordinary crisp set 
intersection. But in the expression ( ) ( )2121 ,, DDCC ∩ , the notation ∩  is the I-rough set intersection and is given 
by ( ) ( )2121 ,, DDCC ∩  = ( )2211 , DCDC ∩∩ . Note that in 11 DC ∩ and 22 DC ∩ , ∩  is the ordinary crisp set 
intersection. 

 
I-ROUGH SUBSPACES 
 
Even though the main objective of this paper is to introduce and investigate the properties of I-rough closure and I-
rough interior of an I-rough set, it is important to explore some properties of I-rough subspaces. Then only we can swot 
up the new concepts in to the relative I-rough topology. Hence in this section the structure of I-rough open sets and I-
rough closed sets in the relative I-rough topology are studied. Also the sufficient conditions for an I-rough open or I-
rough closed sets with respect to the relative I-rough topology are respectively I-rough open or I-rough closed sets with 
respect to the I-rough topology are discussed. 
 
Theorem 1: Let ( )YYY /,/, τβ  be an I-rough subspace of the I-rough topological space ( )τβ ,,U . Let ( )21, AA  
be an I-rough open subset with respect to the relative I-rough topology Y/τ  and ( )YY ,  is I-rough open with respect 
to τ . Then ( )21, AA  is I-rough open with respect to τ . 
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Proof: Given that  ( )21, AA  is an I-rough open subset with respect to the relative I-rough topology ./Yτ  Hence 

( )21, AA = ( ) ( )YYGG ,, 21 ∩ , where ( )21, GG τ∈ . It is also given that ( ) τ∈YY , . Hence ( ) ( )YYGG ,, 21 ∩ = 

( )21, AA τ∈ , since an I-rough topology is closed under finite I-rough intersections. Thus ( )21, AA  is I-rough open 
with respect to τ . 
 
Theorem 2: Let ( )YYY /,/, τβ  be an I-rough subspace of the I-rough topological space ( )τβ ,,U . Then an I-
rough set ( )21, DD  is an I-rough closed subset with respect to the relative I-rough topology Y/τ  iff ( )21, DD = 

( ) ( )YYCC ,, 21 ∩ , where ( )21, CC  is an I-rough closed subset of ( )τβ ,,U . 
 
Proof: First suppose that ( )21, DD  is an I-rough closed subset with respect to the relative I-rough topology Y/τ . 
Then the I-rough complement ( )12 , DYDY −− Y/τ∈ . Then by the definition of relative I-rough topology, 

( )12 , DYDY −− = ( ) ( )YYGG ,, 21 ∩ , where ( )21, GG τ∈ . That is ( )12 , DYDY −− = ( )YGYG ∩∩ 21 , . 
This implies 2DY − = YG ∩1 and 1DY − = .2 YG ∩  That is ( ) YGUD ∩−= 12 and ( ) YGUD ∩−= 21 . 
Thus  ( )21, DD = ( ) ( )( )YGUYGU ∩−∩− 12 , . That is ( )21, DD = ( ) ( )YYGUGU ,, 12 ∩−− . Which 

implies ( )21, DD = ( ) ( )YYGG C ,, 21 ∩ . Since ( )21, GG τ∈ , ( )CGG 21, is I-rough closed with respect to τ . Now 

let ( )CGG 21, = ( )21, CC . Then ( )21, DD = ( ) ( )YYCC ,, 21 ∩ , where ( )21, CC  is an I-rough closed subset of 

( )τβ ,,U . 
  
Conversely assume ( )21, DD = ( ) ( )YYCC ,, 21 ∩ , where ( )21, CC  is an I-rough closed subset of ( )τβ ,,U . That 

is ( )21, DD = ( )YCYC ∩∩ 21 , . Now since ( )21, CC  is an I-rough closed subset implies ( )CCC 21,  is an I-rough 

open set in ( )τβ ,,U . That is ( )12 , CUCU −− τ∈ . Then ( )CCC 21, ( )YY ,∩  is I-rough open with respect to 

( )YYY /,/, τβ . That is ( )CCC 21, ( )YY ,∩  = ( )12 , CUCU −− ( )YY ,∩  = 

( ) ( )( )YCUYCU ∩−∩− 12 , = ( ) YDYDY /, 12 τ∈−− . That is ( ) ( ) ./,, 21 YDDYY τ∈−  Hence 

( )21, DD  is an I-rough closed subset with respect to the relative I-rough topology ./Yτ  
 
Theorem 3: Let ( )YYY /,/, τβ  be an I-rough subspace of the I-rough topological space ( )τβ ,,U . Let ( )21, DD  
be an I-rough closed subset with respect to the relative I-rough topology Y/τ  and ( )YY ,  is I-rough closed with 
respect to τ . Then ( )21, DD  is I-rough closed with respect to τ . 
 
