International Journal of Mathematical Archive-10(12), 2019 25-38 \$MAAvailable online through www.ijma.info ISSN 2229-5046

NOTES ONINTUITIONISTICMULTIFUZZY GRAPH

A. MARICHAMY*1, K. ARJUNAN ${ }^{2}$ AND K. L. MURUGANANTHA PRASAD ${ }^{3}$
*Department of Mathematics, Pandian Saraswathiyadav Engineering College, Sivagangai-630561, Tamilnadu, India.
Department of Mathematics, Alagappa Government Arts College, Karaikudi-630003, Tamilnadu, India. Department of Mathematics, H.H. The Raja's College, Pudukkottai-622001, Tamilnadu, India.

(Received On: 12-11-19; Revised \& Accepted On: 09-12-19)

Abstract

In this paper, some properties of intuitionisticmultifuzzy graph are studied and proved. Fuzzy graph is the generalization of the crisp graph, intuitionisticfuzzy graph is the generalization of fuzzy graph and intuitionisticmulti fuzzy graph is the generalization of intuitionisticfuzzy graph. A new structure of an intuitionisticmulti fuzzy graph is introduced. 2010Mathematics subject classification: 03E72, 03F55, 05C72. Key Words: Intuitionisticfuzzy subset, intuitionisticmulti fuzzy relation, Strong intuitionisticmulti fuzzy relation, intuitionisticmulti fuzzy graph, intuitionisticmulti fuzzy loop, intuitionisticmulti fuzzy pseudo graph, intuitionisticmulti fuzzy spanning subgraph, intuitionisticmulti fuzzy induced subgraph, intuitionisticmulti fuzzy underling graph, Level set, Degree of intuitionisticmultifuzzy vertex, order of the intuitionisticmultifuzzy graph, size of the intuitionisticmultifuzzy graph, intuitionisticmultifuzzy regular graph, intuitionisticmulti fuzzy strong graph, intuitionisticmulti fuzzy complete graph.

INTRODUCTION

In 1965, Zadeh [13] introduced the notion of fuzzy set as a method of presenting uncertainty. Since complete information in science and technology is not always available. Thus we need mathematical models to handle various types of systems containing elements of uncertainty. After that Rosenfeld [10] introduced fuzzy graphs. Fuzzy graphs are useful to represent relationships which deal with uncertainty and it differs greatly from classical graph. It has numerous applications to problems in computer science, electrical engineering system analysis, operations research, economics, networking routing, transportation, etc. Nagoor Gani.A [7, 8] introduced a fuzzy graph and regular fuzzy graph. Multi fuzzy set was introduced by Sabu Sebastian, T.V.Ramakrishnan[11].After that the fuzzy sets have been generalized with fuzzy loop and fuzzy multiple edges, this type of concepts was introduced by K.Arjunan and C.Subramani[1,2]. The intuitionistic fuzzy graph with multiple edges and selfloops has been introduced by K.Arjunan and C.Subramani[3]. In this paper a new structure is introduced that is intuitionistic multi fuzzy graph with selfloop and multiple edges and some results of intuitionistic multi fuzzy graph are stated and proved.

Corresponding Author: A. Marichamy*1, *Department of Mathematics, Pandian Saraswathiyadav Engineering College, Sivagangai-630561, Tamilnadu, India.

1. PRELIMINARIES

Definition 1.1[4]: An intuitionistic fuzzy set (IFS)A in X is defined as an object having the form $A=\left\{\left(x, \mu_{A}(x), \gamma_{A}(x)\right)\right.$ $/ \mathrm{x} \in \mathrm{X}\}$, where $\mu_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ and $\gamma_{\mathrm{A}}: \mathrm{X} \rightarrow[0,1]$ define the degree of membership and the degree of non-membership of the element $x \in X$ respectively and every x in X satisfying $0 \leq \mu_{A}(x)+\gamma_{A}(x) \leq 1$.

Example 1.2: An intuitionisticsubset $A=\{(a, 0.3,0.6),(b, 0.3,0.5),(c, 0.2,0.5)\}$ of a set $X=\{a, b, c\}$.

Definition 1.3[12]: Anintuitionisticmulti fuzzy subset A of a set X is defined as an object of the form $A=\left\{\left(x, \mu_{\mathrm{A} 1}(x), \mu_{\mathrm{A} 2}(\mathrm{x}), . ., \mu_{\mathrm{An}}(\mathrm{x}), \gamma_{\mathrm{A} 1}(\mathrm{x}), \gamma_{\mathrm{A} 2}(\mathrm{x}), . ., \gamma_{\mathrm{An}}(\mathrm{x})\right) / \mathrm{x} \in \mathrm{X}\right\}$, where $\mu_{\mathrm{Ai}}: \mathrm{X} \rightarrow[0,1]$ and $\gamma_{\mathrm{Ai}}: X \rightarrow[0,1]$ for all i, define the degrees of membership and the degrees of non-membership of the element $x \in X$ respectively and every x in X satisfying $\otimes \mu \quad \mathrm{Ai}(\mathrm{x})+\gamma_{\mathrm{Ai}}(\mathrm{x}) \leq 1$ for all i. It is denoted as $\mathrm{A}=\left(\mu_{\mathrm{A}}, \gamma_{\mathrm{A}}\right)$, where $\mu_{\mathrm{A}}=\left(\mu_{\mathrm{A} 1}, \mu_{\mathrm{A} 2} \ldots \mu_{\mathrm{An}}\right)$ and $\gamma_{\mathrm{A}}=\left(\gamma_{\mathrm{A} 1}, \gamma_{\mathrm{A} 2}, \ldots, \gamma_{\mathrm{An}}\right)$.

Example 1.4: Let $\mathrm{X}=\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$ be a set. Then $\mathrm{A}=\{(\mathrm{a},(0.4,0.3,0.2),(0.2,0.4,0.4)),(\mathrm{b},(0.2,0.4,0.3),(0.3,0.5,0.7))$, (c, $(0.4,0.1,0.5),(0.5,0.6,0.4)\}$ is a intuitionisticmulti fuzzy subset of X with the dimension three.

Definition 1.5: Let A and B be any two intuitionisticmulti fuzzy subset of X. We define the following relations and operations:
(i) $\mathrm{A} \subseteq \mathrm{B}$ if and only if $\mu_{\mathrm{Ai}}(\mathrm{x}) \leq \mu_{\mathrm{Bi}}(\mathrm{x})$ and $\gamma_{\mathrm{Ai}}(\mathrm{x}) \geq \gamma_{\mathrm{Bi}}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$ and for all i.
(ii) $\mathrm{A}=\mathrm{B}$ if and only if $\mu_{\mathrm{Ai}}(\mathrm{x})=\mu_{\mathrm{Bi}}(\mathrm{x})$ and $\gamma_{\mathrm{Ai}}(\mathrm{x})=\gamma_{\mathrm{Bi}}(\mathrm{x})$ for all $\mathrm{x} \in \mathrm{X}$ and for all i.
(iii) $\mathrm{A} \cap \mathrm{B}$ if and only if $(\mathrm{A} \cap \mathrm{B})(\mathrm{x})=\left\{\min \left\{\mu_{\mathrm{Ai}}(\mathrm{x}), \mu_{\mathrm{Bi}}(\mathrm{x})\right\}, \max \left\{\gamma_{\mathrm{Ai}}(\mathrm{x}), \gamma_{\mathrm{Bi}}(\mathrm{x})\right\}\right\}$ for all $\mathrm{x} \in \mathrm{X}$ and for all i .
(iv) $A \cup B$ if and only if $(A \cup B)(x)=\left\{\max \left\{\mu_{A i}(x), \mu_{B i}(x)\right\}, \min \left\{\gamma_{\mathrm{Ai}}(x), \gamma_{\mathrm{Bi}}(x)\right\}\right\}$ for all $\mathrm{x} \in \mathrm{X}$ and for all i .

