International Journal of Mathematical Archive-10(8), 2019, 25-35 MAAvailable online through www.ijma.info ISSN 2229 - 5046

A STUDY ON EUSTRESS AND ITS EFFECTS

KAILASH KUMAR, V. RAVI*, LALIT KUMAR, ANOUSHKA KHANNA, RISHU JAIN AND SHIVANI VERMA

Department of Statistics, Lady Shri Ram College for Women (University of Delhi), Lajpat Nagar – IV, New Delhi – 110 024,

(Received On: 18-07-19; Revised & Accepted On: 12-08-19)

ABSTRACT

A life without stress is a life without challenges, simulation, and change. Today, the positive side of stress tends to be overshadowed by the concern of the negative. This analytical research paper tries to focus on the positive side of stress, known as Eustress. Eustress is a positive psychological response to a stressor. The research for the same used quantitative research method. Questionnaires were administered to people from varying demographics to study the factors affecting our stress levels and their effects on our daily activities following which factor analysis, KMO and Bartlett's tests were used for statistical data analysis along with stepwise regression to get the final models. Results revealed that stress does play a constructive role in our lives improving our competence, speed, productivity, and adroitness.

Keywords: Stress, Eustress, Efficiency, Competence, Productivity, Adroitness.

INTRODUCTION

Stress, the most characteristic feature of modern society, is actually a combination of psychological, physiological, and behavioural reactions that people have in response to events that threaten or challenge them. These responses are triggered by the Autonomic Nervous System (ANS), which influence internal organs and regulating heart rate, respiratory rate, blood vessel, galvanic skin response, and so on. It has received growing interest from industries and academia. Numerous studies suggest that the concept is being studied extensively but in a negative sense. It is generally being referred to as the synonym of 'distress', a state of ill-being in which happiness and comfort have been surrendered. As a consequence, the concept of positive stress (Eustress) is insufficiently explored.

According to Nelson and Simmons *et.al* [5], the analysis and development of Eustress are incomplete. There are 83,779 references devoted to distress and only 51 devoted to Eustress as per the PubMed database. Due to this same reasons, there is variation among the thoughts of the scientists. The concept of Eustress was introduced by Hans Selye [7-8], distinguishing it from the negative stress. He described it as "healthy, positive, constructive results of stressful events and stress response". Lazarus [2] proposed a second approach to understanding eustress in his stress model where he described it as 'positive cognitive response to a stressor, which associated with positive feelings and a healthy physical state'. While in some models, eustress is included only as a lack of negative effects. Milsum[4] considers eustress as an ideal (negative emotions) can occur in response to the condition of the well-functioning homeostatic system. Edwards and Cooper [1] identified eustress as a positive discrepancy between perception and wishes.

These approaches show that Eustress is not really defined by the type of the stressor but actually by how a person perceives it. It is linked with well-being and positive attitudes and is said to improve our performance. Scientifically, Positive stress is said to increase an organism's adaptive capacity. Repeated exposure makes our body develop both a physical and a psychological sense of control. Our body does this by producing extra interleukins, a chemical that helps regulate the immune system and provides a temporary defensive mechanism. Stress also increases brain power by increasing the production of brain chemicals which strengthens the connections between neurons in our brain which boosts memory and learning scores.

Corresponding Author: V. Ravi*, Department of Statistics, Lady Shri Ram College for Women (University of Delhi), Lajpat Nagar – IV, New Delhi – 110 024.

The purpose of our paper is to address the factors affecting our stress levels and study their positive contribution to the improvement and enhancement of our performance.

Research Statement

The research aimed to contradict the notion of distress being a synonym to stress. We aim to study the positive effects of stress.

Research Design

The quantitative research method is used for the research purpose. We employed the method of primary data collection by formulating a questionnaire with 40 questions.

Variables and Measures

We got a response from 1333 participants who were required to complete the questionnaire. It consisted of sections like demographic information, social stress, family stress, financial stress, and emotional stress and positive effects of stress. Categorical questions were used in the demographic section. The ordinal scale was used to measure demographics and Bipolar Likert scale for other research questions.

Empirical Results

The results of this research have been evaluated by using various inferential statistical techniques. Moreover, a graphical representation of some imperative results has been displayed for a clearer understanding.

