
 
 
1. INTRODUCTION 
 
The present paper takes into account a multidimensional extension of a well known puzzle involving lateral thinking 
[4, 7, 8]. 
 
Let P be a finite set of !"   points in ℝ"  , we need to visit all of them (at least once) with a polygonal path that has the 
minimum number of line segments connected at their end-points [3, 6]. We define as ℎ" #, % ≤ ℎ #, % ≤ ℎ' #, %    the 
length of the Minimum-link Covering Path [10]. 
 
In 1994, Evangelos Kranakis et al. [6] conjectured that, for any ! ≥ 3  ,  
!
!"# ∙ %

!"# ≤ 	ℎ %, * ≤ !
!"# ∙ %

!"# + ,(%!".)  , under two main additional constraints: all line-segments are axis-
parallel [2], and every point of the !  -dimensional grid cannot be visited twice. 
 
Thus, Kranakis’ expected value of the minimal covering path length should be greater (or equal) than any proved lower 
bound for the same minimization problem, and this proposition would automatically be confirmed if we remove the 
aformentioned additional constraints (e.g., for the generalized case it has been showed that  
ℎ " = 4, & = 3 ≤ 23 < +

+-- ∙ "
+--   [11, 13] and also ℎ " = 5, & = 3 ≤ 36 < +

+-- ∙ "
+--   [9]). 

 
2. CURRENT UPPER BOUND VS BEST THEORETICAL SOLUTION 
 
Let ! ≥ 3  , for any ! ≥ 3  , it has been proved [11] the lower bound 
 

 ℎ" #, % = '()(*∙ '--
*-'*).∙'-/

'-0 + 1  .                  (1) 

 
Given ! ≥ #-1 > 2  , the lower bound (1) improves Kranakis’ conjectured !

!-# ∙ %
!-# ≤ 	ℎ %, *   , confirming and 

extending (under the aforementioned constraint) his lower bound for axis-aligned spanning paths [1] to arbitrary paths 
with a minimum number of links as well. 
 

 



 
Since [12] 
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we see that 
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It is also trivial to check that, for any ! ≥ 3  , 
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It follows that, on average, as !   approaches infinity, the efficiency loss for each link is equal to !(#)   unvisited points, 
where 
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This is reasonable because, from [5], we know that !-1 + %

&' (,*
   is the maximum average number of “new” visited 

points for all the links of a connected path, since the highest theoretical number of points covered by ℎ   straight line 
segments (connected at their end-points) is ! ∙ #-% + %  . 
 
Let ! = 3  , we can improve (1) as [11] 

 ℎ" 3, % = '()*-'
,   .             (7) 

 
Thus, for any ! ≥ 3,   we have that 
 ℎ 3, $ > 3&-( + *

+ ∙ 3
&-+               (8) 

and Kranakis’ conjectured upper bound ℎ" # ≥ 3, ' ≥ 4	 = +
+-- ∙ #

+-- + 0(#+-2)  , for rectilinear walks with minimal 

link length visiting all the !"   points, implies the existence of a constant ! ≥ #
$   such that ℎ" = $

$-& ∙ (
$-& + * ∙ ($-+  . 

 
Moreover, we know [11, 14] that ℎ" 3, 4 = 41  , so ℎ 3, $ ≤ 42 ∙ 3 )-+ -1  . 
 
Therefore, 
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and the efficiency loss for each link can be reduced to only 
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"#   as given by (6). 

 
Theorem 2.1: For any arbitrarily large !  -dimensional grid, the links of the best covering path joins (on average) less 
than !-1   new points, for any (" ≥ 3  , ! ≥ 2  ) except (3, 2)   . 
 
Proof:  Let ! ∈ ℕ   and ! ∈ ℕ   be such that ! ≥ 3   and ! ≥ 3  , 
the only solution of 

!"
#$ !,&

≥ (-1   would imply that ! = 3   and ! = 3  , since  
!"

#"$"%∙ #-% %-#%$(∙#-)
#-* 	,-

≥ /-1   ⇒ "
# ∙ %-2

#-%# + 4 ∙ %-5 ≤ 0  , but we already know [11] that !"
#$ !,!

= '(
)* < 2  . 

Thus, we have proved that, ∀(# ≥ 3, ' ≥ 2) − (3, 2)   , the links of the best covering path joins (on average) less than 
!-1   new points [5].               £ 
 

Finally, from lim$→&
'(

)* ',$
= --1  , we get the asymptotic formula for !   arbitrarily large: 

 !-1 ∙ ℎ !, ' > !) ⟹ ℎ !, ' > +,
+--	  .         (10) 

and this is coherent with Kranakis’ conjecture too. 
 

 



 
3. CONCLUSION 
 
Since any upper bound for the link length of a rectilinear walk cannot fall below than the corresponding lower bound 
(for every pair (" ≥ 3, & ≥ 4  )), especially considering the generalized (arbitrary) covering paths taken into account in 
[11, 12], Kranakis’ conjectured upper bound can be rewritten as ℎ ", $ ≤ &

&'( ∙ "
&'( + + ∙ "&',  , where ! ≥ #

$  . On the 

contrary, the upper bound proved by Bereg et al. [1] of	 ""#$ ∙ 3
"#$ + (

) ∙ 3
"-+,   definitely holds for every finite set of 3"   

points in ℝ"  . 
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