Definition 1.6: Let A be aintuitionisticmulti fuzzy subset in a set S, the strongest intuitionistic multi fuzzy relation on S, that is an intuitionisticmulti fuzzy relation with respect to A given by $\mu_{\mathrm{Vi}^{\prime}}(\mathrm{x}, \mathrm{y})=\min \left\{\mu_{\mathrm{Ai}}(\mathrm{x}), \mu_{\mathrm{Ai}}(\mathrm{y})\right\}$ and $\gamma_{\mathrm{Vi}}(\mathrm{x}, \mathrm{y})=\max \left\{\gamma_{\mathrm{Ai}}(\mathrm{x}), \gamma_{\mathrm{Ai}}(\mathrm{y})\right\}$ for all x and y in S and for all i .

Definition 1.7: Let V be any nonempty set, E be any set and $f: ~ E T V \times$ be any function. Then A is aintuitionistic multi fuzzy subset of V , Sis anintuitionisticmulti fuzzy relation on V with respect to A and B is an intuitionisticmulti
 is called an intuitionistic multi fuzzy graph, where the elements of A are called intuitionisticmultifuzzy points or intuitionistic multifuzzy vertices and the elements of B are called intuitionistic multifuzzy lines or intuitionistic multi fuzzy edges of the intuitionisticmulti fuzzy graph F. Iff $(\mathrm{e})=(\mathrm{x}, \mathrm{y})$, then the intuitionistic multi fuzzy points ($\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})$), ($\left.\mathrm{y}, \mu_{\mathrm{A}}(\mathrm{y}), \gamma_{\mathrm{A}}(\mathrm{y})\right)$ are called intuitionistic multi fuzzyadjacent points and intuitionisticmulti fuzzy points $\left(x, \mu_{A}(x), \gamma_{A}(x)\right)$, intuitionisticmulti fuzzy line (e, $\left.\mu_{B}(e), \gamma_{B}(e)\right)$ are called incident with each other. If two district intuitionisticmulti fuzzy lines $\left(e_{1}, \mu_{B}\left(e_{1}\right), \gamma_{B}\left(e_{1}\right)\right)$ and $\left(e_{2}, \mu_{B}\left(e_{2}\right), \gamma_{B}\left(e_{2}\right)\right)$ are incident with a common intuitionisticmulti fuzzy point, then they are called intuitionisticmultifuzzy adjacent lines.

Definition 1.8: Anintuitionistic multi fuzzy line joining anintuitionisticmulti fuzzy point to itself is called an intuitionistic multi fuzzy loop.

Definition 1.9: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionisticmulti fuzzy graph. If more than one intuitionisticmulti fuzzy line joining two intuitionisticmulti fuzzy vertices is allowed, then the intuitionisticmulti fuzzy graph F is called an intuitionisticmultifuzzy pseudo graph.

Definition 1.10: $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is called anintuitionisticmulti fuzzy simple graph if it has neitherintuitionisticmulti fuzzy multiple lines nor intuitionistic multifuzzy loops.

Example 1.11: $F=(A, B, f)$, where $V=\left\{v_{1}, v_{2}, v_{3}, v_{4}, v_{5}\right\}, E=\{a, b, c, d, e, h, g\}$ and $f: E \rightarrow V \times V$ is defined by $f(a)=\left(v_{1}\right.$, $\left.\mathrm{v}_{2}\right), \mathrm{f}(\mathrm{b})=\left(\mathrm{v}_{2}, \mathrm{v}_{2}\right), \mathrm{f}(\mathrm{c})=\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right), \mathrm{f}(\mathrm{d})=\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right), \mathrm{f}(\mathrm{e})=\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right), \mathrm{f}(\mathrm{h})=\left(\mathrm{v}_{4}, \mathrm{v}_{5}\right), \mathrm{f}(\mathrm{g})=\left(\mathrm{v}_{1}, \mathrm{v}_{5}\right)$. An Intuitionisticfuzzy subset $A=\left\{\left(v_{1},(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\mathrm{v}_{2},(0.2,0.2,0.4),(0.3,0.1,0.2)\right)\right.$, ($\left.\left.\mathrm{v}_{3},(0.3,0.2,0.5),(0.3,0.2,0.2)\right),\left(\mathrm{v}_{4},(0.3,0.3,0.5),(0.4,0.2,0.3)\right),\left(\mathrm{v}_{5},(0.3,0.2,0.5),(0.3,0.2,0.2)\right)\right\}$ of V . An intuitionistic multi fuzzy relation $S=\left\{\left(\left(v_{1}, v_{1}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right),(0.2,0.2,0.4),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{1}, \mathrm{v}_{3}\right),(0.3,0.2,0.5)\right.\right.$, $(0.4,0.2,0.3)),\left(\left(\mathrm{v}_{1}, \mathrm{v}_{4}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{1}, \mathrm{v}_{5}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{2}, \mathrm{v}_{1}\right),(0.2,0.2,0.4),(0.4,0.2,0.3)\right.$),(($\left.\left.\mathrm{v}_{2}, \mathrm{v}_{2}\right),(0.2,0.2,0.4),(0.3,0.1,0.2)\right),\left(\left(\mathrm{v}_{2}, \mathrm{v}_{3}\right),(0.2,0.2,0.4),(0.3,0.2,0.2)\right),\left(\left(\mathrm{v}_{2}, \mathrm{v}_{4}\right),(0.2,0.2,0.4),(0.4,0.2,0.3)\right)$, $\left(\left(\mathrm{v}_{2}, \mathrm{v}_{5}\right),(0.2,0.2,0.4),(0.3,0.2,0.2)\right),\left(\left(\mathrm{v}_{3}, \mathrm{v}_{1}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{3}, \mathrm{v}_{2}\right),(0.2,0.2,0.4),(0.3,0.2,0.2)\right)$, $\left(\left(\mathrm{v}_{3}, \mathrm{v}_{3}\right),(0.3,0.2,0.5),(0.3,0.2,0.2)\right),\left(\left(\mathrm{v}_{3}, \mathrm{v}_{4}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{3}, \mathrm{v}_{5}\right),(0.3,0.2,0.5),(0.3,0.2,0.2)\right),\left(\left(\mathrm{v}_{4}, \mathrm{v}_{1}\right)\right.$, (0.3,0.2,0.5), (0.4,0.2,0.3)),(($\left.\left.\mathrm{v}_{4}, \mathrm{v}_{2}\right),(0.2,0.2,0.4),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{4}, \mathrm{v}_{3}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(\mathrm{v}_{4}, \mathrm{v}_{4}\right)\right.$, $(0.3,0.3,0.5),(0.4,0.2,0.3)),\left(\left(v_{4}, v_{5}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(v_{5}, v_{1}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(v_{5}, v_{2}\right)\right.$, $(0.2,0.2,0.4),(0.3,0.2,0.2)),\left(\left(v_{5}, v_{3}\right),(0.3,0.2,0.5),(0.3,0.2,0.2)\right),\left(\left(v_{5}, v_{4}\right),(0.3,0.2,0.5),(0.4,0.2,0.3)\right),\left(\left(v_{5}, v_{5}\right)\right.$, $(0.3,0.2,0.5),(0.3,0.2,0.2))\}$ on V with respect to A and an intuitionisticmulti fuzzy subset $B=\{(a,(0.1,0.2,0.3),(0.5$, $0.3,0.6)$), (b, ($0.1,0.2,0.3$), ($0.3,0.2,0.2$)),(c,(0.1,0.2,0.3), $0.4,0.3,0.3)$),(d,(0.1,0.2,0.3),(0.4,0.2,0.3)), (e, (0.2,0.1,0.2), (0.4,0.3,0.3)), (h,(0.2,0.2,0.3),(0.4,0.2,0.3)),(g,(0.2,0.3,0.3),(0.4,0.3,0.4))\}of E.