Methods and techniques

- Kaiser-Meyer-Olkin (KMO) Test for sampling adequacy
- Bartlett's test of sphericity tests
- Factor analysis.
- Stepwise regression

Analysis

A questionnaire consisting of questions based on 10 possible positive effects and different personal, emotional, social and financial factors was designed and data for 1333 participants to study the following positive effects has been collected:

- 1. Efficiency
- 2. Ability to meet a deadline
- 3. Detachment from social media
- 4. Creativity
- 5. Productivity
- 6. Mental strength on repeated exposure to stress
- 7. Spontaneity
- 8. Speed of completion of a task
- 9. Problem-solving approach
- 10. Sense of responsibility

(We have useed SPSS software for analysing the data.)

We run a factor analysis test for these 10 effects.

Setting up the null hypothesis,

 H_0 : Correlation matrix of the positive effects is an identity matrix, i.e. the positive effects under study are unrelated.

unrelated. **H**₁: Correlation matrix of the positive effects is not an identity matrix, i.e. at least two of the positive effects under study are related.

For Bartlett's test of sphericity, the p-value is 0.000 indicating that the **null hypothesis is rejected** at 5% level of significance, i.e. factor analysis may be useful for our data. Also, **the Kaiser-Meyer-Olkin Measure of Sampling** Adequacy is 0.845 indicating that factor analysis is beneficial for data.

KMO and Bartlett's Test

Kaiser-Meyer-Olkin Me	easure of Sampling Adequacy.	.845
Bartlett's Test of	Approx. Chi-Square	957.981
Sphericity	df	45
	Siq.	.000

Total Variance Explained

		Initial Eigenvalu	ies Extraction Sums of Squared Loadings Rotation Sums of Squared Loadings			d Loadings						
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %			
1	3.935	39.355	39.355	3.935	39.355	39.355	3.149	31.491	31.491			
2	1.180	11.801	51.156	1.180	11.801	51.156	1.966	19.665	51.156			
3	.927	9.266	60.421									
4	.843	8.427	68.848									
5	.771	7.713	76.561									
6	.678	6.783	83.344									
7	.498	4.978	88.322									
8	.462	4.620	92.942									
9	.387	3.874	96.816									
10	.318	3.184	100.000									

Extraction Method: Principal Component Analysis.

For 2 components the eigenvalue is greater than 1, hence the factors (positive effects) are divided into 2 components. However, it is observed that in the process of factor analysis, only 51.156% of data could be retained.

The 2 components whose eigenvalue is greater than 1 can be seen in the scree plot above. The 2 components obtained have been named as:

- 1. Adroitness (Y_1)
- 2. Competence (Y_2)

The rotated component matrix shows the representation of each of the positive effects in the two components. The first component has been explained the best (82.6%) by problem-solving ability and the second one has been explained the most (66.1%) by detachment from social media.

Similarly, data for 1333 participants on the following 19 factors causing stress was collected:

- 1. Family problems
- 2. Fulfilment of all wishes by parents/partner
- The imposition of expectations by family/friends 3.
- 4. Dissatisfaction in relationship
- 5. Sense of insecurity and loneliness
- 6. The need for approval from society for every decision
- 7. Dressing as per fashion and not comfort
- 8. Outing with friends
- 9. Fear of social gatherings
- 10. Physical appearance
- 11. Dislike towards financial dependence on family/friends
- 12. Inability to afford things owned by friends
- 13. Making a living in an expensive city
- 14. Uncertainty of survival due to changes in the economy
- 15. Overthinking about situations
- 16. Fear of risk
- 17. Falling in trouble repeatedly
- 18. The pressure to maintain performance standards
- 19. Clarity about future choices

A factor analysis on the above factors is run.

Setting up the null hypothesis,

- H_0 : Correlation matrix of the factors causing stress is an identity matrix, i.e. the factors causing stress under study are unrelated
- H₁:Correlation matrix of the factors causing stress is not an identity matrix, i.e. at least two of the factors causing stress under study are related

Rotated Component Matrix^a

Postive Effect Number

	Comp	onent
	1	2
l work more efficiently when put under pressure	.429	.524
l only complete a task when I am given a deadline	.186	.569
l detach myself from social media handles under work pressure	056	.661
My creativity increases due to thinking too much	.104	.580
Stress boosts my productivity	.509	.496
Repeated exposure to stress has made me stronger	.724	.309
My spontaneity has increased in long term on being exposed to a lot of stress	.569	.421
My speed increases when burdened with work	.708	.275
My approach to solving a particular problem has become better after dealing with stressful situations	.826	.001
Exposure to stress has made me mindful of my responsibilities	.790	026

Extraction Method: Principal Component Analysis. Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 3 iterations.

