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ABSTRACT 
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1 INTRODUCTION 
 
Maheshwari and Prasad[8] introduced the new class of spaces called s-normal spacesusing semi-open sets. It was 
further studied by Noiri and Popa[10],Dorsett[6] andArya [1]. Munshi[9], introduced g-regular and g- normal spaces 
using g-closed sets of Levine[7]. Later, Benchalli et al. [3] and Shik John[12] studied the concept of g*- pre-regular,   
g*-pre normal and w- normal, w-regular spaces in topological spaces.Recently, Benchalli et al. [2,11] introduced and 
studied the properties of regular weakly closedsets and regular weakly continuous functions. 
 
2. PRELIMINARIES 
 
Throughout this paper space (X, τ) and (Y, σ) (or simply X and Y) always denote topological space on which no 
separation axioms are assumed unless explicitly stated. For a subset A of a space X, Cl(A), Int(A), Ac , and 𝛼𝛼-Cl(A), 
denote the Closure of A, Interior of A and Compliment of A and 𝛼𝛼-closure of A in X respectively. 
 
Definition 2.1: A subset A of a topological space (X, τ) is called 
(i)Generalized closed set(briefly g-closed) [7] if cl(A) ⊆ U whenever A ⊆ U and U is open in X. 
(ii)W-closed set[ 12] if cl(A) ⊆ U whenever A⊆ U and U is semi-open in X. 
 
Definition 2.2: A topological space X is said to be a 

1. 𝛼𝛼 - regular [4], if for each 𝛼𝛼 - closed set F of X and each point x ∉ F, there existsdisjoint  𝛼𝛼 -  open sets U and 
V such that F ⊆V and x 𝜖𝜖 U. 

2. w-regular[12], if for each closed set F of X and each point x ∉ F, there existsdisjoint w-open sets U and V 
such that F⊆U and x𝜖𝜖V. 

3. g-regular[10], if for each g-closed set F of X and each point x ∉F,there exists disjoint open sets U and V such 
that F⊆U and x 𝜖𝜖 V. 

4. Semi  generalized  closed set[15]  Scl(A) ⊆U When A⊆U and U is Semi-open in X 
 
Definition 2.3: A topological space X is said to be a 

1. 𝛼𝛼-normal [4], if for any pair of disjoint  α − closed sets A and B, there exists dis-joint 𝛼𝛼-open sets U and V 
such that A⊆U and B⊆V . 

2. w-normal [12], if for any pair of disjoint  w -closed sets A and B, there existsdisjoint open sets U and V such 
that A⊆ U and B⊆V. 

3. g- normal [10], if for any pair of disjoint g-closed sets A and B, there exists disjoint open sets U and V such 
that A⊆U and B⊆V. 
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Definition 2.4: [2] A topological space X is called T regular weakly -space if every Semi generalised closed setis closed set. 
 
Definition 2.5: A map f: (X, τ) ⟶ (Y, τ) is said to be  

(i) Semi generalised continuous map[16]if f -1(V)is a Semi generalised closed set of (X, τ) for every closed set V 
of (Y, τ). 

(ii) Semi generalised irresolute map[16] if f -1(V)is a Semi generalised closed set of (X, τ) for everySemi 
generalised closed set V of (Y, τ). 

 
3. SEMI GENERALIZED  REGULAR SPACE 
 
In this section, we introduce a new class of space called Semi generalised regular space using Semi generalised closed 
set and obtain some of their characterizations. 
 
Definition 3.1. A topological space Xis said to be Semi generalised regular space if for each Semi generalised closedset 
F and a point x∉F, there exist disjoint open sets G and H such that F⊆G andx𝜖𝜖H. 
 
We have the following interrelationship between Semi generalised regularity and regularity. 
 
Theorem 3.2: Every Semi generalised regular space is regular. 
 
Proof: Let X be a Semi generalised regular space. Let F be any closed set in X and a point x∉Xsuch that x∉F. By [2], F 
is Semi generalised topological space-closed and x ∉F. Since X is a Semi generalised regular space, thereexists a pair 
of disjoint open sets G and H such that F ⊆ G and x 𝜖𝜖H. Hence X is aregular space. 
 