Fig.-1.1

In figure 1.1, (i) $\left(\mathrm{v}_{1},(0.3,0.2,0.5),(0.4,0.2,0.3)\right)$ is an intuitionisticmulti fuzzy point.(ii) (a,(0.1,0.2,0.3), $\left.(0.5,0.3,0.6)\right)$ is an intuitionisticmulti fuzzy edge.(iii) ($\mathrm{v}_{1},\left(0.3,0.2,0.5\right.$), ($0.4,0.2,0.3$)) and ($\mathrm{v}_{2},(0.2,0.2,0.4),(0.3,0.1,0.2)$) are intuitionisticmulti fuzzy adjacent points.(iv) (a, ($0.1,0.2,0.3$), ($0.5,0.3,0.6$)) join with ($\mathrm{v}_{1},(0.3,0.2,0.5),(0.4,0.2$, $0.3)$) and ($\left.\mathrm{v}_{2},(0.2,0.2,0.4), 0.3,0.1,0.2\right)$ and therefore it is incident with ($\mathrm{v}_{1},(0.3,0.2,0.5),(0.4,0.2,0.3)$) and ($\mathrm{v}_{2},(0.2$, $0.2,0.4),(0.3,0.1,0.2)$).(v) (a, ($0.1,0.2,0.3$), ($0.5,0.3,0.6$)) and (g, $(0.2,0.2,0.3),(0.4,0.3,0.4)$) are intuitionisticmulti fuzzy adjacent lines. (vi) (b,(0.1,0.2,0.3),(0.3,0.2,0.2)) is an intuitionisticmulti fuzzy loop.(vii) (d,(0.1,0.2,0.3), ($0.4,0.2,0.3$) and (e,(0.2,0.1,0.2),(0.4,0.3,0.3)) are intuitionisticmulti fuzzy multiple edges. (viii) It is not an intuitionisticmultifuzzy simple graph.(ix)It is an intuitionisticmulti fuzzy pseudo graph.

Definition 1.12: The multi fuzzy graph $H=(C, D, f)$ where $\left.C=<\mu_{C}, \gamma_{C}\right\rangle$ and $D=\left\langle\mu_{D}, \gamma_{D}\right\rangle$ is called an intuitionisticmultifuzzy subgraph of $F=(A, B, f)$ if $C \subseteq A$ and $D \subseteq B$.

Definition 1.13: The intuitionisticmultifuzzy subgraph $H=(C, D, f)$ is said to be an intuitionisticmultifuzzy spanning subgraph of $F=(A, B, f)$ if $C=A$.

Definition 1.14: The intuitionisticmulti fuzzy subgraph $H=(C, D, f)$ is said to be anintuitionisticmulti fuzzy induced sub graph of $F=(A, B, f)$ if H is the maximal intuitionisticmulti fuzzy subgraph of F with intuitionisticmulti fuzzy point set C.

Definition 1.15: Let $F=(A, B, f)$ be anintuitionisticmulti fuzzy graph with respect to the sets V and E. Let C be an intuitionistic multifuzzy subset of V, the intuitionisticmulti fuzzy subset D of E is defined as $\mu_{D i}(e)=\min \left\{\mu_{C i}(u)\right.$, $\left.\mu_{\mathrm{Ci}}(\mathrm{v}), \mu_{\mathrm{Bi}}(\mathrm{e})\right\}, \gamma_{\mathrm{Di}}(\mathrm{e})=\max \left\{\gamma_{\mathrm{Ci}}(\mathrm{u}), \gamma_{\mathrm{Ci}}(\mathrm{v}), \gamma_{\mathrm{Bi}}(\mathrm{e})\right\}$ for all i , where $\mathrm{f}(\mathrm{e})=(\mathrm{u}, \mathrm{v})$ for all e in E . Then $\mathrm{H}=(\mathrm{C}, \mathrm{D}, \mathrm{f})$ is called intuitionisticmulti fuzzy partial subgraph of F.

Definition 1.16: Let $F=(A, B, f)$ be anintuitionisticmulti fuzzy graph. Let A is a intuitionisticmulti fuzzy sub graph of F obtained by removing the intuitionisticmulti fuzzy point ($\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})$) and all the intuitionisticmulti fuzzy lines incident with ($\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})$) is called the intuitionisticmulti fuzzy subgraph obtained by the removal of the intuitionistic multi fuzzy point ($\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})$) and is denoted $\mathrm{F}-\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})\right.$). Thus if $\mathrm{F}-\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})\right)=(\mathrm{C}, \mathrm{D}, \mathrm{f})$ then $\mathrm{C}=\mathrm{A}-\left\{\left(\mathrm{x}, \mu_{\mathrm{A}}(\mathrm{x}), \gamma_{A}(\mathrm{x})\right)\right\}$ and $\mathrm{D}=\left\{\left(\mathrm{e}, \mu_{\mathrm{B}}(\mathrm{e}), \gamma_{\mathrm{B}}(\mathrm{e})\right) /\left(\mathrm{e}, \mu_{\mathrm{B}}(\mathrm{e}), \gamma_{\mathrm{B}}(\mathrm{e})\right) \in \mathrm{B}\right.$ and $\left(\mathrm{x}, \mu_{A}(\mathrm{x}), \gamma_{\mathrm{A}}(\mathrm{x})\right)$ is not incident with (e, $\left.\left.\mu_{B}(e), \gamma_{B}(e)\right)\right\}$. Clearly $F-\left(x, \mu_{A}(x), \gamma_{A}(x)\right)$ is intuitionisticmulti fuzzy induced subgraph of F. Let (e, $\mu_{B}(e)$, $\left.\gamma_{B}(e)\right) \in B$. Then $F-\left(e, \mu_{B}(e), \gamma_{B}(e)\right)=(A, D, f)$ is called intuitionisticmulti fuzzy sub graph of F obtained by the removal of the intuitionistic multifuzzy line (e, $\left.\mu_{B}(e), \gamma_{B}(e)\right)$, where $D=B-\left\{\left(e, \mu_{B}(e), \gamma_{B}(e)\right)\right\}$. Clearly $F-\left(e, \mu_{B}(e), \gamma_{B}(e)\right)$ is an intuitionisticmulti fuzzy spanning sub graph of F which contains all the lines of F except $\left(e, \mu_{B}(e), \gamma_{B}(e)\right)$. Here $\mu_{\mathrm{B}}(\mathrm{e})=\left(\mu_{\mathrm{B} 1}(\mathrm{e}), \mu_{\mathrm{B} 2}(\mathrm{e}), \ldots, \mu_{\mathrm{Bn}}(\mathrm{e})\right)$ and $\gamma_{\mathrm{B}}(\mathrm{e})=\left(\gamma_{\mathrm{B} 1}(\mathrm{e}), \gamma_{\mathrm{B} 2}(\mathrm{e}), \ldots ., \gamma_{\mathrm{Bn}}(\mathrm{e})\right)$.

Definition 1.17: By deleting from a intuitionistic multi fuzzy graph F all intuitionistic multifuzzy loops and in each collection of intuitionisticmulti fuzzy multiple edges all intuitionisticmulti fuzzy edge but one intuitionisticmulti fuzzy edge in the collection we obtain an intuitionisticmulti fuzzy simple spanning subgraph F, called intuitionisticmultifuzzy underling simple graph of F.

Example 1.18:

Fig.-1.2: Anintuitionisticmulti fuzzy pseudo graph F = (A, B, f)

Fig.-1.3: An intuitionisticmulti fuzzy subgraph of F

Fig.-1.4: An intuitionisticmulti fuzzy spanning subgraph of F

Fig.-1.5: An intuitionisticmultifuzzy subgraph Induced by $P=\left\{v_{1}, v_{3}, v_{4}, v_{5}\right\}$

Fig.-1.6: A partialintuitionistic multi fuzzy subgraph induced by C,
where $C\left(v_{1}\right)=((0.3,0.2,0.4),(0.4,0.5,0.3)), C\left(v_{3}\right)=((0.3,0.4,0.3),(0.4,0.4,0.6)), C\left(v_{4}\right)=((0.2,0.4,0.3),(0.4,0.5$, $0.4)), C\left(v_{5}\right)=((0.4,0.3,0.4),(0.3,0.6,0.5))$.

