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ABSTRACT
The purpose of this paper is to define and study a new class of closed sets called NI, - closed sets in nano ideal

topological spaces. Basic properties of NI, - closed sets are analyzed and we compared it with some existing and few
new closed sets in nano ideal topology introduced in this paper.
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1. INTRODUCTION

The concept of ideal topological space was introduced by Kuratowski [4] . In 1990, Jankovic and Hamlett investigated
further properties of ideal topological spaces [2]. An ideal | on a nonempty collection of subsets of X which satisfies (i)
Acland Bc A, impliesBeland (i) Aeland Bel, implies ALUB e |l. Given a topological space

(X , z') with an ideal I on X and if P(X) is the set of all subsets of X , a set operator(.)* : P(X ) - P(X) called a
local function of A with respect  to 7 and | is defined as follows: for

Ac X,A(l,7)={xe X :UnAgl, foreveryU e r(X )} where7(X)={U e 7: X eU}. A Kuratowski
closure operator cl’() for a topology T*(I ,r) called the *-topology finer than 7, is defined by
cl*(A)= AU A*(I,7). When there is no chance of confusion, we will simply write A" for A*(1,7) and 7" for
T*(I ,T). If 1 is an ideal on X, the space (X,T, I ) is called the ideal topological space.

The concept of nano topology was introduced by Lellis Thivagar.M [5], which was defined in terms of approximations
and boundary region of a subset of a universe using an equivalence relation on it. He has also defined a Nano

continuous functions, Nano open mappings, Nano closed mappings and Nano Homeomorphisms and their
representations in terms of Nano closure and Nano interior. In this paper, we introduce and investigate a new class of

closed sets called NI, - closed sets and also discuss the relationship with some new and existing closed sets in nano
ideal topological spaces.

2. PRELIMINARIES

Definition 2.1: [5,7] A subset A of a nano ideal topological space (U TR (X ,), | ) is called,
(i) Nl openif Ac N int(A*N )and its complement is NI closed.
(i) NI preopenif Ac N int(NCI*(A)) and NI pre closed if Nel*(Nint(A)) < A.
(iii)y NI semiopenif Ac NCI*(N int(A)) and NI semi closed if N int(NCI*( ))g A.
(iv) Nl openif Ac N int(NCI*(N int(A))) and N1 closed if Ncl* (N mt( cl” ( ))
w NI g openit AS Nl (Nint(Nel"(A)) ;g NIB oceq e Nint(Nel* (N int(A)) < A
(vi) NI regular openif A= N int(NCI*(A)) and NI regular closed if Ncl *(N int( ))
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We have the following implications

NI regular dosed — me—e—— Nlex closed e — NI semi closed

\ NIB u:llnsed /
— —

NI preclosed .o NI closed

Nano closed set is independent of NI closed set.

3. SOME CLOSED SETS IN NANO IDEAL TOPOLOGICAL SPACES

Definition 3.1: A subset A of a nano ideal topological space (U, 75 (X,), 1) is called,

(i) a nano ideal regular generalized closed set (NI, —closed) if N|C|(A)g Z whenever Ac Z and Z is
nano regular open.

(if) a nano ideal generalized pre closed set (NI, —closed) if NIpCl(A)g Z whenever A < Z and Z is nano
open.

(iiii) @ nano ideal o — generalized closed set (NI, —closed) if NIaCl(A)g Z whenever Ac Zand Z is
nano open.

(iv) a nano ideal generalized & —closed set (NI, —closed) if NIaCl(A)g Z whenever Ac Z and Z is
nano & — open.

(v) anano ideal generalized semi closed set ( NI ;, —closed) if NISC|(A) < Z whenever A < Z and Z is nano
open.

(vi) a nano ideal semi generalized closed set (NI, —closed) if NISCl(A) < Z whenever A < Z and Z is nano
semi open.

(vii)a nano ideal generalized closed set ( NI ; — closed) if N|C|(A) < Z whenever A < Z and Z is nano open.

(viii) a nano ideal generalized pre regular closed set (NI ;. — closed) if NIpCl(A) < Z whenever Ac Z and Z
is nano regular open.

(ix) a nano ideal generalized 5 — closed set (NI j; — closed) if NIﬁCl(A) < Z whenever A < Z and Z is nano
open.

(x) a nano ideal generalized regular closed set (NI, —closed) if NII‘Cl(A)g Z whenever Ac Z and Z is
nano open.

4. NANO IDEAL a¢ REGULAR CLOSED SET

Definition 4.1: A subset A of a nano ideal topological space (U TR (X ,), I ) is called nano ideal ¢ regular closed set
(briefly NI, - closed) if NIaCl(A) < Z whenever A  Z and Z is nano regular open.

