A NOTE ON DYNAMICAL SYSTEMS ON HILBERT C^* – MODULES AND DYNAMICAL SYSTEMS ON C^* – ALGEBRAS

M. Khanehgir*

Department of Mathematics, Faculty of science, Islamic Azad University-Mashhad Branch, Mashhad, Iran, P. O. Box 413-91735.

E-mail: khanehgir@mshdiau.ac.ir

(Received on: 22-08-11; Accepted on: 30-09-11)

ABSTRACT

Suppose that C is a unitary operator on a full Hilbert C^* —module M. We describe dynamical systems on a full Hilbert C^* —module M over a C^* —algebra A as a one-parameter C-group of unitaries on M. We investigate dynamical systems on a full Hilbert module over a Frechet locally C^* —algebra. Then we discuss two-parameter dynamical systems on a full Hilbert C^* —module M over a C^* —algebra. Finally we characterize infinitesimal generator of a uniformly continuous positive C—semigroup on a C^* —algebra.

2000 AMS subject classification: 46L05,46L08,47B48,47B65,47D03.

KeyWords: Full Hilbert C^* – module, Dynamical system, Unitary operator, Frechet locally C^* – algebra, C - semigroup, Infinitesimal generator and generalized derivation.

1.INTRODUCTION:

A pre-Hilbert C^* -module over a C^* -algebra A is an algebraic left A-module M equipped with an A-valued inner product $\langle .,. \rangle$ which is A-linear in the first variable and for every $x, y \in M$ satisfies the following relations:

- (1) $\langle x, x \rangle \ge 0$;
- (2) $\langle x, x \rangle = 0$ if and if x = 0;
- (3) $\langle x, y \rangle^* = \langle y, x \rangle$.

We say M is a Hilbert C^* -module if it is a Banach space with respect to the norm $||x|| = ||\langle x, x \rangle||^{\frac{1}{2}}$. A Hilbert module M is called full if the closed linear span $\langle M, M \rangle$ of all elements of the form $\langle x, y \rangle$ $(x, y \in M)$ is equal to A. It can be easily proved that if M is a full Hilbert module over a C^* -algebra A then a = 0 if and only if ax = 0 for all $x \in M$. For more details on Hilbert modules one can see [9].

Now let M and N be Hilbert modules over C^* -algebras A and B respectively. Following [2] we call a map $\Phi: M \to N$ is a unitary operator if there exists an injective morphism of C^* -algebras $\varphi: A \to B$ such that Φ is a surjective φ -morphism. The set of all unitary operators on M together with composition of maps form a group which is denoted by U(M). If M is full and $\alpha: M \to M$ is a unitary operator than there is a *-isomorphism $\alpha: A \to A$ such that α is an α -morphism ([2] Remark 2.9).

Abbaspour, Moslehian and Niknam in [1] characterized a dynamical system on a full Hilbert module M over a C^* -algebra A as a one-parameter group of unitaries on M. They proved that if $\alpha: R \to U(M)$ is a dynamical system, then it corresponds to a C^* -dynamical system α on A such that if δ and d are the infinitesimal generators

of α and α' respectively, then δ is a d – generalized derivation. In this paper we first extend this to one-parameter C – group of unitaries on a full Hilbert C^* -module M where C is a unitary operator on M. For more details on C – groups see [4]. We discuss dynamical systems on a full Hilbert module over a Frechet locally C^* -algebra. A locally C^* -algebra is a complete Hausdorff complex *-algebra A whose topology is determined by its continuous C^* -seminorms. The set of all continuous C^* -seminorms on A is denoted by S(A). A Frechet locally C^* -algebra is a locally C^* -algebra whose topology is determined by a countable family of C^* -seminorms. Clearly any C^* -algebra is a Frechet locally C^* -algebra. In [8], Joita characterized a unitary operator $\Phi: E \to F$, where A and B are two Frechet locally C^* -algebras and E and E are full Hilbert modules over E0 and E1 respectively. We describe dynamical systems on these spaces. We also investigate two-parameter dynamical systems on a full Hilbert C^* -module. The reader is referred to [7] for more details on two-parameter dynamical systems and to [11] on C^* -dynamical systems.