Proof: Given that ( )21, DD  be an I-rough closed subset with respect to the relative I-rough topology Y/τ . Then 

( ) ( ) ( )YYCCDD ,,, 2121 ∩= , where ( )21, CC  is an I-rough closed set of the I-rough topological space ( )τβ ,,U
. Then ( ) ( )YYCC ,, 21 ∩  is I-rough closed, since ( )YY ,  is I-rough closed with respect to τ and I-rough intersection 

of I-rough closed sets are again I-rough closed. Hence ( ) ( ) ( )YYCCDD ,,, 2121 ∩=  is I-rough closed with respect 
to τ . 
 
I-ROUGH CLOSURE 
 
Any I-rough open set of the I-rough topological space ( )τβ ,,U  generates an I-rough closed set; since an I-rough set 
is an I-rough open set iff its I-rough complement is an I-rough closed set. Besides the I-rough open sets, associated with 
every I-rough set there is a unique I-rough closed set associated with it, the I-rough closure of it. It is defined and some 
properties are studied in this section. 
 
Definition 1: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then the I-rough closure of ( )21, AA  is denoted by ( ) ,, 21 AA  and is defined by the I-rough 

intersection of all I-rough closed subsets of ( )τβ ,,U , containing ( )21, AA . That is the I-rough closure ( )21, AA =

( ) ( ) ( ) ( ){ }21211221 ,,&,/, CCAACCCC CC ⊆∈∩ τ .  
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Theorem 4: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )21, AA  is an I-rough closed subset. Moreover ( )21, AA  is the smallest I-rough closed set 

containing ( )21, AA . 
 

Proof: We have ( )21, AA = ( ) ( ) ( ) ( ){ }
 21211221 ,,&,/, CCAACCCC CC ⊆∈τ . Since arbitrary I-rough 

intersections of I-rough closed sets are again I-rough closed, ( )21, AA  is an I-rough closed subset. Also being the I-

rough intersections of all I-rough closed sets containing ( ) ,, 21 AA ( )21, AA  is the smallest I-rough closed set 
containing ( )21, AA . 
 

Theorem 5: If ( )21, AA  is an I-rough closed subset of the I-rough topological space ( )τβ ,,U , iff ( )21, AA  = 

( ) ., 21 AA  
 
Proof: If ( )21, AA  is itself an I-rough closed subset of the I-rough topological space ( )τβ ,,U , then ( )21, AA  is the 

smallest I-rough closed set containing ( )21, AA . Then by theorem 4, ( )21, AA  = ( ) ., 21 AA  

Conversely if ( )21, AA = ( )21, AA , then clearly ( )21, AA  is I-rough closed, since ( )21, AA  is an I-rough closed 
subset by theorem 4. 
 

Corollary 1: In an I-rough topological space ( )τβ ,,U , ( ) ( )φφφφ ,, =  and ( ) ( )UUUU ,, = . 
 

Proof: Since ( ) ( )CUU ,, =φφ and ( ) ( )CUU φφ,, = , in any I-rough topological space ( )τβ ,,U ,  ( )φφ,  and 

( )UU ,  are I-rough closed subsets. Hence the proof follows directly by theorem 5. 
 

Theorem 6: In an I-rough topological space ( )τβ ,,U , if ( ) ( )2121 ,, CCAA ⊆ ,then ( ) ( )2121 ,, CCAA ⊆  
 

Proof: From theorem 4, ( )21, CC  is the smallest I-rough closed set containing ( )21, CC . Then since 

( ) ( )2121 ,, CCAA ⊆ , ( )21, CC  is an I-rough closed set containing ( )21, AA . Then ( ) ( )2121 ,, CCAA ⊆ , since 

( )21, AA  is the smallest I-rough closed set containing ( )21, AA . 
 