Scree Plot for Positive Effects of Stress

кмо	and	Bartlett's	Test
		Durtiett 3	

Kaiser-Meyer-Olkin Me	asure of Sampling Adequacy.	.757			
Bartlett's Test of	1011.757				
Sphericity	Sphericity df				
	Sig.	.000			

For Bartlett's test of sphericity, the p-value is 0.000 indicating that **the null hypothesis is rejected** at 5% level of significance, i.e. factor analysis may be useful for our data. Also, **the Kaiser-Meyer-Olkin Measure of** Sampling Adequacy is 0.757 indicating that factor analysis is beneficial for data.

				l otal vari	ance Explained				
		Initial Eigenvalu	les	Extraction	n Sums of Square	ed Loadings	Rotation	n Sums of Square	d Loadings
Component	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %	Total	% of Variance	Cumulative %
1	3.547	18.669	18.669	3.547	18.669	18.669	2.416	12.716	12.716
2	1.868	9.834	28.503	1.868	9.834	28.503	2.013	10.592	23.308
3	1.557	8.195	36.698	1.557	8.195	36.698	1.981	10.426	33.734
4	1.348	7.094	43.792	1.348	7.094	43.792	1.535	8.080	41.813
5	1.161	6.111	49.903	1.161	6.111	49.903	1.276	6.718	48.531
6	1.004	5.286	55.189	1.004	5.286	55.189	1.265	6.658	55.189
7	.918	4.831	60.020						
8	.860	4.529	64.548						
9	.811	4.266	68.814						
10	.776	4.082	72.896						
11	.741	3.900	76.797						
12	.707	3.721	80.518						
13	.668	3.514	84.032						
14	.598	3.145	87.177						
15	.577	3.039	90.216						
16	.537	2.826	93.043						
17	.470	2.473	95.515						
18	.448	2.360	97.876						
19	.404	2.124	100.000						

Extraction Method: Principal Component Analysis.

From the table above, it is observed that in the process of factor analysis, the components could explain 55.189% of the variance in the data. Eigen-value for 6 components is greater than 1 so 6 components have been obtained from the process.

Data is divided into 6 components:

- 1. Overthinking and validation seeking (X_1)
- 2. Financial endurance (X_2)
- 3. Insecurity and self-consciousness (X₃)
- 4. Financial and future expectations (X_4)
- 5. Expectations and problems in a relationship (X_5)
- 6. Social anxiety (X_6)

		Component							
	1	2	3	4	5	6			
l have problems in my family	.226	.016	.785	002	082	.128			
My parents/partner fulfil all my wishes	.165	126	678	.061	098	.083			
My family/friends impose their expectations on me	.028	.198	.462	.400	085	.052			
l am not satisfied with my relations	.116	.136	.710	.167	.148	069			
l always feel the need to be with someone	.350	.054	.088	.518	145	051			
l need approval of people around me to be sure of my decisions	.542	.186	041	.325	.064	154			
l dress as per the latest fashion trends and not according to my own comfort	035	038	.036	.788	.067	.062			
l go out with friends very often	.095	009	135	.184	789	.102			
Social gatherings scare me	.271	.206	058	.216	.628	.077			
l get really affected by my height/weight/physical appearance	.472	.099	.131	.320	.235	107			
l don't like depending on my parents/partner for money	048	.343	.154	132	042	.494			
l can't afford to spend money on things that my friends own/buy	.099	.749	.121	001	.098	072			
The city that I live in is too expensive for my earnings	.056	.765	.130	.156	.110	.102			
Price hike and regular changes in the economy worry me about my survival	.229	.710	.077	034	035	.134			
l tend to overthink about every situation	.789	073	.181	157	.051	043			
l am averse to taking risks due to fear of negative consequences	.670	.171	.040	.019	.008	079			
l am more likely to fall in trouble with people around me	.604	.107	068	.103	018	.154			
l am doing well in my workplace/ studies and hence there is a constant pressure to maintain my standards	.234	160	.086	.297	.279	.593			
l am clear about my future choices	206	.088	177	022	156	.718			

Rotated Component Matrix^a

Extraction Method: Principal Component Analysis.