In Sec. 3, we describe dynamical systems on a C^* -algebra. More precisely we characterize the infinitesimal generator of a uniformly continuous (strongly continuous) positive C-semigroups on a C^* -algebra.

2. C -GROUP OF UNITARIES ON A FULL HILBERT MODULE:

Definition: 2.1. Suppose that C is a unitary operator on a full Hilbert C^* -module M. The family of unitary operators $\{\alpha_i\}_{i\in\mathbb{R}}$ on M is a C-group if it has the following properties:

- (i) $\alpha_0 = C$.
- (ii) $\alpha_{t}\alpha_{s}(x) = C\alpha_{t+s}(x), t, s \in \mathbb{R}$.
- (iii) α_t is strongly continuous, that is, for all $x \in M$ the map $t \to \alpha_t(x)$ form \mathbb{R} into M is continuous.

The operator δ is the infinitesimal generator of C -group $\{\alpha_t\}_{t\in\mathbb{R}}$ if

$$D(\delta) = \{x \mid \lim_{t \to 0} \frac{\alpha_t(x) - C(x)}{t} exists\}$$

with

$$\delta(x) = C^{-1} \left(\lim_{t \to 0} \frac{\alpha_t(x) - C(x)}{t} \right)$$

Note that by Theorem 3.4 of [8] C^{-1} exists.

A small modification in the proof of Theorem 4.3 in Ref. 1 gives the following result.

Theorem: 2.2. Let M be a full Hilbert A -module and C be a unitary operator on M. Let α be a C-group on M and δ be the infinitesimal generator of dynamical system α . Then there exists a derivation $d:D(d)\subseteq A\to A$ such that $D(\delta)$ is a left D(d)-module and

$$\delta(ax) = a\delta(x) + d(a)x, a \in D(d), x \in D(\delta)$$
.

Proof: Since α is a C-group on M, for each $t \in \mathbb{R}$, the mapping $\alpha_t : M \to M$ is a unitary, so there exists *-isomorphism $\alpha_t : A \to A$ such that

$$\langle \alpha_t(x), \alpha_t(y) \rangle = \alpha_t'(\langle x, y \rangle)$$
, and $\alpha_t(ax) = \alpha_t'(a)\alpha_t(x)$ $(a \in A, x \in M)$.

Analogy since C is a unitary operator on M, so there exists a *-isomorphism $c': A \to A$ such that $\langle C(x), C(y) \rangle = c'(\langle x, y \rangle)$ and C(ax) = c'(a)C(x). Now we show that $\alpha': \mathbb{R} \to Aut(A)$ is a c'-dynamical system on the C^* -algebra A. For each $a \in A$, $x \in M$ we have

$$c'(a)C(x) = C(ax) = \alpha_0(ax) = \alpha_0'(a)\alpha_0(x) = \alpha_0'(a)C(x)$$

and this implies that $(c'(a) - \alpha_0'(a))C(x) = 0$. Since C is surjective and M is full so, $\alpha_0'(a) = c'(a)$ for all $a \in A$. Therefore $\alpha_0' = c'$.

Also for all $t, s \in \mathbb{R}$ and $x \in M$ we have

$$c'(\alpha'_{t+s}(a))C(\alpha_{t+s}(x)) = C(\alpha'_{t+s}(a)\alpha_{t+s}(x))$$

$$= C\alpha_{t+s}(ax)$$

$$= \alpha_t \alpha_s(ax)$$

$$= \alpha_t (\alpha'_s(a)\alpha_s(x))$$

$$= \alpha'_t \alpha'_s(a)\alpha_t \alpha_s(x)$$

$$= \alpha'_t \alpha'_s(a)C\alpha_{t+s}(x).$$

It implies that $[c'\alpha'_{t+s}(a) - \alpha'_t\alpha'_s(a)]C(\alpha_{t+s}(x)) = 0$. So we have

$$c'\alpha'_{t+s}(a) = \alpha'_t\alpha'_s(a)$$
.