Theorem 7: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( ) ( )2121 ,, AAAA = . 

Proof: Let ( )21, AA be any subset of the I-rough topological space ( )τβ ,,U , then ( )21, AA  is an I-rough closed set 

by theorem 4. Then by theorem 5, ( ) ( )2121 ,, AAAA = . 
 
Theorem 8: Let ( ), ,U β τ  be an I-rough topological space and ( )21, AA  and ( )21, DD  be any two I-rough sets of 

the rough universe ( ),U β , then ( ) ( )2121 ,, DDAA ∪ = ( ) ( )2121 ,, DDAA ∪ . 
 

Proof: Clearly ( ) ( )2121 ,, AAAA ⊆ and ( ) ( )2121 ,, DDDD ⊆ , since the I-rough closure of an I-rough set is the 

smallest I-rough closed set containing it. Which implies ( ) ( )2121 ,, DDAA ∪ ⊆ ( ) ( )2121 ,, DDAA ∪ . But being 

the I-rough union of two I-rough closed set, ( ) ( )2121 ,, DDAA ∪  is an I-rough closed set.  Hence 

( ) ( )2121 ,, DDAA ∪  is an I-rough closed set containing ( ) ( )2121 ,, DDAA ∪ . Now ( ) ( )2121 ,, DDAA ∪  is the 

smallest I-rough closed set containing ( ) ( )2121 ,, DDAA ∪ . Therefore, ( ) ( )2121 ,, DDAA ∪ ⊆

( ) ( )2121 ,, DDAA ∪ . 
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Also ( )21, AA ⊆ ( ) ( )2121 ,, DDAA ∪ and ( )21, DD ⊆ ( ) ( )2121 ,, DDAA ∪ . Then by theorem 6, 

( )21, AA ⊆ ( ) ( )2121 ,, DDAA ∪ and ( )21, DD ⊆ ( ) ( )2121 ,, DDAA ∪ . Then ( ) ( )2121 ,, DDAA ∪ ⊆

( ) ( )2121 ,, DDAA ∪ . From thee two implications ( ) ( )2121 ,, DDAA ∪ = ( ) ( )2121 ,, DDAA ∪ . 
 
I-ROUGH DENSE SUBSETS 
 
I-rough dense subsets are introduced and their properties are discussed in this section. The necessary and sufficient 
condition for an I-rough set is an I-rough dense subset in an I-rough topological space is studied. The nature of I-rough 
closure of an I-rough set with respect to the relative I-rough topology is also investigated. 
 
Definition 2: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )21, AA  is an I-rough dense subset if  ( ) ( )UUAA ,, 21 = . 
 
Theorem 9: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )21, AA  is an I-rough dense subset iff for every non-empty I-rough open set ( )21, GG of 

( )τβ ,,U , ( )2211 , GAGA ∩∩ ≠ ( )φφ, . 
 
Proof: Suppose ( )21, AA  is an I-rough dense subset of an I-rough topological space ( )τβ ,,U . If possible suppose 

( )21, GG  be a non-empty I-rough open set of ( )τβ ,,U  such that ( )2211 , GAGA ∩∩ =φ . Which implies 

( )21, AA ( ) ( )21,, GGUU −⊆ . That is ( )21, AA ( )12 , GUGU −−⊆ . Now ( )21, GG  is a non-empty I-rough 
open set implies ( )12 , GUGU −−  is an I-rough closed set and also is a proper I-rough set of ( )UU , . Since 

( )21, AA  is the smallest I-rough closed set containing ( )21, AA , and ( )21, AA  is included in the I-rough closed set 

( )12 , GUGU −−  implies ( )21, AA ( )12 , GUGU −−⊆ .This is a contradiction, since ( ) ( )UUAA ,, 21 = . 
Hence our assumption is wrong and ( )2211 , GAGA ∩∩ ≠ ( )φφ, . 

Conversely suppose for every non-empty I-rough open set ( )21, GG  of ( )τβ ,,U , ( )2211 , GAGA ∩∩
≠ ( )φφ, . Let ( )21, CC  be any proper I-rough closed set containing ( )21, AA , then ( )12 , CUCU −−  is a non-
empty I-rough open set such that ( )21, AA ∩ ( )12 , CUCU −− =φ . That is a contradiction to our assumption. 