Theorem 4.2: In a nano ideal topological space (U VTR (X ), I )

(i) every NI -closed, NI, -closedand NI - closed setis NI, - closed

(i) every NI, -closed setis NI, -closed

Converse of the above theorem need not be true as shown in the following example.
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Example 4.3: Let = {a b,c, d} U/R= {{a}, {b}, {C,d}}, X = {b,d} and | = {¢, {a}} Then

7o(X)={p.U. bl {c, }&cdH

(i) A= { } is NI, - closed, but not NI, - closed
(i) B={b,c} is NI - closed, but not NI, - closed.
(i) C = {C}ls NI, - closed, but not NI, - closed.
(iv) D= {b, C, d} is NI o - Closed, butnot NI - closed.
The following example shows that NI, - closed set is independent of NI - closed, NI - closed, NI, - closed,

NI ¢ - closed and NI o~ Closed sets.

Example 4.4: Let U—{abcd} , U/R:{{a},{b},{c,d}} , X:{b,d} and I:{¢,{a}}. Then

73(X)=1p.U. b}, {c.d} bo.c.d .

(i) NI, - closed set=
(i) NI - closed set=

4. {a} {b,c},{b,d},{a,b,c}{a,b,d}{a,c,d},{b,c,d},U}
{¢.{a}
(iii) NI, - closed set= {¢, {a},
0,18}
.{a)

d},

.c}{a,d} {a,b,c} {a,b,d},{ac,d} U}

bH chfa.d}fc.djfab.chiabdhiacdiu]
{a.clfa.d}fc.dffab.chiab.djiacdhu]

V) ng-closed set= c},{a,d},{a,b,c},{a,b,d},{ac,d} U}

fa, fa.c
vi) NI, cmwdwv{¢{a}%}k}CH&&b}{,h{ df,{c.d}{a,b,cf{ab,d}{ac,dfu}

Theorem 4.5: Let (U, 74 (X ), I )be a nano ideal topological space and A be a subset of U. Then

(iv) NI, - closed set=

(i) every nano closed setis NI, - closed

(i) every NI & _closed set is NI, - closed

(iii) every NI regular closed setis NI , - closed.

Proof: (i) Let A c Z, where Z is nano regular open. By hypothesis and since every nano closed set is NI o -
closed, Nlacl(A)  Ncl(A)= A< Z . Hence Ais NI, - closed.
Proofs of (ii) & (iii) are similar to (i).

The following example shows that NI , - closed set is independent of NI - closed, NI pre closed, NI semi closed

and NI /3 closed sets.

Example 4.6: Let = {a b,C,d}, U/R= {{a}, {b}, {C,d}}, X = {b,d} and | = {¢, {a}} Then
e (X)=1{p.U, bl e, }%Cd»
() NI, -closed set= {¢, {a}, {a, b}, {a,c}, {a,d}, {b,c},{b,d}, {a,b,c}, {a,b,d },{a,c,d }, {b,c,d U }
iy NI closeaset={g al e d  fa.b o, ch fa, ) o b ) fab ) fa.c, d LU
(i) NI - pre closed set= {¢ {a} { } { } {a b} { } { } {a b,C}, {a,b,d}, {a,c,d},U}
(iv) Ell-ﬂsemi closed set= {¢ {a} {b}, {a b}, {c.d } {ac, d} }
(v) closed set=

#.1a}, byic). d} fa.bj{a.cjia,djy b.cjy b d o, fab,c fab, dj fa,c.dj,U }
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The above discussions are summarized in the following diagram

_.—._\ z \.

’ // \\

1. NI, -closed 2.nanoclosed 3. NI« -closed 4. NI r—Closed 5. NI - closed
6. NI, -closed 7. NI -closed 8. NI -closed9. NI -closed 10. NI, - closed
11. NI - closed 12. NI, -closed 13. NI ;- closed

Theorem 4.7:  Finite union of two NI , - closed setsis NI, - closed.

Proof: Let A, B be two NI, - closed sets. Then Nlacl(A)< Z, and Nlacl(B) < Z,, whenever Ac Z, and
BcZ, and Z,,Z,ae nano regular open.  Nlacl(A)UNlacl(B)c Z, UZ, That s,
Nlacl(AUB)c Z, UZ, c Z (say). .. AUBis NI, - closed.

The following example shows that the intersection of two NI, - closed sets need not be NI , - closed.

Example 4.8: Let = {a b,c, d}, U/R= {{a}, {C}, {b,d}}, X = {a,b}and | = {¢, {a}} Then

(X)=1{p.U,{a} b, }{a b,df}.
NI, - closed set = {3, {c}, {a,b},{a,c}, {a,d}, {b,c}, {c,d},{a,b,c}, {a,b,d },{a,c,d}, {o,c,d U }.
(i) {a,d}u{ } {a c, d}e o - Closed set (ii) {a,b}m{a,c}= {a}e NI, -closed set.