Remark 3.3: If X is a regular space and TSemi generalised topological space, then X is Semi generalised  regular space then we 
have the following characterization. 
 
Theorem 3.4: The following statements are equivalent for a topological space X. 
(i) X is a Semi generalised  regular space 
(ii) For each x 𝜖𝜖X and each Semi generalised topological spacesopen neighbourhood U of x,there exists an open 
neighbourhood N of x such that cl(N)⊆U. 
 
Proof: (i)implies(ii): Suppose X is a Semi generalised regular space. Let U be any Semi generalised neighbourhood of 
x. Then there exists Semi generalised open set G such that x 𝜖𝜖 G ⊆U. Now X – G is Semi generalised  closed set and x 
∉ X - G. Since X is Semi generalised regular space, then there exist open sets Mand N such that X -G⊆M, x 𝜖𝜖 N and M 
∩ N = 𝜑𝜑and so N ⊆X-M. Nowcl(N) ⊆ cl(X -M) = X-M and X -M ⊆M. This implies X -M⊆ U. Thereforecl(N)⊆U. 
(ii)implies (i): Let F be any Semi generalised topological space closed set in X and x 𝜖𝜖X -F and X - F is aSemi 
generalised topological space open and so X - F is a Semi generalised topological space neighbourhood of x. By 
hypothesis, there existsan open neighbourhood N of x such that x 𝜖𝜖N and cl(N) ⊆X - F. This impliesF ⊆X - cl(N) is an 
open set containing F and N ∩ f(X - cl(N)= 𝜑𝜑 . Hence X isSemi generalised  regular space. 
 
We have another characterization of Semi generalised regularity in the following. 
 
Theorem 3.5: A topological space X is Semi generalised regular if and only if for each Semi generalised topological 
space closedset F of X and each x 𝜖𝜖X - F there exist open sets G and H of X such that x 𝜖𝜖 G,F⊆H and cl(G) ∩ cl(H) = 
∅. 
 
Proof: Suppose X is Semi generalised regular space. Let F be a Semi generalised topological space closed set in X with 
x ∉F.Then there exists open sets M and H of X such that x 𝜖𝜖 M, F ⊆H and M∩H =∅.This implies M∩cl(H) = ∅.As X is 
Semi generalised regular, there exist open sets U and V suchthat x 𝜖𝜖 U, cl(H)⊆V and U∩V = ∅. so cl(U)∩V = ∅.  
Let G = M ∩U, then G andH are open sets of X such that x𝜖𝜖G, F ⊆ H and cl(H) ∩cl(H) =∅. 
Conversely, if for each Semi generalised closed set F of X and each x 𝜖𝜖 X -F there exists opensets G and H such that x 
𝜖𝜖 G, F⊆ H and cl(H)∩cl(H) =∅.This implies x 𝜖𝜖G,F⊆H and G ∩ H =  ∅. Hence X is Semi generalised regular. 
Now we prove that Semi generalised topological spaces- regularity is a heriditary property. 
 
Theorem 3.6: Every subspace of a Semi generalised regular space is Semi generalised regular. 
 
Proof: Let X be a Semi generalised  regular space. Let Y be a subspace of X. Let x 𝜖𝜖 Y and F bea Semi generalised 
closed set in Y such that x∉F. Then there is a closed set and so Semi generalised closedset A of X with F = Y ∩ A and 
x ∉A. Therefore we have x 𝜖𝜖 X, A is Semi generalised closedin X such that x∉A. Since X is Semi generalised regular, 
then there exist open sets G and H suchthat x  𝜖𝜖G, A⊆H and G∩H = 𝜑𝜑. Note that Y ∩G and Y∩H are open sets in 
Y.Also x 𝜖𝜖 G and x 𝜖𝜖Y, which implies x 𝜖𝜖 Y ∩G and A ⊆ H implies Y∩ G⊆Y ∩H,F⊆Y∩H. Also (Y∩G)∩(Y∩H) = 𝜑𝜑. 
Hence Y is Semi generalised regular space. 
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We have yet another characterization of Semi generalised topological spaces-regularity in the following. 
 