Hence the only I-rough closed set containing ( )21, AA is ( )UU , . Hence ( ) ( )UUAA ,, 21 = . That is ( )21, AA is I-
rough dense in ( )τβ ,,U . 
 
Remark: In the above theorem it is noticed that an I-rough set in an I-rough topological space is an I-rough dense set if 
it has non empty I-rough set intersection with every I-rough open sets. Actually it is enough to the I-rough set have 
non-empty I-rough intersection with every I-rough sets in an I-rough base. It is investigated in the following theorem. 
 
Theorem 10: Let B  be an I-rough base for an I-rough topological space ( )τβ ,,U . Then an I-rough set ( )21, AA  of 

the rough universe ( ),U β  is an I-rough dense subset iff ( )2211 , GAGA ∩∩ ≠ ( )φφ, , for every ( )21, GG  in B. 
 
Proof: Suppose ( )21, AA  is an I-rough dense subset of an I-rough topological space ( )τβ ,,U . Let ( )21, GG ∈B be 
arbitrary. Then clearly ( )21, GG ∈τ . Then by theorem 9, ( )2211 , GAGA ∩∩ ≠ ( )φφ, . 
 
Conversely suppose ( )21, AA  is an arbitrary I-rough set such that for every ( )21, GG  in B, the I-rough intersection 

( )2211 , GAGA ∩∩ ≠ ( )φφ, . Let ( )21, DD  be an arbitrary I-rough open set of the I-rough topological space 

( )τβ ,,U . Since B  is an I-rough base for ( )τβ ,,U , ( )21, DD  can be expressed as the I-rough union of some sub 

collection of members of B.  Each of the I-rough sets in this sub collection are proper I-rough subset of  ( )21, DD , and 
by our assumption each of them has non-empty I-rough intersection with ( )21, AA .  

Hence ( ) ( )2121 ,, DDAA  ≠ ( )φφ, . That is ( )2211 , DADA ∩∩ ≠ ( )φφ, . Since ( )21, DD  is arbitrary, by 
theorem 9, ( )21, AA  is an I-rough dense subset of the I-rough topological space ( )τβ ,,U . 
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Theorem 11: Let ( )YYY /,/, τβ  be an I-rough subspace of the I-rough topological space ( )τβ ,,U . Let ( )21, AA  

be an I-rough subset of ( )YY , . Let ( )21, AA  be the I-rough closure of ( )21, AA in ( )τβ ,,U . Then the I-rough 

closure of ( )21, AA  in ( )YYY /,/, τβ is ( )21, AA ( )YY ,∩ .  
 

Proof: Let ( )21, CC  be the I-rough closure of ( )21, AA in ( )YYY /,/, τβ . Given that ( )21, AA  is the I-rough 

closure of ( )21, AA in ( )τβ ,,U . Then ( )21, AA  is I-rough closed in ( )τβ ,,U . Then ( )21, AA ( )YY ,∩  is I-

rough closed in ( )YYY /,/, τβ , by theorem 2. Now  ( ) ( )2121 ,, AAAA ⊆ and ( ) ( )YYAA ,, 21 ⊆ , implies 

( )⊆21, AA ( )21, AA ( )YY ,∩ . That is ( )21, AA ( )YY ,∩ is an i-rough closed set containing ( )21, AA . Then 

( )21, CC ⊆ ( )21, AA ( )YY ,∩ , since ( )21, CC  is the smallest I-rough closed set in ( )YYY /,/, τβ  containing 

( )21, AA .  
Since ( )21, CC  is the I-rough closure of ( )21, AA in ( )YYY /,/, τβ , ( )21, CC  is I-rough closed in 

( )YYY /,/, τβ . Hence ( )21, CC = ( ) ( )YYDD ,, 21 ∩ , where ( )21, DD  is I-rough closed in ( )τβ ,,U . Which 
implies ( )21, CC ( )21, DD⊆  and hence ( )21, AA ( )21, DD⊆ . That is ( )21, DD is an I-rough closed set containing 

( )21, AA . Since ( )21, AA  is the smallest I-rough closed set containing ( )21, AA , it is clear that ( )21, AA
( )21, DD⊆ . Hence ( )21, AA ( )YY ,∩ ⊆ ( ) ( )YYDD ,, 21 ∩ = ( )21, CC . That is ( )21, AA ( )YY ,∩ ⊆ ( )21, CC

. From these two implications ( )21, CC = ( )21, AA ( )YY ,∩ . 
 
