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ABSTRACT 

In this manuscript we introduce the concept of Thurumella non-associative Γ-semi sub near-field space and also study 
about the near loop Γ-semi sub near-field space introduced as to be Thurumella-Γ-semi sub near-field space. Several 
interesting Thurumella concepts are introduced.  
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SECTION-1. INTRODUCTION CUM PRELIMINARIES ON SOME SPECIAL THURUMELLA NON-
ASSOCIATIVE Γ-SEMI SUB NEAR-FIELD SPACE (T-NA-Γ-SSNFS-Γ-NFS-NF) A Γ-NEAR-FIELD SPACE 
OVER NEAR-FIELD. 
 
Here in this section, Here also we once again mention loop Γ-semi sub near-field spaces and near loop Γ-semi sub near-
field spaces are different for the former has ‘+’ to be non associative where as in the later ‘+’ is associative but ‘.’ 
Happens to be non associative and the near loop Γ-semi sub near-field spaces are built using a loop and a Γ-semi near-
field space over a near-field. Finally we also introduce the identities newly to be the near-field space which are non 
associative Γ-semi sub near-field space. We introduce the concept of Thurumella right loop – half groupoid near-field 
space which is the most generalized concept of loop Γ-semi sub near-field space over near-field. 
 
Definition 1.1: Thurumella right loop half groupoid Γ-semi sub near-field space (T-RL-Γ-semi sub near-field 
space). The system N = (N, ‘+’, ‘.’ ,0) is called a be a Thurumella right loop half groupoid Γ-semi sub near-field 
space(T-RL-Γ-semi sub near-field space) provided. 

a. (N, ‘+’, 0) is a Thurumella loop. 
b. (N, ‘.’) is a half groupoid. 
c. (n1, n2).n1 = n1 . (n2.n3) for all n1, n2, n3 ∈ N for which n1.n2, n2.n3, n1 . (n2.n3)  and n1 . (n2.n3) ∈ N. 
d. (n1 + n2) .n3 = (n1.n3) + (n2.n3) for all n1, n2, n3 ∈ N for which (n1 + n2) .n3 , (n1.n3), (n2.n3) is satisfied then we 

say that N is a Thurumella left half groupoid Γ-semi sub near-field space (T-Left Half groupoid-Γ-semi sub 
near-field space) 
 

We say that (L,’+’) is a T-loop if L has a proper Γ-semi sub near-field space P such that (P, +) is an additive Γ-semi sub 
near-field space. 
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Definition 1.2: A Thurumella right loop Γ-semi sub near-field space (T-RL-Γ-semi sub near-field space) N is a system 
(N, +, .) of double composition ‘+’ , and ‘.’ Such that  

a. (N, +) is a T-loop (Thurumella – loop)  
b. (N, .) is a T-Γ-semi sub near-field space 
c. The multiplication ‘.’ is right distributive over addition i.e. for all n1, n2, n3 ∈ N such that  

(n1 + n2) .n3 = (n1.n3)+ (n2.n3). 
 
Example 1.3: Every T-Γ-semi sub near-field space is a T-loop Γ-semi sub near-field space. 
 
Definition 1.4: Let (M, +, 0) be a T-loop Γ-semi sub near-field space and ∆ be a T-groupoid of M. A set of all 
endomorphism of M is called a Thurumella ∆ centralizer (T-∆ centralizer) of M provided. 

a. The zero endomorphism δ ∈ T 
b. T / δ  (complement of δ in T) is a Γ-semi sub near-field space of automorphisms of M. 
c. φ (∆) ⊂ ∆  for all φ ∈ T where  ∆ being Thurumella centralizer 
d. φ, ψ ∈ T and φ (ω) = ψ ( ω ) for some δ ≠ ω ∈ ∆ imply φ = ψ. 

 
Definition 1.5: Let (M, +, 0) be a T-loop Γ-semi sub near-field space. Let ∆ be a Γ-semi sub near-field space of M 
which is a T-groupoid of M and T-∆ centralizer of M. A mapping Φ : M → M into itself is called a Thurumella             
∆ - transformation (T-∆-Transformation) of M over T provided Φ ( φ ( ω ) )  = φ ( Φ ( ω ) ) for all ω ∈ ∆ and φ ∈ T. 
 
Note 1.6: If  0 (zero bar) ∈ ∆ and Φ is a T-∆ transformation of M over T then Φ fixes 0 i.e. Φ (0) = (0). we shall denote 
the set of all T - ∆ transformations of M over T by T(N(T, ∆)). Further we see for any endomorphism φ of a T-loop       
Γ-semi sub near-field space M, [φ(m)]r  = φ (mr) for all m ∈ M. 
 