Since for each $x \in M$, $\alpha_t(x) \to C(x)$ as $t \to 0$, we have

$$\|\alpha'_{t}(a)C(x) - c'(a)C(x)\| \le \|\alpha'_{t}(a)C(x) - \alpha'_{t}(a)\alpha_{t}(x)\| + \|\alpha'_{t}(a)\alpha_{t}(x) - C(ax)\|$$

$$= \|\alpha'_{t}(a)(C(x) - \alpha_{t}(x))\| + \|\alpha_{t}(ax) - C(ax)\|$$

Thus $\lim_{t\to 0}\alpha'_t(a)x=c'(a)x$ for all $x\in \text{range }C(=M)$, whence $\lim_{t\to 0}\alpha'_t(a)=c'(a)$ for all $a\in A$. Therefore $\alpha':R\to Aut(A)$ is a c'-dynamical system on the C^* -algebra A. If d is the infintesimal generator of α' then for each $a\in D(d), x\in D(\delta)$ we have

$$\delta(ax) = C^{-1} \left[\lim_{t \to 0} \frac{\alpha_{t}(ax) - C(ax)}{t} \right]$$

$$= C^{-1} \left[\lim_{t \to 0} \frac{\alpha'_{t}(a)\alpha_{t}(x) - c'(a)\alpha_{t}(x)}{t} + \lim_{t \to 0} \frac{c'(a)\alpha_{t}(x) - c'(a)C(x)}{t} \right]$$

$$= c'^{-1} \left(\lim_{t \to 0} \frac{\alpha'_{t}(a) - c'(a)}{t} \right) C^{-1} \left(\lim_{t \to 0} \alpha_{t}(x) \right) + c'^{-1} \left(c'(a) \right) C^{-1} \left(\lim_{t \to 0} \frac{\alpha_{t}(x) - C(x)}{t} \right)$$

$$= d(a)x + a\delta(x).$$

Note that by Remark 3.3 and Corollary 3.6 of [8], C^{-1} is a module map in the sense $C^{-1}(ax) = c'^{-1}(a)C^{-1}(x)$. From above relations we conclude that $ax \in D(\delta)$ and $\delta(ax) = a\delta(x) + d(a)x$. Furthermore, $D(\delta)$ is a left D(d)-module.

Analogue of Theorem 2.2 holds for full Hilbert module M over Frechet locally C^* -algebra A (see[8]). In this case a linear map $\Phi: E \to F$, (E, F) are Hilbert modules over locally C^* -algebra A, B respectively) is a unitary operator if Φ is surjective and there is an injective morphism of locally C^* -algebra $\varphi: A \to B$ with closed range such that $\varphi(\langle \xi, \eta \rangle) = \langle \Phi(\xi), \Phi(\eta) \rangle$ for all $\xi, \eta \in E$.

Now we describe two-parameter dynamical systems on a Hilbert C^* -module.

Definition: 2.3. By a two-parameter dynamical system on a Hilbert C^* -module M we mean a function from $\mathbb{R} \times \mathbb{R}$ into U(M) such that

(i)
$$\alpha(s+s',t+t') = \alpha(s,t)\alpha(s',t') \ (t,t',s,s' \in \mathbb{R})$$
;
(ii) $\alpha(0,0) = I$.

It is called strongly continuous if $(s,t) \to \alpha(s,t)x$ is continuous for all x in M.

To any two-parameter dynamical system $\alpha(s,t)$ we associate two one-parameter groups $\alpha(s,0)$ and $\alpha(0,t)$, the group property of α implies that $\alpha(s,t) = \alpha(s,0)\alpha(0,t)$.

One can see that $\alpha(s,t)$ is strongly continuous if and only if $\alpha(s,0)$ and $\alpha(0,t)$ are strongly continuous (see[7]). The infinitesimal generator of $\alpha(s,0)$ and $\alpha(0,t)$ are denoted by δ_1 and δ_2 , respectively. We will think of the pair (δ_1,δ_2) as the infinitesimal generator of $\alpha(s,t)$.