Theorem 12: Let ( )τβ ,,U , be an I-rough topological space and ( )21, AA  is an I-rough dense subset of it. Let 

( )YY ,  be an I-rough open set of ( )τβ ,,U . Then ( ) ( )YYAA ,, 21 ∩  is an I-rough dense subset of the relative I-
rough topology ./Yτ  
 
Proof: Let ( )21, AA  is an I-rough dense subset of ( )τβ ,,U . Then to prove ( ) ( )YYAA ,, 21 ∩  is an I-rough dense 

subset of the relative I-rough topology Y/τ , let ( )21, DD  be any I-rough open set of the relative I-rough topology 

./Yτ  Then from the definition of the relative I-rough topology, ( )21, DD  = ( ) ( )YYGG ,, 21 ∩ ,  

where ( )21, GG τ∈ .Given that ( )YY ,  is an I-rough open set of ( )τβ ,,U . But ( )21, GG τ∈  and ( )YY , τ∈  

implies  ( )21, DD  = ( ) ( )YYGG ,, 21 ∩ τ∈ . Then by theorem 9, ( ) ( )2121 ,, DDAA  ≠ ( )φφ, . Since 

( ) ( )YYDD ,, 21 ∩ = ( )21, DD , the expression can be rewritten as ( ) ( ) ( )[ ]YYDDAA ,,, 2121 ∩ ≠ ( )φφ, . Since 

I-rough set intersection is associative, ( ) ( )[ ] ( )2121 ,,, DDYYAA ∩ ≠ ( )φφ, . Since ( )21, DD  is an arbitrary       
I-rough open set of the relative I-rough topology ,/Yτ  it is concluded that ( ) ( )YYAA ,, 21 ∩  is an I-rough dense 
subset of the relative I-rough topology ./Yτ  
 
Remark: The condition in which ( )YY ,  is an I-rough open set of ( )τβ ,,U  is necessary in the above theorem. If 

( )YY ,  is not an I-rough open set of ( )τβ ,,U then ( ) ( )YYAA ,, 21 ∩  need not be an I-rough dense subset of the 
relative I-rough topology ./Yτ Consider the following example.  
 
Example 1: Let { }tsrqpU ,,,,=  and let .2U=β  Let ( ) ( ) { } { }( ) { } { }( ),,,,,,,,,,,{ qpqpqppUUφφτ =
{ } { }( ) { } { }( )},,,,,,,,,, rqprqprqpqp . Then the family of I-rough closed sets are given by =F
( ) ( ) { } { }( ) { } { }( ),,,,,,,,,,,,,,,,{ tsrtstsrqtsrUUφφ { } { }( ) { } { }( )},,,,,,,,, tsrtsrtsts . Now consider the I-

rough set ( )21, AA = { } { }( )tsrptsp ,,,,,, . Then the I-rough closure of it is ( )UU , , since there is no other I-rough 

closed set contains it. Thus { } { }( )tsrptsp ,,,,,,  is I-rough dense subset of ( )τβ ,,U . Now let 

( ) { } { }( )tsqtsqYY ,,,,,, = . Then note that ( )YY ,  is not an I-rough open subset of ( )τβ ,,U . Now consider 

( ) ( )YYAA ,, 21 ∩  = { } { }( )tsrptsp ,,,,,, ∩ { } { }( )tsqtsq ,,,,, = { } { }( )tsts ,,, . Then ( ) ( )YYAA ,, 21 ∩  = 

{ } { }( )tsts ,,, = { } { }( )tsts ,,, . That is ( ) ( )YYAA ,, 21 ∩ ( )YY ,≠ . That is ( ) ( )YYAA ,, 21 ∩ is not an I-rough 
dense subset with respect to the relative I-rough topology. 
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I-ROUGH INTERIOR 
 
I-rough open sets are those I-rough sets which are members of the I-rough topology. There are I-rough sets which are 
neither I-rough open nor I-rough closed. Just like the I-rough closure, associated with every I-rough set there is a 
unique I-rough open set associated with it, the I-rough interior of it. It is defined and some properties are studied in this 
section. 
 