(e, (0.2,0.3,0.2),(0.4,0.3,0.3))
Fig. -7: $\left.\mathrm{F}-\left(\left(\mathrm{v}_{2}, 0.2,0.2,0.4\right), 0.3,0.1,0.2\right)\right)$

Fig.-1.8: F- (b ,(0.1, 0.2, 0.3), (0.3, 0.2, 0.2))

Fig.-1.9: Underling intuitionisticmultifuzzy simple graph of F.

Definition 1.19: Let A be a intuitionisticmulti fuzzy subset of X then the level subset or (α, β)-cut of A is $A_{(\alpha, \beta)}=\{x$
$\in \mathrm{A} / \mu_{\mathrm{Ai}}(\mathrm{x}) \geq \alpha_{\mathrm{i}}$ and $\left.\gamma_{\mathrm{Ai}}(\mathrm{x}) \leq \beta_{\mathrm{i}}\right\}$, where $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}} \in[0,1]$ for all i and $\alpha_{\mathrm{i}}+\beta_{\mathrm{i}} \leq 1$. Here α means $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{\mathrm{n}}\right)$.

Note: α means $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$ and β means $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{\mathrm{n}}\right)$.

Theorem 1.20: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be aintuitionistic multi fuzzy graph with respect to the set V and E.Let $\alpha, \beta, \lambda, \eta \in[0,1]$ and $\alpha \leq \beta$ and $\lambda \geq \eta$.Then $\left(A_{(\beta, \eta)}, B_{(\beta, \eta)}, f\right)$ is a subgraphof $\left(A_{(\alpha, \lambda)}, B_{(\alpha, \lambda)}, f\right)$.

Proof: The proof follows from definition 1.19.

Theorem 1.21: Let $F=(A, B, f)$ be a intuitionistic multi fuzzy graph with respect to the set V and E, the level subsets $A_{(\alpha, \lambda)}, B_{(\alpha, \lambda)}$ of A and B subset of V and E respectively. Then $F_{(\alpha, \lambda)}=\left(A_{(\alpha, \lambda)}, B_{(\alpha, \lambda)}, f\right)$ is a subgraph of $G=(V, E, f)$.

Proof: The proof follows from definition 1.19 and Theorem 1.20.

Theorem 1.22: Let $H=(C, D, f)$ be a intuitionistic multi fuzzy subgraph of $F=(A, B, f)$ and $\alpha, \lambda \in[0,1]$. Then $H_{(\alpha, \lambda)}=\left(C_{(\alpha, \lambda)}, D_{(\alpha, \lambda)}, f\right)$ is a subgraphof $F_{(\alpha, \lambda)}=\left(A_{(\alpha, \lambda)}, B_{(\alpha, \lambda)}, f\right)$.

Proof: Let $\mathrm{H}=(\mathrm{C}, \mathrm{D}, \mathrm{f})$ be a intuitionistic multi fuzzy subgraph of $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$. Therefore $\mu_{\mathrm{Ci}}(\mathrm{v}) \leq \mu_{\mathrm{Ai}}(\mathrm{v})$ and $\gamma_{\mathrm{Ci}}(\mathrm{v}) \geq \gamma_{\mathrm{Ai}}(\mathrm{v})$ for all u in V and for all i. $\mu_{\mathrm{Di}}(\mathrm{e}) \leq \mu_{\mathrm{Bi}}(\mathrm{e})$ and $\gamma_{\mathrm{Di}}(\mathrm{e}) \geq \gamma_{\mathrm{Bi}}(\mathrm{e})$ for all e in E and for all i. We have to prove that $\left(\mathrm{C}_{(\alpha, \lambda)}, \mathrm{D}_{(\alpha, \lambda)}, \mathrm{f}\right)$ is a subgraph of $\left(\mathrm{A}_{(\alpha, \lambda)}, \mathrm{B}_{(\alpha, \lambda)}\right.$, f$)$. It is enough to prove that $\mathrm{C}_{(\alpha, \lambda)} \subseteq \mathrm{A}_{(\alpha, \lambda)}$ and $\mathrm{D}_{(\alpha, \lambda)} \subseteq \mathrm{B}_{(\alpha, \lambda)}$. Let $\mathrm{u} \in \mathrm{C}_{(\alpha, \lambda)} \Rightarrow \mu_{\mathrm{Ci}}(\mathrm{u}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Ci}}(\mathrm{u}) \leq \lambda_{\mathrm{i}} \Rightarrow \mu_{\mathrm{Ai}}(\mathrm{u}) \geq \mu_{\mathrm{Ci}}(\mathrm{u}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Ai}}(\mathrm{u}) \leq \gamma_{\mathrm{Ci}}(\mathrm{u}) \leq \lambda_{\mathrm{I}} \Rightarrow \mu_{\mathrm{Ai}}(\mathrm{u}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Ai}}(\mathrm{u}) \leq \lambda_{\mathrm{I}}$ for all $\mathrm{i} \Rightarrow \mathrm{u} \in \mathrm{A}_{(\alpha, \lambda)}$. Therefore $\mathrm{C}_{(\alpha, \lambda)} \subseteq \mathrm{A}_{(\alpha, \lambda)}$. Let $\mathrm{e} \in \mathrm{D}_{(\alpha, \lambda)} \Rightarrow \mu_{\mathrm{Di}}(\mathrm{e}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Di}}(\mathrm{e}) \leq \lambda_{\mathrm{I}} \Rightarrow \mu_{\mathrm{Bi}}(\mathrm{e}) \geq \mu_{\mathrm{Di}}(\mathrm{e}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Bi}}(\mathrm{e}) \leq \gamma_{\mathrm{Di}}(\mathrm{e}) \leq \lambda_{\mathrm{i}} \Rightarrow \mu_{\mathrm{Bi}}(\mathrm{e}) \geq \alpha_{\mathrm{i}}$ and $\gamma_{\mathrm{Bi}}(\mathrm{e}) \leq \lambda_{\mathrm{i}} \Rightarrow \mathrm{e} \in \mathrm{B}_{(\alpha, \lambda)}$. Therefore $\mathrm{D}_{(\alpha, \lambda)} \subseteq \mathrm{B}_{(\alpha, \lambda)}$. Hence $\mathrm{H}_{(\alpha, \lambda)}$ is a subgraph of $\mathrm{F}_{(\alpha, \lambda)}$.

Definition 1.23: Let A be a intuitionistic multi fuzzy subset of X. Then the strong level subset or strong(α, β)-cut of A is $\mathrm{A}_{(\alpha+, \beta+)}=\left\{\mathrm{x} \in \mathrm{A} / \mu_{\mathrm{Ai}}(\mathrm{x})>\alpha_{\mathrm{I}}\right.$ and $\left.\gamma_{\mathrm{Ai}}(\mathrm{x})<\beta_{\mathrm{i}}\right\}$ for all i and $\alpha_{\mathrm{i}}+\beta_{\mathrm{i}}<1$ where $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}} \in[0,1]$ for all i .

Theorem 1.24: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{F})$ be a intuitionisticmulti fuzzy graph with respect to the set V and E . Let $\alpha, \beta, \lambda, \eta \in[0,1]$ and $\alpha \leq \beta$ and $\lambda \geq \eta$ then $\left(A_{(\beta+, \eta+)}, B_{(\beta+, \eta+)}, f\right)$ is a subgraph of $\left(A_{(\alpha+, \lambda+)}, B_{(\alpha+, \lambda+)}, f\right)$.

Proof: The proof follows from definition 1.23 and Theorem 1.22.

Theorem 1.25: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be a intuitionisticmulti fuzzy subgraph with respect to the set V and E , the level subsets $A_{(\alpha+, \lambda+)}, B_{(\alpha+, \lambda+)}$ of A and B subset of V and E respectively. Then $F_{(\alpha+, \lambda+)}=\left(A_{(\alpha+, \lambda+)}, B_{(\alpha+, \lambda+)}, f\right)$ is a subgraph of $G=(V, E, f)$.

Proof: The proof follows from definition 1.23 and Theorem 1.24.