Definition 1.7: A non empty Γ-semi sub near-field space K of T – loop Γ-semi sub near-field space (N, ‘+’, ‘.’, 0) is 
said to be a Thurumella sub loop Γ-semi sub near-field space (T-SL-Γ-semi sub near-field space) of N if and only if   
(K, ‘+’, ‘.’,0) is a T-loop Γ-semi sub near-field space. 
 
Definition 1.8: A T-loop Γ-semi sub near-field space N is said to be Thurumella zero symmetric (T-zero symmetric) if 
and only if n0 = 0 for every n ∈ P ⊂ N where (P, +) is a Γ-semi sub near-field space, here ‘0’ is the additive identity.   
T-zero symmetric loop Γ-semi sub near-field space will be denoted by T(N0). 
 
Definition 1.9: A T-loop Γ-semi sub near-field space N is said to be a T-Γ-semi sub near-field space if N contains a 
proper Γ-semi sub near-field space P such that (P, +, .) is a Γ-semi near-field space over near-field. 
 
Definition 1.10: An element a of a T-loop Γ-semi sub near-field space is said to be Thurumella left( or right) zero 
divisor (T-left( or right) zero divisor) in N if there exists an element b ≠ 0 in N with a. b = 0 (b. a = 0) and there exists 
x, y ∈ T ∼ {a, b, 0} , x ≠ y with the following three axioms: 

1. a. x = 0 (xa = 0)  2. by = 0 (yb = 0)  3. xy ≠ 0 (yx ≠ 0). 
 
Definition 1.11: An element which is both a T-right and T-left zero divisor in N is called a Thurumella two sided zero 
divisor or simply a Thurumella zero divisor (T-zero divisor) in N. 
 
Definition 1.12: A map θ form a T-loop Γ-semi sub near-field space N into a T-loop Γ-semi sub near-field space N1 is 
called a Thurumella homomorphism (T-homomorphism) if θ (n1 + n2) = θ (n1) + θ (n2) and θ (n1 . n2) = θ (n1) . θ (n2) 
for every n1, n2 ∈ P ⊂ N where (P, +, .) is a Γ-semi sub near-field space  and φ (n1), φ ( n2 ) ∈ P1 where (P1, +, .) is a   
Γ-semi sub near-field space of N1. 
 
Definition 1.13: Let N be a T-loop Γ-semi sub near-field space. An additive T-sub loop Γ-semi sub near-field space   A 
of N is called a N-sub loop Γ-semi sub near-field space (right N-sub loop Γ-semi sub near-field space) if NA ⊂ A (AN 
⊂ A) where NA = { na / n ∈ N and a ∈ A}. 
 
Definition 1.14: A non empty Γ-semi sub near-field space J of a T-Γ-semi sub near-field space N is called a 
Thurumella left ideal (T-left ideal) in N if  

(i) (J, +) is  a T-normal sub loop Γ-semi sub near-field space of (N, +) 
(ii) n (n1 + j) + nr n1 ∈ J for each j∈ J and n, n1 ∈ N where nr denotes the unique right inverse of n. 

 
Definition 1.15: A non empty Γ-semi sub near-field space J of N is called a Thurumella ideal (T-ideal) of N if 1. J is a 
T-left ideal and 2. JN ⊂ J. 
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Definition 1.16: A T-loop Γ-semi sub near-field space N is said to be Thurumella left bipotent (T-left bipotent) if        
Na = N a2 for every a in N. 
 
Example 1.17: Let N = { e, a, b, c, d } be given by the following composition table for addition ‘+’ . 

+ e a b c d 
e e a b c d 
a a b e c d 
b b c d a e 
c c d a e b 

       d d e c b a 
 
Let ‘.’ be defined on N by x.y = x for every x, y ∈ N. (N, +, .) is a T-loop Γ-semi sub near-field space. For P = {e, c} is 
a T-loop Γ-semi sub near-field space. Clearly, Na2 = Na for every a ∈ N. Thus N is a T-left bipotent loop Γ-semi sub 
near-field space. 
 
Definition 1.18: A T-loop Γ-semi sub near-field space N is said to be a Thurumella T-loop Γ-semi sub near-field space 
(T-t-loop Γ-semi sub near-field space) if a ∈ Na for every a ∈ N. 
 
Example 1.19: Let the T-loop Γ-semi sub near-field space (N, +,.) be given by the following composition table for ‘+’, 
.’.  

+ 0 a b c 
0 0 a b c 
a a 0 c b 
b b c 0 a 
c c b 0 a 

And 
. 0 a b c 
0 0 0 0 0 
a 0 a b c 
b 0 b 0 0 
c 0 c b c 

Every pair (0, a) is a Γ-semi sub near-field space so (N, +) is a T-loop Γ-semi sub near-field space. (N, .) is a T-Γ-semi 
sub near-field space as { a } is a Γ-semi sub near-field space. Thus (N, +, .) is a T-t-loop Γ-semi sub near-field space. 
 