Rotation Method: Varimax with Kaiser Normalization.

a. Rotation converged in 7 iterations.

The rotated component matrix shows the representation of each of the factors affecting stress in the 6 components formed. For example, Component 1 (i.e. Overthinking and validation seeking) is represented best (78.9%) by the tendency of overthinking about every situation.

Demographics taken under study were:

Gender	1.	Male
	2.	Female
Age Groups	1.	15 – 19
	2.	20 – 25
	3.	25 – 35
	4.	35 – 45
	5.	Above 45
Family Type	1.	Joint
	2.	Nuclear
	3.	Single Parent
Relationship Status	1.	Single
	2.	Dating
	3.	Married
Academic Status	1.	High School
	2.	Graduation
	3.	Post-Graduation
	4.	Passed out
Working Status	1.	Working
	2.	Not working

Stepwise regression for adroitness against all the demographics and the 6 components formed above is run.

Model	Variables Entered	Variables Removed	Method
1	Financial and Future expectations		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).
2	25-35		Stepwise (Criteria: Probability-of- F-to-enter <= , 050, Probability-of- F-to-remove >= ,100).

Variables Entered/Removed^a

a. Dependent Variable: Adroitness

The only significant factor in the model turns out to be Financial and future expectations. All the demographics turn out to be insignificant except age group 25-35 years for which the reference variable was assumed to be the age group above 45 years.

Model Summary^c

					Change Statistics					
			Adjusted R	Std. Error of	R Square					
Model	R	R Square	Square	the Estimate	Change	F Change	df1	df2	Sig. F Change	
1	.183ª	.034	.031	.98453	.034	11.514	1	331	.001	
2	.230 ^b	.053	.047	.97618	.019	6.691	1	330	.010	

a. Predictors: (Constant), Financial and future expectations

b. Predictors: (Constant), Financial and future expectations, 25-35

c. Dependent Variable: Adroitness

From the stepwise regression performed, two models have been formed, the first one including only Financial and future expectations and the second one having both age and financial and future expectations.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	11.160	1	11.160	11.514	.001 ^b
	Residual	320.840	331	.969		
	Total	332.000	332			
2	Regression	17.536	2	8.768	9.201	.000°
	Residual	314.464	330	.953		
	Total	332.000	332			

ANOVA^a

a. Dependent Variable: Adroitness

b. Predictors: (Constant), Financial and future expectations

c. Predictors: (Constant), Financial and future expectations, 25-35

Setting up the null hypothesis for testing the validity of the second regression: H_0 :All the regression coefficients are zero, i.e. regression is invalid H_1 :At least one of the regression coefficients is non-zero, i.e. regression is valid

The p-value for the F-test for testing the validity of regression is 0.000 which are less than 0.05, hence the **null hypothesis is rejected at 5% level of significance, i.e. regression is valid**

	Controllis										
		Unstandardized Coefficients		Standardized Coefficients			Correlations			Collinearity Statistics	
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	-6.523E-017	.054		.000	1.000					
	Financial and future expectations	.183	.054	.183	3.393	.001	.183	.183	.183	1.000	1.000
2	(Constant)	.063	.059		1.068	.286					
	Financial and future expectations	.201	.054	.201	3.723	.000	.183	.201	.199	.984	1.016
	25-35	373	.144	140	-2.587	.010	114	141	139	.984	1.016

a. Dependent Variable: Adroitness

Setting up the null hypothesis for t-test to test the significance of each regression coefficient in the second model: H_0 : The regression coefficient is zero, i.e. the regress or is insignificant in the model H_1 : The regression coefficient is non-zero, i.e. the regress or is significant in the model

From the table above, we observe that the null hypothesis may be accepted for all the regressors except for regress or representing financial and future expectations and the age group 25-35 years. Hence, the model turns out to be

$Y_1 = -0.373 A_3 + 0.201 X_6$

where Y_1 represents adroitness, A_3 represents age group 25-35 years and takes value 1 if the age group is 25-35 years else 0, X_6 represents financial and future expectations.

In the normal PP Plot drawn for the sample values above, it is observed that the sample points lie near the straight line implying that it can be assumed that the sample has been drawn from a normal population.

