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Abstract 

 

The Newton-Raphson method is a very effective numerical procedure used for solving nonlinear equations of the 

form f(x) = 0. With the motivation of avoiding the computation of the derivative of the function f(x), which is 

involved in Newton-Raphson method, we provide a linear interpolation method in solving a nonlinear equation  

f(x) = 0. 
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1. Introduction: 

 

The Newton-Raphson method is a Classical Optimization 

technique for solving nonlinear equations. In this method, we start 

with an initial approximation 0x  and generate a sequence of 

approximations. The iterative procedure terminates when the 

relative error for two successive approximations becomes less 

than or equal to the prescribed tolerance.  

 

Newton-Raphson formula is: 
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Newton's method requires that the derivative be calculated 

directly. In most practical problems, the function in question may 

be given by a long and complicated formula, and hence an 

analytical expression for the derivative may not be easily 

obtainable. It is clear from the formula for Newton's method that 

it will fail in cases where the derivative is zero. In these situations, 

it may be appropriate to approximate the derivative by using the  
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slope of a line through two points on the function. In this case, the 

Secant method results. These methods are discussed in many 

books on Numerical Analysis and Operations Research. See, for 

example, Ralston and Rabinowitz [2], Dennis and Schnabel [1], 

Stoer and Bulirsch [3] and Taha [4]. To avoid computing f'(x) 

because f'(x) may not always be available or may be costly to 

compute and to preserve the excellent convergence properties of 

the Newton-Raphson method, f'(xn) is replaced by ],[ 1−nn xxf in 

equation (1) 

 

∴Equation (1) becomes 
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where )())()((],[ 111 −−− −−= nnnnnn xxxfxfxxf  

 

This result in equation (2) is secant method. The Newton-Raphson 

iteration requires two function evaluations, one of f(x) and another 

of f'(x), per iteration. The secant method on the other hand, 

requires only one function evaluation per iteration, namely, that of 

f(x). The aim of this paper is to construct a new method using 

linear interpolation method to solve a nonlinear equation f (x) = 0 

which is a modification of Newton-Raphson formula also for the 

first iteration we use secant method. Starting with two initial 

approximations 0x  and 1x , we compute 2x  by secant method.  
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Then we apply Modified Newton-Raphson method to calculate 

nxxxx ,...,,, 543 using interpolation table. 

 

2. Modified Newton-Raphson Method: 

 

We replace )(' nxf  in Newton-Raphson Formula equation (1) by 

)('

, xg kn . For this, we write )(, xg kn  in Newtonian form as 
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where ],...,,[ 1 innn xxxf −−  are divided differences of )(xf . We 

can define the divided differences as 
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By equation (3), )(, xg kn  is computed by ordering the ix  as 

innn xxx −− ,...,, 1  for .,...,2,1 ki =  Using this ordering we can 

compute )('

, xg kn  easily. Differentiating )(, xg kn  in (3), and let 

nxx = , we obtain 
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The Divided Difference Table is 

 

Table 1 
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where the first differences is: 
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The second differences is: 
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For 2=k  equation (4) becomes 
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We write nnx fxxf ∇=− ],[ 1 ,  nnnn fxxxf
2

21 ],,[ ∇=−− ,  
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∴Equation (5) becomes 
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Modified Newton-Raphson Formula for k = 2 is 
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Similarly for 3=k  equation (4) becomes 
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We write nnnnn fxxxxf
3

321 ],,,[ ∇=−−−  

 

 

Then equation (7) becomes 
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Modified Newton-Raphson Formula for 3=k  is 
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In this way we put the values in the above equations of the 

backward diagonal from the table. To compute next iteration, we 

put the values of the previous iteration in the table. In this way to 

compute next iteration we need only the backward diagonal of 

table. In many books on Computer oriented numerical methods 

Newton-Raphson method and Secant method is described. See, 

for example Rajaraman [5] and Thangaraj [6]. A computer 

oriented procedure is described below for implementing the 

Modified Newton-Raphson Method. 