Definition 1.20: A T-loop Γ-semi sub near-field space  N is said to be Thurumella regular (T-regular) if for each a in N 
there exists x in P ( P ⊂ N), P a T-loop Γ-semi sub near-field space  such that a = axa. 
 
Definition 1.21: Let N be a Γ-semi sub near-field space. An element e ∈ N is said to be Thurumella idempotent Γ-semi 
sub near-field space  (T-idempotent Γ-semi sub near-field space) in N if  

(i) e2= e   
(ii) there exists b ∈ N ∼ {e} such that b2 = e and eb = b ( or be = b) or ( be = b or eb = b). 

 
Definition 1.22: A T-loop Γ-semi sub near-field space N is said to be Thurumella strictly duo Γ-semi sub near-field 
space  (T-strictly duo) Γ-semi sub near-field space if every  T-N-sub loop (T-left ideal) is also a T-right N-sub loop    
(T-right ideal). 
 
Definition 1.23: For any Γ-semi sub near-field space A of a T-loop Γ-semi sub near-field space N we define,  
√ A = {x ∈ N /  x n ∈ A for some n }. 
 
Definition 1.24: A T-loop Γ-semi sub near-field space N is called Thurumella irreducible (T-irreducible) (T-simple) if 
it contains only the trivial T-N-sub loop Γ-semi sub near-field spaces (T-ideals) (0) and N itself. 
 
Definition 1.25: A loop Γ-semi sub near-field space N is called a T-loop Γ-semi near-field space if it satisfies the 
following: 

1. if N is a T-loop Γ-semi sub near-field space and 
2. if P ⊆ N contain an identity and each non zero element in P ⊂ N, { (P, +) a Γ-semi sub near-field space } has a 

multiplicative inverse. 
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Definition 1.26: A T-ideal P ( ≠ N) is called Thurumella strictly prime Γ-semi sub near-field space  (T-strictly prime  
Γ-semi sub near-field space ) if for any two T-N-sub loop Γ-semi sub near-field spaces (T-ideals) A and B of N such 
that AB ⊂ P then A ⊂ P or B ⊂ P. 
 
Definition 1.27: As left ideal B of a T-loop Γ-semi sub near-field space N is called Thurumella strictly essential Γ-semi 
sub near-field space (T-strictly essential Γ-semi sub near-field space) if B ∩ K ≠ {0} for any non zero T-N-sub loop    
Γ-semi sub near-field space K of N. 
 
Definition 1.28: An element x ∈ N is said to be Thurumella non-singular Γ-semi sub near-field space (T-non singular 
Γ-semi sub near-field space) if there exists a T-strictly essential left ideal A in N such that Ax = {0}. 
 
Definition 1.29: An element x of a T-loop Γ-semi sub near-field space N is said to be Thurumella central Γ-semi sub 
near-field space (T-central Γ-semi sub near-field space) if xy = yx for all y ∈ P ⊂ N, (P, +, .) is a Γ-semi sub near-field 
space. 
 
Definition 1.30: A non-zero T-loop Γ-semi sub near-field space N is said to be Thurumella sub directly irreducible     
Γ-semi sub near-field space(T-sub directly irreducible Γ-semi sub near-field space) if the intersection of all the non-
zero T-ideals of N is non-zero. 
 
SECTION-2. RESULTS ON SOME SPECIAL THURUMELLA Γ-SEMI SUB NEAR-FIELD SPACE (T-Γ-
SSNFS-Γ-NFS-NF) A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD. 
 
Here in this section 2, Here we study when loops over Γ-semi sub near-field spaces i.e. near loop Γ-semi sub near-field 
spaces in terminology Thurumella  near loop Γ-semi sub near-field spaces, as loop Γ-semi sub near-field spaces are not 
non associative Γ-semi sub near-field space analogous to non associative near-field. We proceed to define here the 
concept of Thurumella non associative Γ-semi sub near-field spaces first in the following: 
  
Theorem 2.1: Let N be a T-right loop Γ-semi sub near-field space then N is a T-right loop half groupoid Γ-semi sub 
near-field space. 
 
Proof: Obvious by the very definitions. 
 
Theorem 2.2: Let N be a T-right loop half groupoid Γ-semi sub near-field space. Then N is not in general a T-right 
loop Γ-semi near-field space. 
 
Proof: Obvious. (N, .) is only a half groupoid so it can never be a T-Γ-semi near-field space. 
 
Theorem 2.3: Let N be a T-loop Γ-semi sub near-field space. Then N contains a proper Γ-semi sub near-field space P 
such that (P, +) is a Γ-semi near-field space and (P, .) is a Γ-semi sub near-field space so that P is a Γ-semi sub near-
field space. 
 