Then, on running a stepwise regression for competence against all the demographics and all the 6 components formed from factors causing stress, the significant factors in the model are overthinking and validation seeking, financial endurance and insecurity and self-consciousness. All the demographics are insignificant except age group 15-19 years for which the reference variable was assumed to be the age group above 45 years as shown below

	Variables	Variables	Mathed
Model	Entered	Removed	Metrioa
1	Insecurity and self- consciousnes s		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).
2	Overthinking and validation seeking		Stepwise (Criteria: Probability-of- F-to-enter <= . 050, Probability-of- F-to-remove >= .100).
3	Financial Endurance		Stepwise (Criteria: Probability-of- F-to-enter <= 050, Probability-of- F-to-remove >= .100).
4	15-19		Stepwise (Criteria: Probability-of- F-to-enter <= 050, Probability-of- F-to-remove >= .100).

Variables Entered/Removed^a

a. Dependent Variable: Competence

Model Summary^e

					Change Statistics					
Model	R	R Square	Adjusted R Square	Std. Error of the Estimate	R Square Change	F Change	df1	df2	Sig. F Change	
1	.251 ^a	.063	.060	.96952	.063	22.201	1	331	.000	
2	.302 ^b	.091	.086	.95616	.028	10.315	1	330	.001	
3	.329°	.108	.100	.94861	.017	6.276	1	329	.013	
4	.356 ^d	.127	.116	.94019	.018	6.917	1	328	.009	

a. Predictors: (Constant), Insecurity and self-consciousness

b. Predictors: (Constant), Insecurity ans self-consciousness, Overthinking and validation seeking

c. Predictors: (Constant), Insecurity ans self-consciousness, Overthinking and validation seeking, Financial Endurance

d. Predictors: (Constant), Insecurity ans self-consciousness, Overthinking and validation seeking, Financial Endurance, 15-19

e. Dependent Variable: Competence

From the stepwise regression performed, four models have been formed.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	20.868	1	20.868	22.201	.000 ^b
	Residual	311.132	331	.940		
	Total	332.000	332			
2	Regression	30.299	2	15.149	16.570	.000°
	Residual	301.701	330	.914		
	Total	332.000	332			
3	Regression	35.946	3	11.982	13.316	.000 ^d
	Residual	296.054	329	.900		
	Total	332.000	332			
4	Regression	42.061	4	10.515	11.896	.000 ^e
	Residual	289.939	328	.884		
	Total	332.000	332			

ANOVA^a

a. Dependent Variable: Competence

b. Predictors: (Constant), Insecurity and self-consciousness

 c. Predictors: (Constant), Insecurity and self-consciousness, Overthinking and validation seeking

- d. Predictors: (Constant), Insecurity and self-consciousness, Overthinking and validation seeking, Financial Endurance
- e. Predictors: (Constant), Insecurity and self-consciousness, Overthinking and validation seeking, Financial Endurance, 15-19

Setting up the null hypothesis for testing the validity of regression model 4:

H₀:All the regression coefficients are zero, i.e. regression is invalid

H1:At least one of the regression coefficients is non-zero, i.e. regression is valid

The p-value for the F-test for testing the validity of regression is 0.000 which is less than 0.05, hence **the hypothesis is** rejected at 5% level of significance, i.e. regression is valid

Coefficients ^a											
	Unstandardized Coefficients		Standardized Coefficients	andardized Coefficients		Correlations		Collinearity Statistics			
Model		В	Std. Error	Beta	t	Sig.	Zero-order	Partial	Part	Tolerance	VIF
1	(Constant)	-2.202E-017	.053		.000	1.000					
	Financial Endurance	.251	.053	.251	4.712	.000	.251	.251	.251	1.000	1.000
2	(Constant)	-7.639E-018	.052		.000	1.000					
	Financial Endurance	.251	.052	.251	4.778	.000	.251	.254	.251	1.000	1.000
	Overthinking and validation seeking	.169	.052	.169	3.212	.001	.169	.174	.169	1.000	1.000
3	(Constant)	6.863E-018	.052		.000	1.000					
	Financial Endurance	.251	.052	.251	4.816	.000	.251	.257	.251	1.000	1.000
	Overthinking and validation seeking	.169	.052	.169	3.237	.001	.169	.176	.169	1.000	1.000
	Insecurity and self- consciousness	.130	.052	.130	2.505	.013	.130	.137	.130	1.000	1.000
4	(Constant)	101	.064		-1.571	.117					
	Financial Endurance	.256	.052	.256	4.957	.000	.251	.264	.256	.998	1.002
	Overthinking and validation seeking	.154	.052	.154	2.963	.003	.169	.161	.153	.988	1.012
	Insecurity and self- consciousness	.145	.052	.145	2.791	.006	.130	.152	.144	.989	1.011
	15-19	.287	.109	.137	2.630	.009	.129	.144	.136	.976	1.025