Theorem 1.26: Let $H=(C, D, f)$ be a intuitionisticmulti fuzzy subgraph of $F=(A, B, f)$ and $\alpha, \lambda \in[0,1]$. Then $\mathrm{H}_{\alpha+}=\left(\mathrm{C}_{\alpha+}, \mathrm{D}_{\alpha+}, \mathrm{f}\right)$ is a subgraph of $F_{(\alpha+, \lambda+)}=\left(A_{(\alpha+, \lambda+)}, B_{(\alpha+, \lambda+)}, f\right)$.

Proof: The proof follows from definition 1.23 and Theorem 1.25.

Theorem 1.27: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be a intuitionisticmulti fuzzy subgraph with respect to the set V and E , let $\alpha, \beta, \lambda, \eta \in$ $[0,1]$ and $F_{(\alpha, \lambda)}$ and $F_{(\beta, \eta)}$ be two subgraphs of G. Then (i) $F_{(\alpha, \lambda)} \cap F_{(\beta, \eta)}$ is a subgraph of G. (ii) $F_{(\alpha, \lambda)} \cup F_{(\beta, \eta)}$ is a subgraph of G.

Proof: Since $A_{(\alpha, \lambda)}$ and $A_{(\beta, \eta)}$ are subset of V. Clearly $\mathrm{F}_{(\alpha, \lambda)} \cap \mathrm{F}_{(\beta, \eta)}$ is a subgraph of G . Also $\mathrm{F}_{(\alpha, \lambda)} \cup \mathrm{F}_{(\beta, \eta)}$ is a subgraph of G.

Definition 1.28: Let $F=(A, B, f)$ be an intuitionisticmulti fuzzy graph. Then the degree of an intuitionisticmulti fuzzy vertex is defined by $\mathrm{d}(\mathrm{v})=\left(\mathrm{d}_{\mu}(\mathrm{v}), \mathrm{d}_{\gamma}(\mathrm{v})\right)$ where
$d_{\mu}(v)=\sum_{e \in f^{-1}(u, v)} \mu_{B}(e)+2 \sum_{e \in f^{-1}(v, v)} \mu_{B}(e)$ and $d_{\gamma}(v)=\sum_{e \in f^{-1}(u, v)} \gamma_{B}(e)+2 \sum_{e \in f^{-1}(v, v)} \gamma_{B}(e)$.

Defination 1.29: The minimum degree of the intuitionisticmulti fuzzy graph $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is $\delta(\mathrm{F})=\left(\delta_{\mu}(\mathrm{F}), \delta_{\gamma}(\mathrm{F})\right)$ where $\delta_{\mu}(\mathrm{F})=\wedge\left\{\mathrm{d}_{\mu}(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\right\}$ and $\delta_{\gamma}(\mathrm{F})=\wedge\left\{\mathrm{d}_{\gamma}(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\right\}$ and the maximum degree of F is $\Delta(\mathrm{F})=\left(\Delta_{\mu}(\mathrm{F}), \Delta_{\gamma}(\mathrm{F})\right)$ where $\Delta_{\mu}(\mathrm{F})=\vee\left\{\mathrm{d}_{\mu}(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\right\}$ and $\Delta_{\gamma}(\mathrm{F})=\vee\left\{\mathrm{d}_{\gamma}(\mathrm{v}) / \mathrm{v} \in \mathrm{V}\right\}$.

Definition 1.30: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionisticmulti fuzzy graph. Then the order of intuitionisticmultifuzzy graph F is defined to be $\mathrm{o}(\mathrm{F})=\left(\mathrm{o}_{\mu}(\mathrm{F}), \mathrm{o}_{\gamma}(\mathrm{F})\right)$ where $o_{\mu}(F)=\sum_{v \in V} \mu_{A}(v)$ and $o_{\gamma}(F)=\sum_{v \in V} \gamma_{A}(v)$.

Definition 1.31: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionistic multi fuzzy graph. Then the size of theintuitionisticmulti fuzzy graph F is defined to be $S(F)=\left(S_{\mu}(F), S_{\gamma}(F)\right)$ where $S_{\mu}(F)=\sum_{e \in f^{-1}(u, v)} \mu_{B}(e)$ and $S_{\gamma}(F)=\sum_{e \in f^{-1}(u, v)} \gamma_{B}(e)$.

Example 1.32:

$\left.\left(v_{1},(0.2,0.3,0.4),(0.3,0.4,0.2)\right)\right)$	$(a,(0.1,0.3,0.2),(0.4,0.4,0.3))$	$(b,(0.2,0.3,0.2),(0.4,0.5,0.3))$
$(f,(0.1,0.2,0.3),(0.4,0.5,0.3))$		$\left(v_{2},(0.2,0.3,0.4),(0.4,0.2,0.3)\right)$
$\left(v_{4},(0,3,(0.2,0.2,0.3),(0.4,0.3,0.3))\right.$		

(d,(0.3,0.2,0.2),(0.4,0.5,0.3))
Fig.-1.10: Intuitionisticmulti fuzzy graph F
Here $\mathrm{d}\left(\mathrm{v}_{1}\right)=((0.2,0.5,0.5),(0.8,0.9,0.6)), \mathrm{d}\left(\mathrm{v}_{2}\right)=((0.7,1.1,0.9),(1.6,1.7,1.2)), \mathrm{d}\left(\mathrm{v}_{3}\right)=((0.6,0.6,0.7),(1.2,1.4$, $0.9)), \mathrm{d}\left(\mathrm{v}_{4}\right)=((0.5,0.6,0.7),(1.2,1.6,0.9)), \delta(F)=((0.2,0.5,0.5),(0.8,0.9,0.6)), \Delta(F)=((0.7,1.1,0.9),(1.6,1.7,1.2))$, $o(F)=((1.0,1.0,1.8),(1.4,1.3,1.0)), S(F)=((1.0,1.4,1.4),(2.4,2.8,1.8))$.

Theorem 1.34:

(i)The sum of the degree of membership value of all intuitionisticmulti fuzzy vertices in an intuitionisticmulti fuzzy graph is equal to twice the sum of the membership value of all intuitionisticmulti fuzzy edges .i.e., $\sum_{v \in V} d_{\mu}(v)=2 S_{\mu}(F)$. (ii)The sum of the degree of non membership value of all intuitionisticmulti fuzzy vertices in an intuitionisticmulti fuzzy graph is equal to twice the sum of the non membership value of all intuitionisticmulti fuzzy edges. i.e., $\sum_{v \in V} d_{\gamma}(v)=2 S_{\gamma}(F)$.
(iii) The sum of the degree of all intuitionisticmulti fuzzy vertices in an intuitionisticmulti fuzzy graph is equal to twice the sum of the all intuitionisticmulti fuzzy edges. i.e., $\sum_{v \in V} d(v)=2 S(F)$.

Proof:

(i) Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionistic multi fuzzy graph with respect to the set V and E . Since degree of an intuitionisticmulti fuzzy vertex denote sum of the membership values of all intuitionisticmulti fuzzy edges incident on it. Each intuitionistic multifuzzy edge of F is incident with two intuitionisticmulti fuzzy vertices. Hence membershipvalue of each intuitionisticmulti fuzzy edgecontributes two to the sum of degrees of intuitionisticmulti fuzzy vertices. Hence the sum of the degree of all intuitionisticmulti fuzzy vertices in an intuitionisticmulti fuzzy graph is equal to twice the sum of the membership value of all intuitionistic multifuzzy edges. i.e., $\sum_{v \in V} d_{\mu}(v)=2 S_{\mu}(F)$.
(ii) Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionisticmulti fuzzy graph with respect to the set V and E . Since degree of an intuitionisticmulti fuzzy vertex denote sum of the non membership values of all intuitionisticmulti fuzzy edges incident on it. Each intuitionisticmulti fuzzy edge of F is incident with two intuitionistic multi fuzzy vertices. Hence non membership value of each intuitionistic multi fuzzy edge contributes two to the sum of degrees of intuitionisticmulti fuzzy vertices. Hence the sum of the degree of all intuitionistic multi fuzzy vertices in an intuitionisticmulti fuzzy graph is equal to twice the sum of the nonmembership value of all intuitionisticmulti fuzzy edges. i.e.,

$$
\sum_{v \in V} d_{\gamma}(v)=2 S_{\gamma}(F)
$$

(iii) From (i) and (ii)

The sum of the degree of all intuitionistic multi fuzzy vertices in an intuitionisticmulti fuzzygraph is equal to twice the sum of the all intuitionisticmulti fuzzy edges.
i.e., $\sum_{v \in V} d(v)=2 S(F)$.