Proof: By the very definition of T-loop Γ-semi sub near-field space, we have (N, +) is a T-loop Γ-semi sub near-field 
space so N has a proper Γ-semi sub near-field space say, P which is a Γ-semi near-field space under ‘+’ now (P, +, .) is 
Γ-semi sub near-field space. This completes the proof of the theorem. 
 
Note 2.4: All T-idempotents in T-loop Γ-semi sub near-field spaces are also idempotents and non-conversely. 
 
Note 2.5: Let N be a T-t-loop Γ-semi sub near-field space, then N is T-regular if and only if for each a (≠ 0) in N there 
exists a T-idempotent e such that Na = Ne. 
 
Remark 2.6: Let N be a T-Γ-semi sub near-field space and L be a T-Γ-semi sub near-field space loop. Then the near 
loop Γ-semi near-field space NL is a T-Γ-semi sub near-field space loop near-field. 
 
Example 2.7: Let Z2 = {0, 1} be a Γ-semi sub near-field space and L be a T-loop Γ-semi near-field space. 
The near loop Γ-semi sub near-field space Z2L is a T-Γ-semi sub near-field space where the T-loop Γ-semi sub near-
field space is given by the following composition table: 
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. e a1 a2 a3 a4 a5 
e e a1 a2 a3 a4 a5 

a1 a1 e a4 a2 a5 a3 
a2 a2 a4 e a5 a3 a1 
a3 a3 a2 a5 e a1 a4 
a4 a4 a5 a3 a1 e a2 
a5 a5 a3 a1 a4 a2 e 

 
Now Z2L = {1, a1, a2, a3, a4, a5, sums taken 2 at a time ...} where 1.e = e.1 = 1 is the assumption made so that 1 acts as 
the identity. When we say Z2L is a near loop Γ-semi near-field space. We assume L ⊂ Z2L. Clearly, Z2L is a non 
associative Γ-semi sub near-field space and is a T--Γ-semi near-field space. 
 
SECTION-3. MAIN RESULTS ON SOME SPECIAL THURUMELLA NON ASSOCIATIVE Γ-SEMI SUB 
NEAR-FIELD SPACE (T-NA-Γ-SSNFS-Γ-NFS-NF) A Γ-NEAR-FIELD SPACE OVER NEAR-FIELD. 
 
In this section 3, we deduce main results on some special Thurumella NA-Γ-semi sub near-field spaces. 
 
Theorem 3.1: Let L be a loop and N be a T-Γ-semi sub near-field space. NL is a T-Γ-semi sub near-field space which 
is non-associative Γ-semi sub near-field space over near-field. 
 
Proof: Let N ⊂ NL and L ⊂ NL and as L is non associative Γ-semi sub near-field space and N is a T-Γ-semi sub near-
field space NL is a T-Γ-semi sub near-field space. This completes the proof of the theorem. 
 
Theorem 3.2: Let L be any loop and N any Γ-semi sub near-field space. The near loop Γ-semi near-field space NL is a 
T-non associative Γ-semi sub near-field space. 
 
Proof: It is fact that (NL, +) is a Γ-semi near-field space, hence trivially a T-Γ-semi sub near-field space and (NL, .) is 
a T-groupoid as N ⊂ NL is a Γ-semi sub near-field space. Hence this completes the proof of the theorem. 
 
Definition 3.3: Let N be a non associative  loop Γ-semi sub near-field space. We say N is a additively power 
associative loop Γ-semi sub near-field space if every element under ‘+’ of N generates a Γ-semi near-field space. The 
Γ-semi sub near-field space N is said to be a multiplicatively power associative loop Γ-semi sub near-field space if 
every element different from 0 generates a Γ-semi near-field space under product. A loop Γ-semi sub near-field space 
N is said to be power associative Γ-semi sub near-field space if  

1. every element n ∈ N under ‘+’ generates a Γ-semi near-field space 
2. every element n ∈ N ∼ { 0 } under ‘x’ or ‘.’ Generates a Γ-semi near-field space. 

 
Definition 3.4: Let N be a non associative Γ-semi near-field space. We say N is power associative if every element of 
N ∼ {0} generates a Γ-semi near-field space with respect to. 
 
Definition 3.5: Let N be a non associative Γ-semi sub near-field space. We say N is power associative Γ-semi sub 
near-field space if every element in N generates a Γ-semi sub near-field space under multiplication. 
 
Definition 3.6: Let N be a non associative Γ-semi sub near-field space we say N is a Thurumella power associative (T-
power associative) if (N, .)  has a proper Γ-semi sub near-field space P where P is a T-sub groupoid of N and P is power 
associative i.e. every element p ∈ P generates a Γ-semi sub near-field space. 
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