Definition 3: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then the I-rough interior of ( )21, AA  is denoted by ( )021, AA  and is defined by the I-rough union 

of all I-rough open subsets of ( )τβ ,,U , contained in ( )21, AA . That is the I-rough interior  

( )021, AA = ( ) ( ) ( ) ( ){ }τ∈⊆∪ 21212121 ,&,,/, GGAAGGGG .  
 
Theorem 13: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , Then the I-rough interior ( )021, AA of ( )21, AA  is I-rough open. Moreover ( )021, AA is the largest 

I-rough open set contained in ( )21, AA .  
 

Proof: Since arbitrary I-rough union of I-rough sets are again I-rough open, the I-rough interior ( )021, AA of ( )21, AA  
is always I-rough open set of the I-rough topological space ( )τβ ,,U . Also being the I-rough union of all I-rough sets 
contained in ( )21, AA , it is the largest I-rough set contained in ( )21, AA .  
 
Theorem 14: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )21, AA  is I-rough open iff ( )021, AA = ( )21, AA . 
 
Proof: Suppose ( )21, AA is an I-rough open subset of the I-rough topological space ( )τβ ,,U . Then ( )21, AA  is the 

largest I-rough open set contained in ( )21, AA . Hence by theorem 13, ( )021, AA = ( )21, AA . 
 

Also if ( )21, AA  is an I-rough subset such that ( )021, AA = ( )21, AA , then by theorem 13, ( )21, AA  is an I-rough 
open subset of the I-rough topological space ( )τβ ,,U . 

Corollary 2: Let ( )τβ ,,U be an I-rough topological space, then ( ) ( )φφφφ ,, 0 = and ( ) ( )UUUU ,, 0 = . 
 
Proof: The proof follows directly from theorem 14, since ( )φφ,  and ( )UU ,  are I-rough open subsets of ( )τβ ,,U . 
 
Theorem 15: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )( )00
21, AA = ( )021, AA . 

 

Proof: For any I-rough set ( )21, AA , the I-rough interior ( )021, AA is an I-rough open set by theorem 13. Then by 

theorem 14, ( )( )00
21, AA = ( )021, AA . 

 
Theorem 16: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  and ( )1 2,D D be any two I-rough subsets 

of the rough universe ( ),U β , such that ( )21, AA ⊆ ( )21, DD , then ( )021, AA ⊆ ( )021, DD . 
 

Proof: From the definition of I-rough interior, clearly ( ) ( )21
0

21 ,, AAAA ⊆ . Thus if ( )21, AA ⊆ ( )21, DD , then 

( )021, AA ⊆ ( )21, DD . That is ( )021, AA is an I-rough open set contained in ( )21, DD . Then ( )021, AA ⊆

( )021, DD , since ( )021, DD is the largest I-rough open set contained in ( )21, DD . 
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Theorem 17: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  and ( )1 2,D D be any two I-rough subsets 

of the rough universe ( ),U β , then ( ) ( )[ ]02121 ,, DDAA ∩ = ( )021, AA ∩ ( )021, DD . 
 
Proof: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  and ( )1 2,D D be any two I-rough subsets of the 

rough universe ( ),U β . Then from the definition of I-rough interior, ( ) ( )21
0

21 ,, AAAA ⊆ and 

( ) ( )21
0

21 ,, DDDD ⊆ . Then ( )021, AA ∩ ( )021, DD ⊆ ( ) ( )2121 ,, DDAA ∩ . Now since, ( )021, AA  and

( )021, DD  are I-rough open by theorem 13 and I-rough intersection of two I-rough open sets are again an I-rough open 

set implies ( )021, AA ∩ ( )021, DD is an I-rough open set. That is ( ) ( )021
0

21 ,, DDAA ∩ is an I-rough open set 

contained in ( ) ( )2121 ,, DDAA ∩ . Hence  ( )021, AA ∩ ( )021, DD ⊆ ( ) ( )[ ]02121 ,, DDAA ∩ . 
 
Also ( ) ( )[ ] ( )212121 ,,, AADDAA ⊆∩ and ( ) ( )[ ] ( )212121 ,,, DDDDAA ⊆∩ . Then by theorem 16, 

( ) ( )[ ]02121 ,, DDAA ∩ ( )021, AA⊆  and ( ) ( )[ ]02121 ,, DDAA ∩ ( )021, DD⊆ . Which implies 

( ) ( )[ ]02121 ,, DDAA ∩ ⊆ ( )021, AA ∩ ( )021, DD . Hence ( ) ( )[ ]02121 ,, DDAA ∩ = ( )021, AA ∩ ( )021, DD . 
 
