International Journal of Mathematical Archive-1(3), Dec. - 2010, Page: 55-59 © \mathbb{A} IMA Available online through www.ijma.info ISSN 2229-5046

A modified Newton-Raphson method for solving nonlinear equations

S.C. Sharma* and Jyoti Arora**
* Department of Mathematics, University of Rajasthan, Jaipur-302055, India.
E-mail: sureshchand26@gmail.com
** Department of Mathematics, Poornima Institute of Engineering \& Technology, Jaipur- 302022, India
E-mail: jyotiseth09@gmail.com

(Received on: 22-10-10, Accepted on: 29-10-10)

Abstract

The Newton-Raphson method is a very effective numerical procedure used for solving nonlinear equations of the form $f(x)=0$. With the motivation of avoiding the computation of the derivative of the function $f(x)$, which is involved in Newton-Raphson method, we provide a linear interpolation method in solving a nonlinear equation $\mathrm{f}(\mathrm{x})=0$.

Key Words: Nonlinear equations, Newton-Raphson method, Secant method, Interpolation.
2010 Mathematics Subject Classification: 90C05, 49M15

1. Introduction:

The Newton-Raphson method is a Classical Optimization technique for solving nonlinear equations. In this method, we start with an initial approximation x_{0} and generate a sequence of approximations. The iterative procedure terminates when the relative error for two successive approximations becomes less than or equal to the prescribed tolerance.

Newton-Raphson formula is:
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}, n=0,1, \ldots$

Newton's method requires that the derivative be calculated directly. In most practical problems, the function in question may be given by a long and complicated formula, and hence an analytical expression for the derivative may not be easily obtainable. It is clear from the formula for Newton's method that it will fail in cases where the derivative is zero. In these situations, it may be appropriate to approximate the derivative by using the

[^0]slope of a line through two points on the function. In this case, the Secant method results. These methods are discussed in many books on Numerical Analysis and Operations Research. See, for example, Ralston and Rabinowitz [2], Dennis and Schnabel [1], Stoer and Bulirsch [3] and Taha [4]. To avoid computing $f^{\prime}(x)$ because $f^{\prime}(x)$ may not always be available or may be costly to compute and to preserve the excellent convergence properties of the Newton-Raphson method, $f^{\prime}\left(x_{n}\right)$ is replaced by $f\left[x_{n}, x_{n-1}\right]$ in equation (1)
\therefore Equation (1) becomes
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left[x_{n}, x_{n-1}\right]}$
where $f\left[x_{n}, x_{n-1}\right]=\left(f\left(x_{n}\right)-f\left(x_{n-1}\right)\right) /\left(x_{n}-x_{n-1}\right)$

This result in equation (2) is secant method. The Newton-Raphson iteration requires two function evaluations, one of $f(x)$ and another of $f^{\prime}(x)$, per iteration. The secant method on the other hand, requires only one function evaluation per iteration, namely, that of $f(x)$. The aim of this paper is to construct a new method using linear interpolation method to solve a nonlinear equation $f(x)=0$ which is a modification of Newton-Raphson formula also for the first iteration we use secant method. Starting with two initial approximations x_{0} and x_{1}, we compute x_{2} by secant method.

Then we apply Modified Newton-Raphson method to calculate $x_{3}, x_{4}, x_{5}, \ldots, x_{n}$ using interpolation table.

2. Modified Newton-Raphson Method:

We replace $f^{\prime}\left(x_{n}\right)$ in Newton-Raphson Formula equation (1) by $g_{n, k}^{\prime}(x)$. For this, we write $g_{n, k}(x)$ in Newtonian form as

$$
\begin{equation*}
g_{n, k}(x)=f\left(x_{n}\right)+\sum_{i=1}^{k} f\left[x_{n}, x_{n-1}, \ldots, x_{n-i}\right] \prod_{j=0}^{i-1}\left(x-x_{n-j}\right) \tag{3}
\end{equation*}
$$

where $f\left[x_{n}, x_{n-1}, \ldots, x_{n-i}\right]$ are divided differences of $f(x)$. We can define the divided differences as

$$
f\left[x_{n}\right]=f\left(x_{n}\right)
$$

and $f[a, b]=\frac{f[a]-f[b]}{a-b}, \mathrm{a} \neq \mathrm{b}$

By equation (3), $g_{n, k}(x)$ is computed by ordering the x_{i} as $x_{n}, x_{n-1}, \ldots, x_{n-i}$ for $i=1,2, \ldots, k$. Using this ordering we can compute $g_{n, k}(x)$ easily. Differentiating $g_{n, k}(x)$ in (3), and let $x=x_{n}$, we obtain

$$
\begin{equation*}
g_{n, k}^{\prime}(x)=f\left[x_{n}, x_{n-1}\right]+\sum_{i=2}^{k} f\left[x_{n}, x_{n-1}, \ldots, x_{n-i}\right] \prod_{j=1}^{i-1}\left(x_{n}-x_{n-j}\right) \tag{4}
\end{equation*}
$$