Theorem: 2.4. Let A be a C^* -algebra and M be a full Hilbert A-module. Also let α be a two-parameter dynamical system on M and (δ_1, δ_2) be the infinitesimal generator of α . Then $D(\delta_i)$, i=1,2 is a dense subspace of M and there exist derivations $d_i: D(d_i) \subseteq A \to A, i=1,2$ such that $D(\delta_i)$ is a left $D(d_i)$ -module and $\delta_i(ax) = a\delta_i(x) + d_i(a)x, a \in D(d_i), x \in D(\delta_i)$.

Proof: By Hille-Yosida Theorem [10], $D(\delta_i)$ is a dense subspace of M. Since α is a two-parameter dynamical system on M, for each $t,s \in \mathbb{R}$, the mapping $\alpha(s,t)$ is a unitary, so there exist a *-isomorphism

$$\alpha'(s,t): A \to A$$
 such that $\langle \alpha(s,t)x, \alpha(s,t)y \rangle = \alpha'(s,t)(\langle x,y \rangle)$ and

 $\alpha(s,t)(ax) = \alpha'(s,t)(a)\alpha(s,t)(x), (a \in A, x \in M)$. Now by applying the argument similar to Theorem 4.3 of [1], it can be easily proved.

3. CHARACTERIZATION OF UNIFORMLY (STRONGLY) CONTINUOUS POSITIVE C-SEMIGROUPS ON A C^* -ALGEBRA:

In 1979 Evans and Olsen in [6] characterized infinitesimal generator of a positive uniformly continuous semigroup on a C^* -algebra A. They proved L is the infinitesimal generator of this semigroup if it satisfies in the one of the following inequalities:

- (i) $L(a^2) + aL(1)a \ge L(a)a + aL(a)$ for all self-adjoint operator $a \in A$.
- (ii) $L(1) + u^*L(1)u \ge L(u^*)u + u^*L(u)$ for all unitary operators $u \in A$.

Then in 1981 Bratteli and Robinson generalized it for C_0 – semigroup of positive operators (see [3]). In this generalization, they obtained above inequalities with resolvent $R(\lambda, L)$ instead of L.

Later the notion of C – semigroups was introduced by Da Prato (1967), E. B. Davies and M. M. Pang (1989) independently. C – semigroups are a significant generalization of strongly continuous semigroups. C may be any bounded, injective operator, where C equals the identity operator, then a C – semigroup is a strongly continuous semigroup (see[4]). The aim of this section is to characterize the infinitesimal generator of uniformly continuous and strongly continuous positive C – semigroups on a C^* -algebra A.

In the following we recall the definition of uniformly continuous C-semigroup.

Definition: 3.1. Suppose that C is a bounded injective linear operator on a Banach space X. The family of bounded

linear operators $\{S(t)\}_{t\geq 0}$ on X is called uniformly continuous C-semigroup if in conditions (i), (ii) of Definition 2.1, we put $\alpha_t = S(t)$ and condition (iii) is replaced with the following condition

$$\lim_{t\to 0} ||S(t)-C|| = 0.$$

Infinitesimal generator A of a uniformly continuous C-semigroup $\{S(t)\}_{t\geq 0}$ is defined as Definition 2.1 with $\alpha_t = S(t)$.

For example if $\{T(t)\}_{t\geq 0}$ is a uniformly continuous semigroup generated by A (see[10]) then for any C that commutes with $T(t), t\geq 0$, A is the generator of uniformly continuous C-semigroup S(t)=T(t)C.

Our next results are generalization of Theorem 1.2 of [10].

Theorem: 3.2. If A is a bounded linear operator and C is a bounded injective linear operator on a Banach space X and A commuting with C then A is the infinitesimal generator of a uniformly continuous C-semigroup.

Proof: Set $T(t) = Ce^{tA} = C\sum_{n=0}^{\infty} \frac{(tA)^n}{n!}$. This converges in norm for every $t \ge 0$ and defines a bounded linear operator T(t).