I-ROUGH BOUNDARY  
 
I-rough boundary of an I-rough set is defined in this section. Also I-rough clopen sets are defined and a characterization 
of the I-rough boundary of an I-rough clopen set is discussed here. 
 
Definition 4: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then ( )1 2,A A  is I-rough clopen set if ( )1 2,A A  is both I-rough open and I-rough closed. That is if  

( )1 2,A A τ∈  and ( ) ( )1 2, ,U U A A−  = ( )2 1,U A U A τ− − ∈ . 
 
Definition 5: Let ( ), ,U β τ  be an I-rough topological space and ( )1 2,A A  be any I-rough subset of the rough 

universe ( ),U β , then the I-rough boundary of ( )1 2,A A  is the I-rough set defined by 

( ) ( ) ( )1 2 1 2, , ,A A U U A A∩ −  = ( ) ( )1 2 2 1, ,A A U A U A∩ − −  and is denoted by ( )1 2,A A∂ . 
 
Remark: The I-rough boundary of an I-rough set is always an I-rough closed set, since it is the I-rough intersection of 
two I-rough closed sets. Also from the definition it is clear that the I-rough boundary of an I-rough set is same as the I-
rough boundary of its I-rough complement. 
 
Theorem 18: For any I-rough set ( )1 2,A A , the I-rough boundary ( ) ( )1 2, ,A A φ φ∂ =  iff ( )1 2,A A , is an I-rough 
clopen set. 
 
Proof: First suppose that ( )1 2,A A , is an I-rough clopen subset of the I-rough topological space ( ), ,U β τ . That is 

( )1 2,A A  is both I-rough open and I-rough closed. Since ( )1 2,A A  is I-rough closed, ( ) ( )1 2 1 2, ,A A A A= . Also 

since ( )1 2,A A  is I-rough open, ( ) ( )1 2, ,U U A A−  = ( )2 1,U A U A− − is I-rough closed and hence 

( ) ( )2 1 2 1, ,U A U A U A U A− − = − − . Hence ( )1 2,A A∂
 

= ( ) ( )1 2 2 1, ,A A U A U A∩ − −  = 

( ) ( )1 2 2 1, ,A A U A U A∩ − −  = ( ) ( )1 2 1 2, , CA A A A∩ = ( ),φ φ . 

Conversely suppose that for an I-rough set ( )1 2,A A , the I-rough boundary ( ) ( )1 2, ,A A φ φ∂ = . That is 

( ) ( ) ( )1 2 1 2, , ,A A U U A A∩ −  = ( ),φ φ . Since ( ) ( )( )1 2, ,U U A A− ⊆ ( ) ( )1 2, ,U U A A− , it is clear that 

( ) ( ) ( )( )1 2 1 2, , ,A A U U A A∩ −  = ( ),φ φ . But their I-rough union is ( ),U U . This means that 

( ) ( )1 2 1 2, ,A A A A= . Hence by theorem 5, ( )1 2,A A  is an I-rough closed set. In the preceding proof, by reversing  
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the role of ( )1 2,A A  and ( ) ( )1 2, ,U U A A− it follows that ( ) ( )1 2, ,U U A A− is also I-rough closed set. Which 

implies ( )1 2,A A  is I-rough open. That is ( )1 2,A A  is both I-rough open and I-rough closed and hence it is an I-rough 
clopen set. 

 
CONCLUSION 
 
This paper studies some basic concepts of the I-rough topological spaces. I rough topological spaces are the 
generalization of topological spaces in to a rough universe. The paper mainly focuses on I-rough subspaces, I-rough 
closure, I-rough interior, I-rough dense subsets, I-rough clopen sets and I-rough boundary of an I-rough set and several 
properties related to them are discussed. The structure of I-rough open sets and I-rough closed sets in the relative         
I-rough topology are studied. By the investigation of these ideas this paper is an attempt to enrich the I-rough 
topological spaces. With the help of the ideas presented here there are a lot of research scopes in this area. 
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