Theorem 1.35: Let $F=(A, B, f)$ be anintuitionisticmulti fuzzy graph with number of intuitionisticmulti fuzzy vertices n , all of whose intuitionistic multifuzzy vertices have degree $\mathrm{s}=\left(\mathrm{s}_{\mu}, \mathrm{s}_{\gamma}\right)$ or $\mathrm{t}=\left(\mathrm{t}_{\mu}, \mathrm{t}_{\gamma}\right)$. If F has pintuitionisticmulti fuzzy vertices of degree s and $(n-p)$ intuitionistic multifuzzy vertices of degree t, then $2 S(F)=p s+(n-p) t$.

Proof: Let V_{1} be the set of all intuitionisticmulti fuzzy vertices with degree s. Let V_{2} be the set of all intuitionisticmulti fuzzy vertices with degree t. Then $\sum_{v \in V} d(v)=\sum_{v \in V_{1}} d(v)+\sum_{v \in V_{2}} d(v)$ which implies that
$2 \mathrm{~S}(\mathrm{~F})=\left(\sum_{v \in V_{1}} d_{\mu}(v), \sum_{v \in V_{1}} d_{\gamma}(v)\right)+\left(\sum_{v \in V_{2}} d_{\mu}(v), \sum_{v \in V_{2}} d_{\gamma}(v)\right)$ which implies that $2 \mathrm{~S}(\mathrm{~F})=\mathrm{p}\left(\mathrm{s}_{\mu}, \mathrm{s}_{\gamma}\right)+(\mathrm{n}-\mathrm{p})\left(\mathrm{t}_{\mu}, \mathrm{t}_{\gamma}\right)$ which implies that $2 \mathrm{~S}(\mathrm{~F})=\mathrm{ps}+(\mathrm{n}-\mathrm{p}) \mathrm{t}$.

2. INTUITIONISTIC MULTI FUZZYREGULAR GRAPH:

Definition 2.1: An intuitionistic multi fuzzy graph $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is called intuitionistic multi fuzzy regular graph if $d(v)=(s, k)$ for all v in V, where $s=\left(s_{1}, s_{2}, \ldots, s_{n}\right)$ and $k=\left(k_{1}, k_{2}, \ldots . ., k_{n}\right)$.

Remark 2.2: F is an intuitionisticmultifuzzy (s, k)-regular graph if and only if $\delta(\mathrm{F})=\Delta(\mathrm{F})=(\mathrm{s}, \mathrm{k})$.

Example 2.3:

Here $d\left(v_{i}\right)=((0.6,0.8,1.0),(1.2,1.2,0.8))$ for all $\mathrm{i}, \delta(\mathrm{F})=((0.6,0.8,1.0),(1.2,1.2,0.8)), \Delta(\mathrm{F})=((0.6,0.8,1.0),(1.2$, $1.2,0.8)$). Clearly it is an intuitionisticmultifuzzy ($(\mathbf{0 . 6}, \mathbf{0 . 8}, \mathbf{1 . 0}),(\mathbf{1 . 2}, \mathbf{1 . 2 , 0 . 8})$)-regular graph.

Definition 2.4: An intuitionistic multi fuzzy graph $F=(A, B, f)$ is called an intuitionisticmultifuzzy complete graph if every pair of distinct intuitionisticmulti fuzzy vertices are fuzzy adjacent and

$$
\mu_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y) \text { and } \gamma_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y) \text { for all } x, y \text { in } \mathrm{V} \text { and for all } \mathrm{i} .
$$

Definition 2.5: An intuitionistic multi fuzzy graph $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is an intuitionisticmultifuzzy strong graph if $\mu_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y)$ and $\gamma_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y)$ for all e in E and for all i .

Example 2.6:

Fig.-2.2: An intuitionistic multi fuzzy strong graph

$$
\left(v_{1},(0.3,0.2,0.5),(0.4,0.2,0.3)\right)
$$

$\left(\mathrm{v}_{2},(0.2,0.4,0.4),(0.3,0.4,0.2)\right) \quad(c,(0.2,0.3,0.4),(0.3,0.5,0.5)) \quad\left(\mathrm{v}_{3},(0.3,0.4,0.5),(0.3,0.5,0.3)\right)$
Fig.-2.3: An intuitionisticmulti fuzzycomplete graph

Theorem 2.7: If F is an intuitionisticmulti fuzzy (s, k)-regular graph with p-intuitionisticmulti fuzzy vertices. Then $2 S(F)=(p s, p k)$.

Proof: Given that the intuitionisticmulti fuzzy graph is an intuitionisticmulti fuzzy (s , k)-regular graph, so $\mathrm{d}(\mathrm{v})=(\mathrm{s}, \mathrm{k})$ for all v in V. Here there are p-intuitionisticmulti fuzzy vertices, so $\sum_{v \in V} d(v)=\left(\sum_{v \in V} s, \sum_{v \in V} k\right)=(\mathrm{ps}$, pk) which implies that $2 \mathrm{~S}(\mathrm{~F})=(\mathrm{ps}, \mathrm{pk})$.

Theorem 2.8: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be intuitionisticmulti fuzzy complete graph and $\mathrm{A}=(\mathrm{s}, \mathrm{k})$ is constant function. Then F is an intuitionisticmulti fuzzy regular graph.

Proof: Since A is a constant function, so $\mathrm{A}(\mathrm{v})=(\mathrm{s}, \mathrm{k})$ (say) for all v in V and F is an intuitionisticmulti fuzzy complete graph, so $\mu_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y)$ and $\gamma_{B i}(e)=\underset{\substack{s_{i} \\ e \in f^{-1}(x, y)}}{ }(x, y)$ for all x and y in V , for all I and $\mathrm{x} \neq \mathrm{y}$. Therefore membership and non membership value of all intuitionisticmulti fuzzy edges are s, k respectively. Hence $d(v)=((p-1) s,(p-1) k)$ for all v in V .

Theorem 2.9: If $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is intuitionisticmulti fuzzy complete graph with p-intuitionisticmulti fuzzy vertices and A is constant function then $\mathrm{S}(\mathrm{F})=\left({ }^{\mathrm{P}} \mathrm{C}_{2} \mu_{A}(\mathrm{v}),{ }^{\mathrm{p}} \mathrm{C}_{2} \gamma_{\mathrm{A}}(\mathrm{v})\right)$, for all v in V .