It is clear that T(0) = C. A straight forward calculation shows that CT(t+s) = T(t)T(s). We have

$$||T(t)-C|| \le t ||A|| ||C|| \sum_{n=0}^{\infty} \frac{t^n ||A||^n}{n!}.$$

The righthand side of above assertion tends to zero as t tends to infinity. Also we have

$$\|\frac{T(t)-C}{t}-CA\| \le \|A\| \|T(t)-C\|.$$

Similarly the righthand side tends to zero when t tends to infinity by uniformly continuity of T(t). So $\{T(t)\}_{t\geq 0}$ is a uniformly continuous C-semigroup of bounded linear operators on X and A is its infinitesimal generator.

Theorem: 3.3. Let $\{T(t)\}_{t\geq 0}$ be a uniformly continuous C-semigroup on a Banach space X and for each $t\geq 0$, $range\ T(t)\subseteq range\ (C)$ then infinitesimal generator A is bounded.

Proof.: Fix $\rho > 0$ small enough such that $||I - \rho^{-1} \int_0^{\rho} C^{-1} T(s) ds|| \le 1$. Since $I = \frac{1}{\rho} \int_0^{\rho} I ds$ so

$$I - \rho^{-1} \int_0^{\rho} C^{-1} T(s) ds = \int_0^{\rho} \frac{I - C^{-1} T(s)}{\rho} ds \to 0 \text{ as } \rho \to 0. \text{ Hence } \rho^{-1} \int_0^{\rho} C^{-1} T(s) ds \text{ is invertible and we have}$$

$$h^{-1}(T(h) - C) \int_0^{\rho} C^{-1}T(s)ds = h^{-1} \left[\int_0^{\rho} T(h+s)ds - \int_0^{\rho} T(s)ds \right]$$
$$= h^{-1} \left[\int_h^{\rho+h} T(s)ds - \int_0^{\rho} T(s)ds \right]$$

and therefore

$$h^{-1}(T(h)-C) = h^{-1}\left[\int_{\rho}^{\rho+h} T(s)ds - \int_{0}^{h} T(s)ds\right]\left(\int_{0}^{\rho} C^{-1}T(s)ds\right)^{-1}.$$

Letting $h \to 0$ so $h^{-1}(T(h) - C)$ converges in norm and therefore strongly to the bounded linear operator $(T(\rho) - I)(\int_0^\rho C^{-1}T(s)ds)^{-1}$.

In the following theorems we describe dynamical systems of positive C – semigroups on a C*-algebra A. Recall that if S is a set of states on a C*-algebra A, then S is said to be full if $x \in A_h$ (set of self adjoint elements of A) and $f(x) \ge 0$ for all f in S, then $x \ge 0$. Moreover S is said to be invariant if $f \in S$ and $x \in A$ satisfies $f(x^*x) \ne 0$, then $f[x^*(.)x]/f(x^*x) \in S$.

Theorem 3.4. Let L be a bounded self adjoint linear map on a unital C^* -algebra A and C be a positive injective bounded linear map on A and CL = LC, C(ab) = C(a)C(b) for each a,b in A and C(1) = 1 then the following conditions are equivalent

- (i) Ce^{tL} is positive for all positive t.
- $(ii) (\lambda CL)^{-1}$ is positive for all large positive λ .
- (iii) If $y \in A_+$, $a \in A$ satisfy C(ya) = 0 then $a^*CL(y)a > 0$.
- (iv) For some full invariant set of states S on A that $y \in A_{\perp}$, $f \in S$ with f(C(y)) = 0 imply $f(CL(y)) \ge 0$.
- (v) $CL(x)C(x) + C(x)CL(x) \le CL(x^2) + C(x)CL(1)C(x)$ for all self adjoint x in A.

Proof. $(iv) \Rightarrow (iii)$

Let S be a full invariant set of states satisfying (iv). Let $y \in A_+$, $a \in A$ satisfy C(ya) = 0 then $f(C(a^*ya)) > 0$ for all f in S. So by (iv), $f(CL(a^*ya)) \ge 0$ and hence $f(a^*CL(y)a) \ge 0$, since S is invariant. Thus $a^*CL(y)a > 0$ since S is full.