The Divided Difference Table is
Table 1

x	f	I diff.	II diff.			$\mathrm{n}^{\text {th }}$ diff.
x_{0}	f_{0}	∇f_{1}				
x_{1}	f_{1}	∇f_{2}	$\nabla^{2} f_{2}$			
x_{2}	f_{2}		$\nabla^{2} f_{n}$			$\nabla^{n} f_{n}$
\vdots	\vdots					
\vdots	\vdots	∇f_{n}				
x_{0}	f_{n}					

where the first differences is:

$$
\nabla f_{1}=\frac{f_{1}-f_{0}}{x_{1}-x_{0}}, \nabla f_{2}=\frac{f_{2}-f_{1}}{x_{2}-x_{1}}, \ldots, \nabla f_{n}=\frac{f_{n}-f_{n-1}}{x_{n}-x_{n-1}}
$$

The second differences is:

$$
\begin{aligned}
\nabla^{2} f_{2}=\frac{\nabla f_{2}-\nabla f_{1}}{x_{2}-x_{0}}, \nabla^{2} f_{3}= & \frac{\nabla f_{3}-\nabla f_{2}}{x_{3}-x_{1}}, \ldots, \\
& \nabla^{2} f_{n}=\frac{\nabla f_{n}-\nabla f_{n-1}}{x_{n}-x_{n-2}} \text { and so on. }
\end{aligned}
$$

For $k=2$ equation (4) becomes

$$
\begin{equation*}
g_{n, k}^{\prime}(x)=f\left[x_{n}, x_{n-1}\right]+f\left[x_{n}, x_{n-1}, x_{n-2}\right]\left(x_{n}-x_{n-1}\right) \tag{5}
\end{equation*}
$$

We write $f\left[x_{x}, x_{n-1}\right]=\nabla f_{n}, \quad f\left[x_{n}, x_{n-1}, x_{n-2}\right]=\nabla^{2} f_{n}$, $f\left[x_{n}, x_{n-1}, x_{n-2}\right]=\nabla^{2} f_{n}$
\therefore Equation (5) becomes

$$
g_{n, k}^{\prime}(x)=\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)
$$

Modified Newton-Raphson Formula for $\mathrm{k}=2$ is

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)} \tag{6}
\end{equation*}
$$

Similarly for $k=3$ equation (4) becomes

$$
\begin{align*}
& g_{n, k}^{\prime}(x)=f\left[x_{n}, x_{n-1}\right]+f\left[x_{n}, x_{n-1}, x_{n-2}\right]\left(x_{n}-x_{n-1}\right) \\
& +f\left[x_{x}, x_{n-1}, x_{n-2}, x_{n-3}\right]\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right) \tag{7}
\end{align*}
$$

We write $f\left[x_{n}, x_{n-1}, x_{n-2}, x_{n-3}\right]=\nabla^{3} f_{n}$

Then equation (7) becomes

$$
g_{n, k}^{\prime}(x)=\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)+\nabla^{3} f_{n}\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)
$$

Modified Newton-Raphson Formula for $k=3$ is
S.C. Sharma* and Jyoti Arora**/ A MODIFIED NEWTON-RAPHSON METHOD FOR SOLVING.../IJMA- 1(3), Dec.-2010, Page: 55-59

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)+\nabla^{3} f_{n}\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)} \tag{8}
\end{equation*}
$$

In this way we put the values in the above equations of the backward diagonal from the table. To compute next iteration, we put the values of the previous iteration in the table. In this way to compute next iteration we need only the backward diagonal of table. In many books on Computer oriented numerical methods Newton-Raphson method and Secant method is described. See, for example Rajaraman [5] and Thangaraj [6]. A computer oriented procedure is described below for implementing the Modified Newton-Raphson Method.