Theorem 3.7: The following statements about a topological space X are equivalent: 

(i) X is Semi generalised regular 
(ii) For each x 𝜖𝜖 X and each Semi generalised topological space open set U in X such that x 𝜖𝜖 U there exists 

anopen set V in X such that x 𝜖𝜖  V⊆cl(V)⊆U. 
(iii) For each point x 𝜖𝜖X and for each Semi generalised topological space closed set A with x ∉ A, then there exists 

anopen set V containing x such that cl(V)∩A = 𝜑𝜑. 
 
Proof:  

(i) implies(ii): Follows from Theorem 3.5. 
(ii) implies(iii): Suppose (ii) holds. Let x 𝜖𝜖 X and A be an Semi generalised topological spaceclosed set of X 

suchthat x ∉ A.Then X - A is a Semi generalised topological spaceopen set with x𝜖𝜖X -A. By hypothesis, 
thereexists an open set V such that x 𝜖𝜖V ⊆ cl(V ) ⊆ X - A. That is x𝜖𝜖 V , V⊆ cl(A) andcl(A) ⊆ X - A. So x  
𝜖𝜖V and cl(V)∩A = 𝜑𝜑. 

(iii) implies(i): Let x 𝜖𝜖 X and U be an Semi generalised topological space open set in X such that x 𝜖𝜖 U. ThenX - U 
is an Semi generalised topological spaceclosed set and x∉ X - U. Then by hypothesis, there exists an openset 
V containing x such that cl(A) ∩(X -U) = Á. Therefore x 𝜖𝜖V , cl(V )⊆U sox 𝜖𝜖 V⊆ cl(V)⊆U. 

 
The invariance of Semi generalised topological space regularity is given in the following. 
 
Theorem 3.8:  Let f : X ⟶Y be a bijective, Semi generalised topological space irresolute and open map from a Semi 
generalised topological space regular space X into a topological space Y, then Y is Semi generalised topological 
spaces-regular. 
 
Proof: Let y 𝜖𝜖 Y and F be a Semi generalised topological space closed set in Y with y ∉ F. Since F is Semi generalised 
topological spaceirresolute, f- 1(F) is Semi generalised topological space closed set in X. Let f(x) = y so that x = f-1 (y) 
andx ∉ f- 1(F). Again X is Semi generalised-regular space, then there exist open sets U and V such thatx 𝜖𝜖 U and            
f- 1(F) ⊆ G, U ∩ V = 𝜑𝜑. Since f is open and bijective, we have y 𝜖𝜖 f(U),F ⊆ f(V ) and f(U) ∩f(V) = f(U∩V ) = f(𝜑𝜑) = 𝜑𝜑 . 
Hence Y is Semi generalised  regular space. 
 
Theorem 3.9: Let f : X ⟶Y be a bijective, Semi generalised closed and open map from atopological space X into a 
Semi generalised regular space Y . If X is TSemi generalised topological spaces, then X is Semi generalised regular. 
 
Proof: Let x 𝜖𝜖X and F be an Semi generalised closed set in X with x ∉F. Since X is TSemi generalised topological spaces,F is 
closed in X. Then f(F) is Semi generalised closed set with f(x)∉ f(F) in Y , since f is Semi generalised  closed. As Y is 
Semi generalised regular,then there exist open sets U and V such that x 𝜖𝜖  Uandf(x) 𝜖𝜖 U and f(F) ⊆V . Therefore x 𝜖𝜖 f- 

1(U) and F⊆ f- 1(V ). Hence X is Semi generalised regular space. 
 
Theorem 3.10: If f : X ⟶Y is w-irresolute, continuous injection and Y is Semi generalised topological spaces-regular 
space,then X is Semi generalised topological spaces- regular. 
 
Proof: Let F be any closed set in X with x∉F. Since f is w-irresolute, f is Semi generalised topological space closed set 
in Yand f(x) 𝜖𝜖 f(F). Since Y is Semi generalised regular,then there exists open sets U and V such that f(x) 𝜖𝜖U and       
f(F) ⊆ V . Thus x 𝜖𝜖f- 1(U),F ⊆ f- 1(V ) and f-1 (U) ∩ f-1(V ) = 𝜑𝜑. Hence X is Semi generalised regular space. 
 