 $(iii) \Rightarrow (ii)$

Let $\lambda \le \|CL\|$. In order to show that $(\lambda - CL)^{-1} \ge 0$ it is enough to show that if $x \in A_h$ satisfies $(\lambda - CL)x \ge 0$ then $x \ge 0$. Let $x = x^+ - x^-$ where $x^+, x^- \in A_+$ and $x^+x^- = 0$. Thus $C(x^+x^-) = 0$ and by

(iii) $x^-CL(x^+)x^- \ge 0$. Now we have

$$0 \le \frac{x^{-}}{\lambda} [(\lambda - CL)x]x^{-} = x^{-}xx^{-} - x^{-}[\frac{CL(x)}{\lambda}]x^{-}$$

$$= -(x^{-})^{3} - x^{-} \left[\frac{CL(x^{+})}{\lambda} \right] x^{-} + x^{-} \left[\frac{CL(x^{-})}{\lambda} \right] x^{-}.$$

Thus

$$0 \le (x^{-})^{3} \le x^{-} \left[\frac{CL(x^{-})}{\lambda}\right] x^{-}.$$

So we have

$$||x^{-}||^{3} \le \frac{||CL||}{\lambda} ||x^{-}||^{3}.$$

Hence $x^- = 0$, as $\lambda \ge ||CL||$.

 $(ii) \Rightarrow (i)$

$$Ce^{tL} = \lim_{n \to \infty} C(1 - \frac{t}{n}L)^{-n} = \lim_{n \to \infty} C^{n+1} (C(1) - \frac{t}{n}CL)^{-n}.$$

 $(i) \Rightarrow (v)$

Let $L'(x) = L(x) - \frac{1}{2}[L(1)x + xL(1)]$. Then $e^{tL' \ge 0}$ for all $t \ge 0$ by the Lie-Trotter formula and since $Ce^{tL'}(1) = C(1) = 1$ so $||Ce^{tL'}(1)|| = 1$. We have by differentiating Kadison's Schwarz inequality, namely

$$Ce^{tL'}(x^2) \ge C(e^{tL'(x)})^2$$

which is valid for all $t \ge 0$, and all self adjoint x, that

$$C[L'e^{tL'}(x)e^{tL'(x)}] + C[e^{tL'}(x)L'e^{tL'}(x)] \le CL'e^{tL'}(x^2).$$

Put t = 0 so we have

$$CL'(x)C(x) + C(x)CL'(x) \le CL'(x^2)$$
.

Substituting for L' gives the desired result. $(v) \Rightarrow (iv)$

Let $y \in A_{\perp}$, $f \in A_{\perp}^*$ with f(Cy) = 0 then by Schwartz inequality

$$|f((Cy)^{\frac{1}{2}}z)|^2 \le f(Cy)f(z^*z).$$

So $f((Cy)^{\frac{1}{2}}z) = f(z(Cy)^{\frac{1}{2}}) = 0$ for all $z \in A$. By (v) we have

$$CL(x)C(x) + C(x)CL(x) \le CL(x^2) + C(x)CL(1)C(x)$$

for all self adjoint x in A. Put $x = y^{\frac{1}{2}}$ so

$$CL(y^{\frac{1}{2}})C(y^{\frac{1}{2}}) + C(y^{\frac{1}{2}})CL(y^{\frac{1}{2}}) \le CL(y) + C(y^{\frac{1}{2}})CL(1)C(y^{\frac{1}{2}}).$$

Since $C(y^{\frac{1}{2}}) = (C(y))^{\frac{1}{2}}$ the above statement implies that $f(CL(y)) \ge 0$ and the proof is complete.

Theorem 3.5. Let A be a C*-algebra with identity 1 and C be a bounded injective operator on A which is positive and for each $a,b \in A$, C(ab) = C(a)C(b).