Proof: Suppose F is an intuitionisticmulti fuzzy complete graph and $A=\left(\mu_{A}, \gamma_{A}\right)$ is a constant function.
Let $\mathrm{A}(\mathrm{v})=(\mathrm{s}, \mathrm{k})$ for all v in V and $\mathrm{d}(\mathrm{v})=((\mathrm{p}-1) \mathrm{s},(\mathrm{p}-1) \mathrm{k})$ for all v in V . Then $\sum_{v \in V} d(v)=\left(\sum_{v \in V}(p-1) s, \sum_{v \in V}(p-1) k\right)=(p(p-1) s, p(p-1) k)$ which implies that

$$
\begin{aligned}
2 S(F) & =(p(p-1) s, p(p-1) k) . \text { Hence } S(F)=\left({ }^{p} C_{2} s,{ }^{p} C_{2} k\right) . \\
\text { i.e., } S(F) & =\left({ }^{p} C_{2} \mu_{A}(v),{ }^{p} C_{2} \gamma_{A}(v)\right) \text { for all } v \text { in } V .
\end{aligned}
$$

Definition 2.10: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionistic multi fuzzy graph. The total degree of intuitionisticmulti fuzzy vertex vis defined by $\mathrm{d}_{\mathrm{T}}(\mathrm{v})=\left(\mathrm{d}_{\mathrm{T} \mu}(\mathrm{v}), \mathrm{d}_{\mathrm{T} \mathrm{\gamma}}(\mathrm{v})\right.$)
Where

$$
\begin{aligned}
& d_{T_{\mu}}(v)=\sum_{e \in f^{-1}(u, v)} \mu_{B}(e)+2 \sum_{e \in f^{-1}(v, v)} \mu_{B}(e)+\mu_{A}(v)=d_{\mu}(v)+\mu_{A}(v) \text { and } \\
& d_{T_{\gamma}}(v)=\sum_{e \in f^{-1}(u, v)} \gamma_{B}(e)+2 \sum_{e \in f^{-1}(v, v)} \gamma_{B}(e)+\gamma_{A}(v)=d_{\gamma}(v)+\gamma_{A}(v) \text { for all v in V. }
\end{aligned}
$$

Definition 2.11: An intuitionisticmulti fuzzy graph F is intuitionisticmulti fuzzy (s, k)-totally regular graph if each intuitionistic multi fuzzy vertex of F has the same total degree(s, k).

Example 2.12:

$\left(v_{2},(0.3,0.4,0.5),(0.3,0.2,0.3)\right) \quad(c,(0.3,0.3,0.3),(0.5,0.4,0.3)) \quad\left(v_{3,},(0.3,0.4,0.5),(0.3,0.2,0.3)\right)$
Fig.-2.4

Here $\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}\right)=((1.0,1.3,1.5),(1.5,1.2,1.2)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}\right)=((1.0,1.3,1.5),(1.5,1.2,1.2)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{3}\right)=((1.0,1.3,1.5),(1.5,1.2$, $1.2)$), it isintuitionisticmulti fuzzy ($(1.0,1.3,1.5),(1.5,1.2,1.2)$)-totally regular graph.

Example 2.13: Fig.2.1 it is an intuitionisticmulti fuzzy regular graph, but it is not an intuitionisticmulti fuzzy totally regular graph since $\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}\right)=\left((0.9,1.2,1.5),(1.5,1.4,0.9), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}\right)=((0.8,1.1,1.4),(1.5,1.4,1.0))\right.$ and $\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}\right) \neq \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}\right)$.

Example 2.14: Fig 2.4, it is an intuitionisticmulti fuzzy totally regular graph but it is not an intuitionisticmulti fuzzy regular graph since $\mathrm{d}\left(\mathrm{v}_{1}\right)=((0.6,0.8,1.0),(1.2,1.0,1.0)), \mathrm{d}\left(\mathrm{v}_{2}\right)=((0.7,0.9,1.0),(1.2,1.0,0.9))$ and $\mathrm{d}\left(\mathrm{v}_{1}\right) \neq \mathrm{d}\left(\mathrm{v}_{2}\right)$.

Example 2.15:

Fig.-2.5

Here $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=((0.6,0.8,1.0),(1.2,1.2,0.8))$ for all $\mathrm{i}, \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{\mathrm{i}}\right)=((0.9,1.2,1.5),(1.5,1.4,1.0))$ for all i. It is both intuitionisticmulti fuzzy regular graph and intuitionisticmulti fuzzy totally regular graph.

A. Marichamy ${ }^{* 1}$, K. Arjunan ${ }^{2}$ and K.L. Muruganantha Prasad ${ }^{3} /$ Notes Onintuitionisticmultifuzzy Graph /

IJMA- 10(12), Dec.-2019.

Example 2.16:

Fig.-2.6
Here $d\left(v_{1}\right)=((1.0,0.8,1.0),(1.2,1.2,0.8)), d\left(v_{2}\right)=((0.6,0.8,1.0),(1.2,1.1,0.7)), d\left(v_{3}\right)=((0.6,0.8,1.0),(1.2,1.1,0.7))$, $\mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}\right)=((1.3,1.2,1.5),(1.5,1.4,0.9)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}\right)=((0.8,1.1,1.4),(1.5,1.3,0.9)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{3}\right)=((0.9,1.2,1.5),(1.5,1.3,0.9))$, it is neither intuitionisticmulti fuzzy regular graph nor intuitionisticmulti fuzzy totally regular graph.

Theorem 2.17: Let $F=(A, B, f)$ be intuitionisticmulti fuzzy complete graph and $A=(s, k)$ is constant function. Then F is an intuitionisticmulti fuzzy totally regular graph.

Proof: By theorem 2.8, clearly F is intuitionisticmulti fuzzy regular graph. i.e., $d(v)=((p-1) s,(p-1) k)$ for all v in V. Also given A is constant function. i.e., $A(v)=(s, k)$ for all v in V. Then $d_{T}(v)=\left(d_{\mu}(v)+\mu_{A}(v), d_{\gamma}(v)+\gamma_{A}(v)\right)=((p-1) s$ $+\mathrm{s},(\mathrm{p}-1) \mathrm{k}+\mathrm{k})=(\mathrm{ps}, \mathrm{pk})$ for all v in V . Hence F is intuitionisticmulti fuzzy totally regular graph.

Theorem 2.18: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionisticmulti fuzzy regular graph. Then $\mathrm{H}=(\mathrm{C}, \mathrm{B}, \mathrm{f})$ is an intuitionisticmulti fuzzy totally regular graph if
$C(v)=\left(\sum_{i=1}^{n} \mu_{A}\left(v_{i}\right), \sum_{i=1}^{n} \gamma_{A}\left(v_{i}\right)\right) \leq 1$ for all v_{i} in V.
Proof: Assume that $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is an intuitionisticmulti fuzzy (s , k$)$ - regular graph. i.e., $\mathrm{d}\left(\mathrm{v}_{\mathrm{i}}\right)=(\mathrm{s}, \mathrm{k})$ for all v_{i} in V . Given $\mathrm{C}(\mathrm{v})=\left(\sum_{1=1}^{n} \mu_{A}\left(v_{i}\right), \sum_{1=1}^{n} \gamma_{A}\left(v_{i}\right)\right) \leq 1$ for all v_{i} in V . Then $\mathrm{C}(\mathrm{v})=\left(\mathrm{c}_{1}, \mathrm{C}_{2}\right)$ (say) for all v_{i} in V and $\mathrm{d}_{\mathrm{T}(\mathrm{H})}\left(\mathrm{v}_{\mathrm{i}}\right)=\left(\mathrm{d} \mu\left(\mathrm{v}_{\mathrm{i}}\right)\right.$ $\left.+\mu_{C}\left(v_{i}\right), d_{\gamma}\left(v_{i}\right)+\gamma_{C}\left(v_{i}\right)\right)=\left(s+c_{1}, k+c_{2}\right)$ for all v_{i} in V. Hence H is intuitionisticmulti fuzzy totally regular graph.

Theorem 2.19: Let $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ be an intuitionisticmulti fuzzy graph and A is a constant function (ie. $\mathrm{A}(\mathrm{v})=\left(\mathrm{c}_{1}, \mathrm{C}_{2}\right)$ (say) for all $v \in V$). Then F isintuitionisticmulti fuzzy (s, k)-regular graph if and only if F is intuitionisticmulti fuzzy ($\mathrm{s}+\mathrm{c}_{1}, \mathrm{k}+\mathrm{c}_{2}$)-totally regular graph.