3. Numerical Example:

In this part we consider an example which is solved in [7]. The result of Newton-Raphson method and our Modified NewtonRaphson method of this example is presented here for comparison purpose in Table 4. Consider the following nonlinear equation:

$$
x^{2}-5 x+2=0
$$

Let $\quad f(x)=x^{2}-5 x+2$

Now, $\quad f(4)=-2$ i.e., negative

$$
f(5)=2 \text { i.e., positive }
$$

Therefore, the root lies between 4 and 5 .
Let $x_{0}=5, x_{1}=4$
Therefore, $f_{0}=2, f_{1}=-2$
First approximation-
The Secant Formula is

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f\left[x_{n}, x_{n-1}\right]} \tag{9}
\end{equation*}
$$

Where $f\left[x_{n}, x_{n-1}\right]=\left[f\left(x_{n}\right)-f\left(x_{n-1}\right)\right] /\left(x_{n}-x_{n-1}\right)$

Compute x_{2} from above equation (8)
$x_{2}=4.5, f_{2}=-0.25$

Second approximation-

For $k=2$ our Modified Newton-Raphson formula is

$$
\begin{equation*}
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)} \tag{10}
\end{equation*}
$$

The Divided Difference Table is
Table 2

\mathbf{x}	\mathbf{f}	I Diff.	II Diff.
5.0	2.00		
4.0	-2.00	4.00	
4.5	-0.25	4.50	-1

Putting the values of the backward diagonal from the above table in equation (9)

$$
x_{3}=4.5625
$$

Third approximation-

For $k=3$ our modified Newton-Raphson formula is
$x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)+\nabla^{3} f_{n}\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)}$

Now, Extending the Divided Difference Table

Table 3

\mathbf{x}	\mathbf{f}	I Diff.	II Diff.	III Diff.
5.0	2.00			
4.0	-2.00	4.00		
4.5	-0.25	4.50		
		4.00	-0.52571428571	
4.5625	0.00390625			

Putting the values of the backward diagonal from the above table in equation (11)
$x_{4}=4.5625-$
$\frac{0.00390625}{4.0625+(-0.77)(45625-4.5)+(-0.5257142857)(4.5625-4.5)(4.5625-4)}$
$x_{4}=4.5615224337471911940781895590619$
S.C. Sharma* and Jyoti Arora**/ A MODIFIED NEWTON-RAPHSON METHOD FOR SOLVING.../IJMA- 1(3), Dec.-2010, Page: 55-59 Fourth approximation-

For $k=4$ our modified Newton-Raphson formula is
$\mathrm{x}_{\mathrm{n}+1}=\mathrm{x}_{\mathrm{n}}-\frac{f\left(x_{n}\right)}{\nabla f_{n}+\nabla^{2} f_{n}\left(x_{n}-x_{n-1}\right)+\nabla^{3} f_{n}\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)+\nabla^{4} f_{n}\left(x_{n}-x_{n-1}\right)\left(x_{n}-x_{n-2}\right)\left(x_{n}-x_{n-3}\right)}$

Now, Again Extending the Divided Difference Table

Table 4

x	f	I diff.	II diff.	III diff.	IV diff.
5	2.00				
4	-2.00		-1.00	-0.52571428571	
		4.50	-0.77		-8.404160349
4.5	-0.25	4.06250		3.15951024042	
			1.0040650		
4.5625	0.00390625	4.12425			
4.5615	-0.000218				

Putting the values of the backward diagonal from the above table in equation (12)
$x_{5}=4.5615528697373331752348716087091$

Table 5: The results of different methods

Iteration	Method	$\mathbf{x}_{\mathbf{n} \mathbf{1}}$
1	Modified Newton- Raphson	4.5
	Newton-Raphson	4.6667
2	Modified Newton- Raphson	4.5625
	Newton-Raphson	4.5641
3	Modified Newton- Raphson	4.5615224337471911940781895590619
	Newton-Raphson	4.5616
4	Modified Newton- Raphson	4.5615528697373331752348716087091
	Newton-Raphson	4.5616

5. Conclusion:

In this paper an efficient iterative method is build up to solve Nonlinear equations. As it can be seen in Table 5, Modified Newton-Raphson Method converges rapidly to exact solution. This Modified method seems to be very easy to employ with reliable results.

REFERENCES:

[1] Dennis, J. E. and Schnabel, R. B., Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice Hall (1983).
[2] Ralston, A., and Rabinowitz, P., A First Course in Numerical Analysis, New York: McGraw-Hill (1978).
[3] Stoer, J. and Bulirsch, R., Introduction to Numerical Analysis, New York: Springer-Verlag (2002).
[4] Taha, Hamdy A., Operations Research: An Introduction, Delhi: Pearson Education (2002).
[5] Rajaraman, V., Computer Oriented Numerical Methods, New Delhi: Prentice-Hall of India Private Limited (1980).
[6] Thangaraj, P., Computer-Oriented Numerical Methods, Delhi: Prentice-Hall of India Private Limited (2008).
[7] Jaiswal A.K. and Khandelwal Anju, A Textbook of Computer based Numerical and Statistical Techniques, New Delhi: New Age International (P) Limited; (2009).

[^0]: Corresponding author: Jyoti Arora**
 E-mail: jyotiseth09@gmail.com
 Department of Mathematics, Poornima Institute of Engineering \& Technology, Jaipur- 302022, India