Let $\{T_t\}_{t\geq 0}$ be an exponentially bounded C - semigroup on A ($||T_t|| \leq Me^{\omega t}$ for some M > 0, $\omega \in R$, for all $t\geq 0$) with generator L such that $T_t(a^*) = (T_t(a))^*$ for all $a\in A$ and $t\geq 0$. Then the following conditions are equivalent

- (i) The C semigroup T_t is positive for all $t \ge 0$.
- (ii) The resolvent $(\lambda L)^{-1}C$ is positive for all $\lambda > 0$ large enough.
- (iii) $C(\lambda L)^{-1}(x)C(x) + C(x)C(\lambda L)^{-1}(x) \le C(\lambda L)^{-1}(x^2) + C(x)C(\lambda L)^{-1}(1)C(x)$ for all self adjoint x in A and all large $\lambda > 0$.

Proof: $(i) \Leftrightarrow (ii)$

This is a standard result which follows from

$$\forall x \in A; \ T_t(x) = \lim_{n \to \infty} (I - \frac{t}{n} L)^{-1} Cx, \ t \ge 0$$

and

$$C(\lambda - L)^{-1} x = \int_0^\infty e^{-\lambda t} T_t(x) dt, \quad (x \in X).$$

If L is bounded, it is known by the previous theorem that $S_t = Ce^{tL}$ is positive if and only if $CL(x)C(x) + C(x)CL(x) \le CL(x^2) + C(x)CL(1)C(x)$ for all self adjoint x in A. Hence to establish the theorem it is enough to show that (i) or (ii) is equivalent to the following condition

- (iv) $Ce^{t(\lambda-L)^{-1}} \ge 0$ for all $t \ge 0$ and all large $\lambda \ge 0$.
- $(ii) \Rightarrow (iv)$ This is evident from this expansion

$$Ce^{t(\lambda-L)^{-1}} = C\sum_{n=0}^{\infty} \frac{t^n}{n!} (\lambda - L)^{-1}$$

 $(iv) \Rightarrow (i)$ It obtains from

$$T(t)x = \lim_{n \to \infty} \exp\{t[n^2(n-L)^{-1} - nI]\}Cx, \ t \ge 0.$$

Now proof is complete.

REFERENCES:

- [1] Abbaspour Tabadkan, Gh. Moslehian, M. S. and Niknam, A.: Dynamical systems on Hilbert C^* modules, Bulletin of the Iranian Mathematical Society, Vol. 31, No. 1(2005), pp. 25-35.
- [2] Bakic, D. and Guljas, B.: On class of module maps of Hilbert C^* modules. Math. Commun. 7(2002), 177-192.
- [3] Bratteli, O. and Robinson, W.D.: Positive C_0 semigroups on C^* -algebras, Math. Scand, Vol. 49, pp. 259-274, 1981
- [4] DeLaubenfels, R.: Existence families, functional calculi and evolution equations, Lecture Notes in Math. 1570, Springer Verlag, 1994.
- [5] Engle, J. K. and Nagle, R.: One-Parameter Semigroups for Linear Evaluation Equations, Springer-Verlag, New York, 2000.
- [6] Evans, E. D. and Olsen, H.: The generators of positive semigroups, Journal of Functional Analysis, Vol 32, pp. 207-212, 1979.
- [7] Janfada, M. and Niknam, A.: On two-parameter dynamical systems and applications. Journal of Sciences, Islamic Republic of Iran 15(2): 163169(2004).
- [8] Joita, M.: A Note about full Hilbert modules over Frechet locally C^* -algebras. Novi Sad J. Math. Vol. 37, No. 1, 2007, pp. 27-32.
- [9] Lance, E. C.: Hilbert C^* -modules, LMS Lecture Note Series 210, Cambridge Univ. Press, Cambridge, 1995.
- [10] Pazy, A.: Semigroups of Linear Operators and Applications to Partial Differential Equations, Appl. Math. Sci, Vol. 44, Springer-Verlag, 1983.
- [11] Sakai, S.: Operator algebra in dynamical systems. Cambridge Univ. Press, Cambridge, 1991.
- [12] Shaw, S.Y. and Li, Y.C.: Representation formulas for C semigroups. Semigroup Forum, Vol. 46, pp. 123-125, 1993.