 

3. Numerical Example: 

 

In this part we consider an example which is solved in [7]. The 

result of Newton-Raphson method and our Modified Newton-

Raphson method of this example is presented here for comparison 

purpose in Table 4. Consider the following nonlinear equation: 

 

0252
=+− xx  

 

Let        25)( 2
+−= xxxf  

 

Now, 2)4( −=f  i.e., negative 

2)5( =f  i.e., positive 

 

Therefore, the root lies between 4 and 5. 

Let 50 =x , 41 =x  

Therefore, ,20 =f  21 −=f  

 

First approximation- 

 

The Secant Formula is 
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Where )/()]()([],[ 111 −−− −−= nnnnnn xxxfxfxxf  

 

Compute 2x  from above equation (8)  

 

5.42 =x ,  25.02 −=f  

 

Second approximation- 

 

For 2=k  our Modified Newton-Raphson formula is 
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The Divided Difference Table is  

Table 2 

 

x f I Diff. II Diff. 

 

5.0 

 

4.0 

 

4.5 

 

   2.00 

 

00.2−  

 

25.0−  

 

 

4.00 

 

4.50 

 

 

 

1−  

 

 

Putting the values of the backward diagonal from the above table 

in equation (9) 

5625.43 =x . 

 

Third approximation- 

 

For 3=k  our modified Newton-Raphson formula is 
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Now, Extending the Divided Difference Table 

 

 

Table 3 

 

x f I Diff. II Diff. III Diff. 

 

5.0 

 

 

4.0 

 

 

4.5 

 

 

4.5625 

 

2.00 

 

 

00.2−  

 

 

25.0−  

 

 

0.00390625 

 

 

4.00 

 

 

4.50 

 

 

4.0625 

 

 

 

00.1−  

 

 

77.0−  

 

 

 

 

5710.52571428−
 

 

 

 

Putting the values of the backward diagonal from the above table 

in equation (11) 

 

)45625.4)(5.45625.4)(15257142857.0(4.5)-5625(-0.77)(4.4.0625

0.00390625

5625.44

−−−++

−=x

  

619078189559037471911944.561522434 =x  
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Fourth approximation- 

 

For 4=k  our modified Newton-Raphson formula is 

xn+1 = xn – 
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Now, Again Extending the Divided Difference Table 

 

 

Table 4 

 

x f I diff. II diff. III diff. IV diff. 

 

5 

 

 

4 

 

 

4.5 

 

 

4.5625 

 

 

4.5615 

 

 

2.00 

 

 

00.2−  

 

 

25.0−  

 

 

00390625.0  

 

 

000218.0−  

 

 

4.00 

 

 

4.50 

 

 

4.06250 

 

 

4.12425 

 

 

 

 

 

 

 

00.1−  

 

 

77.0−  

 

 

1.0040650 

 

 

 

 

15257142857.0−  

 

 

3.15951024042 

 

 

 

 

 

98.40416034−  

 

              Putting the values of the backward diagonal from the above table in equation (12) 

 

              x5 =  4.5615528697373331752348716087091 

 

 

Table 5: The results of different methods 

 

Iteration Method xn+1 

1 

Modified Newton-

Raphson 
4.5 

Newton-Raphson 4.6667 

2 

Modified Newton-

Raphson 
4.5625 

Newton-Raphson 4.5641 

3 

Modified Newton-

Raphson 
4.5615224337471911940781895590619 

Newton-Raphson 4.5616 

4 

Modified Newton-

Raphson 

4.5615528697373331752348716087091 

 

Newton-Raphson 
4.5616 
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5. Conclusion: 

 

In this paper an efficient iterative method is build up to solve 

Nonlinear equations. As it can be seen in Table 5, Modified 

Newton-Raphson Method converges rapidly to exact solution. 

This Modified method seems to be very easy to employ with 

reliable results. 
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