4. SEMI GENERALISED NORMAL SPACES 
 
In this section, we introduce the concept of Semi generalised normal spaces and study some of theircharacterizations. 
 
Definition 4.1: A topological space X is said to be Semi generalised normal if for each pair ofdisjoint Semi generalised 
topological spacesclosed sets A and B in X,then there exists a pair of disjoint open sets U andV in X such that A ⊆ U 
and B ⊆V  
 
We have the following interrelationship. 
 
Theorem 4.2: Every Semi generalised normal space is normal. 
 
Proof: Let X be a Semi generalised normal space. Let A and B be a pair of disjoint closed sets inX. From [2], A and B 
are Semi generalised topological spacesclosed sets in X. Since X is Semi generalised normal, then there existsa pair of 
disjoint open sets G and H in X such that A⊆ G and B ⊆ H. Hence X is  normal. 
 
Remark 4.3: The converse need not be true in general as seen from the following  example. 
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Example 4.4: Let X = Y ={a,b,c,d},τ ={X, ∅,{a},{c},{a,c},{b,c,d}}.Then 
the space X is normal but not Semi generalised normal, since the pair of disjoint Semi generalised topological 
spacesclosed setsnamely, A = {a,d}and B = {b,c}for which there do not exists disjoint open sets Gand H such that A ⊆ 
G and B⊆ H. 
 
Remark 4.5: If X is normal and TSemi generalised topological spaces, then X is Semi generalised -normal. 
 
Hereditary property of  Semi generalised normality is given in the following. 
 
Theorem 4.6: A Semi generalised closed subspace of a Semi generalised normal space is Semi generalised  normal.We 
have the following characterization. 
 
Theorem 4.7: The following statements for a topological space X are equivalent: 

(i) X is Semi generalised topological spaces is  normal 
(ii) For each Semi generalised closed set A and each pre generalized pre regular weakly topological space  open 

set U such that A⊆U, there existsan open set V such that A⊆V⊆cl(V)⊆U 
(iii) For any Semi generalised closed sets A, B, there exists an open set V such that A⊆V andcl(V)∩B = 𝜑𝜑. 
(iv) For each pair A, B of disjoint Semi generalised closed sets then there exist open sets U and V suchthat A ⊆ 

U,B ⊆V and cl(U) ∩cl(V ) = 𝜑𝜑. 
Proof:  

(i) implies(ii): Let A be a Semi generalised closed set and U be a Semi generalised open set such that A⊆ U.Then 
A and X - U are disjoint Semi generalised closed sets in X. Since X is Semi generalised normal , then 
thereexists a pair of disjoint open sets V and W in X such that A ⊆ V and X -U⊆W.Now X -W ⊆ X -(X -U), 
so X -W⊆  U also V∩W = 𝜑𝜑.implies V ⊆ X -W, so cl(V)⊆cl(X -W) which implies cl(V ) ⊆ X -W. Therefore 
cl(V )⊆X -W⊆U. So cl(V ) ⊆ U. Hence A⊆V⊆cl(V)⊆U. 

(ii) implies(iii): Let A and B be a pair of disjoint Semi generalised closed sets in X. Now A∩B = 𝜑𝜑,so A⊆X -B, 
where A is Semi generalised closed and X - B is Semi generalised open . Then by (ii) thereexists an open set V 
such that A⊆V⊆cl(V)⊆X-B. Now cl(V)⊆X - B impliescl(V)∩B = 𝜑𝜑. Thus A⊆V and cl(V)∩B = 𝜑𝜑. 

(iii) implies(iv): Let A and B be a pair of disjoint Semi generalised closed sets in X.Then from (iii)there exists an 
open set U such that A⊆U and cl(U)∩B = 𝜑𝜑. Since cl(V ) is closed, soSemi generalised closed set.Therefore 
cl(V ) and B are disjoint Semi generalised closed sets in X. By hypothesis,then their exists an open set V , 
such that B⊆V and cl(U) ∩cl(V ) = 𝜑𝜑. 