Proof: Assume that F is an intuitionisticmulti fuzzy (s, k)-regular graph and $A(v)=\left(c_{1}, c_{2}\right)$ for all v in V, so $d(v)=(s, k)$ for all v in V. Then $d_{T}(v)=\left(d_{\mu}(v)+\mu_{A}(v), d_{\gamma}(v)+\gamma_{A}(v)\right)=\left(s+c_{1}, k+c_{2}\right)$ for all v in V. Hence F is intuitionistic multifuzzy ($s+c_{1}, k+c_{2}$)-totally regular graph. Conversely, Assume that F is intuitionisticmulti fuzzy $\left(s+c_{1}, k+c_{2}\right)$-totally regular graph. ie., $d_{T}(v)=\left(s+c_{1}, k+c_{2}\right)$ for all v in V which implies that $\left(d_{\mu}(v)+\mu_{A}(v), d_{\gamma}(v)+\gamma_{A}(v)\right)=\left(s+c_{1}, k+c_{2}\right)$ for all v in V implies that $\left(\mu_{A}(v), \gamma_{A}(v)\right)=\left(c_{1}, c_{2}\right)$ for all v in V implies that $d_{\mu}(v)+c_{1}=s+c_{1}$ and $d_{\gamma}(v)+c_{2}=k+c_{2}$ for all v in V. Therefore $d_{\mu}(v)=s$ and $d_{\gamma}(v)=k$ for all v in V. ie., $d(v)=(s, k)$ for all v in V. Hence F is intuitionisticmulti fuzzy (s, k)-regular graph.

A. Marichamy ${ }^{* 1}$, K. Arjunan ${ }^{2}$ and K.L. Muruganantha Prasad ${ }^{3}$ / Notes Onintuitionisticmultifuzzy Graph /

IJMA- 10(12), Dec.-2019.

Theorem2.20: If $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is bothintuitionisticmulti fuzzy regular graph and intuitionisticmulti fuzzy totally regular graph then A is a constant function.

Proof: Assume that F is a both intuitionisticmulti fuzzy regular graph and intuitionisticmulti fuzzy totally regular graph.

Suppose that A is not constant function. Then $\mu_{A}(u) \neq \mu_{A}(v)$ or $\gamma_{A}(u) \neq \gamma_{A}(v)$ for some u, v in V. Since F is an intuitionisticmulti fuzzy (s, k)-regular graph. Then $\mathrm{d}(\mathrm{u})=\mathrm{d}(\mathrm{v})=(\mathrm{s}, \mathrm{k})$. Then $\mathrm{d}_{\mathrm{T}}(\mathrm{u}) \neq \mathrm{d}_{\mathrm{T}}(\mathrm{v})$ which is a contradiction to our assumption. Hence A is a constant function.

Remark 2.21: Converse of the above theorem need not be true.

Fig.-2.7

Here $A\left(v_{i}\right)=((0.3,0.4,0.5),(0.3,0.2,0.2))$ for all $i, d\left(v_{1}\right)=((0.4,0.5,0.8),(0.6,0.8,0.5)), d\left(v_{2}\right)=((0.6,0.8,1.1)$, $(1.2,1.2,0.8)), \mathrm{d}\left(\mathrm{v}_{3}\right)=((0.6,0.9,1.1),(1.2,1.2,0.9)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{1}\right)=((0.7,0.9,1.3),(0.9,1.0,0.7)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{v}_{2}\right)=((0.9,1.2,1.6)$, $(1.5,1.4,1.0)), \mathrm{d}_{\mathrm{T}}\left(\mathrm{V}_{3}\right)=((0.9,1.3,1.6),(1.5,1.4,1.1))$. Hence F is neitherintuitionisticmulti fuzzy regular graph nor intuitionisticmulti fuzzy totally regular graph.

Theorem 2.22: If $F=(A, B, f)$ is an intuitionisticmulti fuzzy (c_{1}, c_{2})-totally regular graph with p-intuitionisticmulti fuzzy vertices. Then $2 S(F)+o(F)=p\left(c_{1}, c_{2}\right)$.

Proof: Assume that F is an intuitionisticmulti fuzzy ($\mathrm{c}_{1}, \mathrm{c}_{2}$)-totally regular graph with p-intuitionisticmulti fuzzy vertices.
Then $d_{T}(v)=\left(c_{1}, c_{2}\right)$ for all v in V implies that $\left(d_{\mu}(v)+\mu_{A}(v), d_{\gamma}(v)+\gamma_{A}(v)\right)=\left(c_{1}, c_{2}\right)$ for all v in V which implies that $\left(\sum d_{\mu}(v)+\sum \mu_{A}(v), \sum d_{\gamma}(v)+\sum \gamma_{A}(v)\right)=\left(\sum c_{1}, \sum c_{2}\right)$ for all v in V which implies that $\left(2 S_{\mu}(F)+o_{\mu}(F), 2 S_{\gamma}(F)+o_{\gamma}(F)\right)=\left(\mathrm{pc}_{1}, \mathrm{pc}_{2}\right)$ for all v in V implies that $\left(2 S_{\mu}(F), 2 S_{\gamma}(F)\right)+\left(o_{\mu}(F), o_{\gamma}(F)\right)=\left(\mathrm{pc}_{1}, \mathrm{pc}_{2}\right)$. Hence $2 S(F)+o(F)=p\left(c_{1}, c_{2}\right)$.

Theorem 2.23: If $\mathrm{F}=(\mathrm{A}, \mathrm{B}, \mathrm{f})$ is both intuitionisticmulti fuzzy $\mathrm{k}=(\mathrm{s}, \mathrm{k})$-regular graph and intuitionisticmulti fuzzy $\mathrm{c}=\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)$-totally regular graph with p -intuitionisticmulti fuzzy vertices. Then $\mathrm{o}(\mathrm{F})=\mathrm{pc}-\mathrm{pk}$.

Proof: Assume that F is intuitionisticmulti fuzzy k-regular graph with p-intuitionisticmulti fuzzy vertices. Then $2 \mathrm{~S}(\mathrm{~F})=\mathrm{pk}$. By theorem 2.22, 2S(F) $+\mathrm{o}(\mathrm{F})=\mathrm{pc}$ implies that $\mathrm{o}(\mathrm{F})=\mathrm{pc}-\mathrm{pk}$.

REFERENCES

1. Arjunan.K\&Subramani.C, "Notes on fuzzy graph", International Journal of Emerging Technology and Advanced Engineering, Vol.5, Iss. 3 (2015), 425-432.
2. Arjunan.K\& Subramani.C, "A study on I-fuzzy graph", International Journal of Mathematical Archive 6(4) (2015), 222-233.
3. Arjunan.K\&Subramani.C, "Notes on intuitionistic fuzzy graphs", Shanlax International Journal of Arts, Science and Humanities Vol. 5 (2017), 35-46.
4. Atanassov K.T, "Intuitionistic fuzzy sets", Fuzzy Sets and Systems, 2087-96 (1986).
5. Atanassov. K.T, "Intuitionistic fuzzy sets: Theory and applications, Studies in fuzziness and soft computing", Heidelberg, New York, Physica-Verl., (1999).
6. Mardeson.J.N and C.S.Peng, "Operation on Fuzzy graph", Information science 19 (1994), 159 -170.
7. NagoorGani, A. and BasheerAhamed.M., "Order and Size in Fuzzy Graphs", Bulletin of Pure and Applied Sciences, Vol 22E (No.1) (2003), 145-148.
8. NagoorGani.A and Radha.K., "On Regular Fuzzy Graphs", Journal of Physical sciences, Vol. 12 (2008), 33-40.
9. NagoorGani.A and ShajithaBegum.S, "Degree, Order and Size in Intuitionistic FuzzyGraphs", International Journal of Algorithms and mathematics, Vol. 3, 2010, 11 - 16.
10. Rosenfeld,A., "Fuzzy Graphs, In:L.A.Zadeh,K.S.Fu, M.Shimura, Eds., Fuzzy Sets and their Applications", Academic press (1975), 77-95.
11. Sabu Sebastian, T.V.Ramakrishnan, "Multi fuzzy sets", International Mathematical Forum, 5, no. 50 (2010), 2471-2476.
12. Shinoj T K, Sunil Jacob John, "Intuitionistic Fuzzy Multi set and its application in Medical Diagnosis", International Journal of Mathematical and Computational Sciences, WASET 6, 2012 , 34-38
13. L. A. Zadeh, "Fuzzy sets", Information and Control, 8 (1965) 338 -353.

Source of support: Nil, Conflict of interest: None Declared.
[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