Theorem 4.9: Let A be NI - closed in a nano ideal topological space(U,zq(X)1). Then for all
x € Nlacl(A),Nrcl({x})n A= ¢

Proof: Let A be NI, - closed. Suppose X € Nlacl(A), Nrcl({x})n A=¢. Then AcU —Nrcl({x}). This
implies Nlacl(A)c U - Nl’Cl({X}) , which is a contradiction, since X € Nlacl(A). .. Nrcl({x})m A=g.

Converse of the above theorem does not hold, which is shown in the following example.

Example 4.10: In example 4.8, let A:{b,d}, NIaCl(A):{b,C,d}. Take {b}e NIaCl(A),
Nrcl({o})n A={b,c,d}n{b,d}=1{b,d} = ¢.But {b,d} e NI, - closed set.

Theorem 4.11: Let A be NI, - closed in a nano ideal topological space(U,7g(X),1). Then Nlacl(A)- A
contains no non empty nano regular closed set.

Proof: Let G be a nano regular closed set such that G < Nlacl(A)— A. Then G cU — A, which implies
AcU-G. Then  Nlacl(A)cU-G. GcU-Nlacl(A). Ao Gc Nlacl(A).

~Gc (U - NIaCI(A))m(NIaCl(A))= @ . Therefore NIaCl(A)— A contains no non empty nano regular
closed set.
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Converse of the above theorem does not hold as seen in the following example.

Example 4.12: In example 4.8, let A={d}, then Nlacl(A)— A= {b,c,d}-{d}= {b,c}which does not contain

any non empty nano regular closed set. Also Ais not NI, - closed.

Theorem 4.13: Let Abe NI, - closed in a nano ideal topological space (U, 75 (X ), 1). Then Ais Nle - closed iff
Nlacl(A)— A is nano regular closed.

Proof: Let A be Nla - closed and hence Nlacl(A)= A, that implies Nlacl(A)— A = ¢, which is nano regular

closed. Conversely, suppose NI(ZCl(A)— A is nano regular closed and let it be ¢. Hence A is Nl - closed, since

Nlacl(A)= A.

Theorem 4.14: If Ais NI - closed A B < Nlacl(A), thenBis NI, - closed.
Proof: Let Bc Zand Z is nano regular open. Since Ac B,AcZ, also NIaCl(A)g Z . Since
A c B,Nlacl(B) < Nlacl(A) < Z . This shows that B is NI, - closed.

5. NANO IDEAL & REGULA OPEN SET

Definition 5.1: A set A in a nano ideal topological space (U , TR(X ), I) is called nano ideal « regular open (NI, -
open) if and only if its complement is nano ideal ¢ regular closed.

Remark 5.2: NIaCl(U - A): U - NIaint(A)
Remark 5.3: The following example shows that

(i) Finite Intersection of two NI, -opensetsis NI , -open.

(ii) Union of two NI, -open sets needs not be NI, -open.

Example 5.4: In example : 4.8, NI, -open sets are {¢, {a}, {b}, {c}, {d}, {ab}, {ad}, {bc}, {bd}{cd},
{a,b,d},U}
(i) {a,b}m{b C} ={b} € NI, -open set.

(ii) {a,b} u{c} = {a,b,c} ¢ NI, -open set.

Theorem 55: In a nano ideal topological space (U,zo(X)1), AcUis NI -open if and only if
Fc NIaint(A), whenever F is nano regular closed and F < A.

Proof: Let A be NI -open and F is nano regular closed ,F < A. Then U — Ac U —F, U-F is nano regular
open. NIaCl(U - A)gU -F=U- NIaint(A)gU -F=Fc NIaint(A).

Conversely, suppose F is nano regular closed and F < Aimplies F < Nlaint(A). Let U - Ac Z,where Z is
nano regular open. Then U —-Z c A where U- Z is nano regular closed. By hypothesis,
U-Z c Nlaint(A)=U - Nlaint(A)c Z . By remark : 5.2, Nlacl(U —A)c Z . Then U-Ais NI, -

closed and hence A is NI, -open.

Theorem 5.6: If Nlazint(A) = B < Aand Ais NI, -open, then B is NI , -open.
Proof: Nl int(A) = B < Aimplies U —~AcU -BcU —Nlaint(A)= Nlacl(U - A). Since U-A is
NI , -closed, by theorem-4.14, U-B is NI, -closed and hence B is NI , -open.
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Remark 5.7: 1If Ac U, Nlaint(Nlacl(A)- A)=¢.
Theorem 5.8: 1f Ac U is NI, closed, then Nlacl(A)— A is NI_, -open.

Proof: Let A be NI, -closed and let G be a nano regular closed set such that G < Nlacl(A)— A. Then by

theorem: 4.11, G = ¢ and hence by remark: 5.7G < Nlaint(Nlacl(A)— A). This shows that Nlacl(A)— A is
NI, -open.

The converse of the above theorem is not true as shown in the following example.

Example 5.9: From example: 4.12 let A={d}, Nlacl(A)— A = {b,c} which is NI_, -open. But A is not NI _, -
closed.
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