(iv) implies(i): Let A and B be a pair of disjoint Semi generalised closed sets in X.Then from (iv)then there exist 
an open sets U and V in X such that A⊆U, B⊆V and cl(U)∩cl(V ) = 𝜑𝜑.So A ⊆ U , B⊆V and U∩V = 𝜑𝜑.Hence 
X is Semi generalised normal. 

 
Theorem 4.8: Let X be a topological space. Then X is Semi generalised normal if and only if forany pair A, B of 
disjoint Semi generalised closed setthen there exist open sets U and V of X such thatA⊆U,B⊆V and cl(U) ∩cl(V ) = 𝜑𝜑. 
 
Theorem 4.9: Let X be a topological space. Then the following are equivalent: 

(i) X is normal 
(ii) For any disjoint closed sets A and B,then there exist disjoint Semi generalised topological spaces- open sets U 

and Vsuch that A⊆U,B⊆V . 
(iii) For any closed set A and any open set V such that A⊆ V, there exists an Semi generalised open set U of X 

such that A⊆U⊆𝛼𝛼cl(U)⊆ V . 
 
Proof:  

(i) implies(ii): Suppose X is normal. Since every open set is Semi generalised open [2], (ii)follows. 
(ii) implies(iii): Suppose (ii) holds. Let A be a closed set and V be an open set containing A. Then A and X - V are 

disjoint closed sets. By (ii), then there exist disjoint Semi generalised  open sets U and W such that A⊆U and 
X - V ⊆ W, since X -V is closed, soSemi generalised is closed. From [2], we have X -V⊆𝛼𝛼-int(W) and U ∩
 𝛼𝛼-int(W) =𝜑𝜑.and so wehave 𝛼𝛼-cl(U) ∩ 𝛼𝛼-int(W) = 𝜑𝜑. Hence A ⊆ U ⊆𝛼𝛼-cl(U) ⊆ X – 𝛼𝛼-int(W)⊆V . ThusA ⊆ 
U ⊆𝛼𝛼-cl(U) ⊆ V . 

(iii) implies(i): Let A and B be a pair of disjoint closed sets of X.Then A ⊆X - B andX -B is open. There exists a 
Semi generalised open set G of X such that A ⊆ G  ⊆𝛼𝛼-cl(G) ⊆X-B.Since A is closed, it is w- closed, we have 
A ⊆𝛼𝛼-int(G). Take U = int(cl(int(𝛼𝛼-int(G))))and V = int(cl(int(X –𝛼𝛼-cl(G)))). Then U and V are disjoint open 
sets of X such thatA ⊆U and B ⊆ V Hence X is normal. 

 
We have the following characterization of Semi generalised topological spaces- normality and Semi generalised 
topological spaces- normality. 
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Theorem 4.10: Let X be a topological space. Then the following are equivalent: 

(i) X is 𝛼𝛼-normal. 
(ii) For any disjoint closed sets A and B, there exist disjoint Semi generalised topological space- open sets U and 

Vsuch that A⊆U,B⊆V and U∩ V = 𝜑𝜑. 
 
Proof:  

(i) implies(ii): Suppose X is 𝛼𝛼- normal. Let A and B be a pair of disjoint closedsets of X. Since X is 𝛼𝛼-
normal,there exist disjoint 𝛼𝛼 − open sets U and V such thatA⊆U and B⊆V and U ∩ V = 𝜑𝜑. 

(ii) implies(i):Let A and B be a pair of disjoint closed sets of X.The by hypothesis thereexist disjoint Semi 
generalised open sets U and V such that A⊆U and B ⊆ V and U ∩V = 𝜑𝜑 .Sincefrom [2], A⊆𝛼𝛼-intU and B 
⊆𝛼𝛼 − int(V)and 𝛼𝛼 –intU∩ 𝛼𝛼-intV = 𝜑𝜑. Hence X is 𝛼𝛼-normal. 

 
Theorem 4.11: Let X bea 𝛼𝛼- normal, then the following hold good: 

(i) For each closed set A and every Semi generalised open set B such that A⊆B ther exists a αopen set U such 
that A⊆U⊆α-cl(U)⊆ B. 

(ii) For every Semi generalised closed set A and every open set B containing A, there exist a α-open set U such 
that A⊆U⊆ α-cl(U)⊆B. 
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