a. Dependent Variable: Competence

Setting up the null hypothesis for t-test to test the significance of each regression coefficient in the model H_0 : The regression coefficient is zero, i.e. the regressor is insignificant in the model H_1 : The regression coefficient is non-zero, i.e. the regressor is significant in the model

From the table above, we observe that the null hypothesis may be accepted for all the regressors except for regressors representing overthinking and validation seeking, Financial endurance and Insecurity and self-consciousness.

Hence, the model turns out to be $Y_2 = 0.287A_1 + 0.154X_1 + 0.145X_1 + 0.256X_4$

where Y_2 represents competence, A_1 represents age group 15-19 years and takes value 1 if age group is 15-19 years else 0, X_1 represents overthinking and validation seeking, X_2 represents financial endurance and X_4 represents insecurity and self-consciousness.

In the normal PP Plot drawn for the sample values above, it is observed that the sample points lie near the straight line implying that it can be assumed that the sample has been drawn from a normal population.

Limitations

- The sample is limited to Delhi NCR, whereas a more diverse data is required for such a study.
- The sample of the study wasn't as vast to represent a large population.
- A self-report survey is considered as ground truth in our work but it might consist of personal bias and be inconsistent.
- There has been some loss of information after applying factor analysis. We could retain 51.16% and 55.19% information of both positive effects and factors affecting stress respectively.

DISCUSSION AND CONCLUSION

Although most researchers attend to problems of distress, a few have studied the protective role stress plays in our lives. Therefore in our study, we aimed to explore the phenomenon by using various analytical techniques. We see from our model that stress actually has a positive, constructive role in our lives that helps us survive in difficult conditions.

Intuitively the 19 questions were divided into 4 aspects: family stress, social stress, financial stress, and emotional stress. Factor analysis was run on these 4 aspects separately as a result of which 7 factors were obtained. However, on realizing that the assumption of the above 4 aspects being uncorrelated was wrong as every factor turned out to be insignificant in the model, factor analysis was run on all the 19 questions and 6 components were obtained as a result. The fact that this assumption was wrong could be verified only once responses were collected. The names and divisions are shown in table 2.

The same process was carried out for the positive effects of stress. The factor analysis amalgamated the 10 effects and 2 components (adroitness and competence) were obtained as their result.

We took various demographics like relationship status, family type, gender, academic status, and working status in account for our model. But something to ponder upon here is that none of them turned out to be significant. This only shows us how unavoidable stress has become today. It has become a major feature in our daily lives as well as vocabularies.

Our models depict that stress does play a positive role in our lives. From the first model, we see that the adroitness of a person seems to get affected only by the future and financial expectations (which is further formed of different factors). This is significant for people from the age group of 25-35 years. This means adroitness, meaning skilful in body and mind is dependent on how clear we are about our future choices, our finances, and performances.

Also, from the second model, we see that the competence of a person is affected positively by overthinking and validation seeking, financial endurance and insecurity and self-consciousness. The result is significant for people from the age group of 15-19 years. We see that moderate levels of over thinking and caring about how other people are doing, worrying about our finances and survival can actually push us to perform more efficiently and productively.

In the lights of our results, we see that stress actually is a two-sided coin despite people believing otherwise. We need and seek stress in our lives. The data collected from 1333 people show us that stress positively affects our efficiency and productivity.

REFERENCES

- 1. Edwards, J.R. and C.L. Cooper, The impacts of positive psychological states on physical health: a review and theoretical framework, Social Science and Medicine, 27 (1988), 1447-1459.
- 2. Lazarus, R.S., From psychological stress to the emotions: A history of changing outlooks, Annual Review of Psychology, 44 (1993), 1-22.
- 3. Levine, S., Stress: a historical perspective, Techniques in the Behavioral and Neural Sciences 15 (2005), 3-23.
- 4. Milsum, J.H., A model of the eustress system for health/illness, Behavioral Science, 30(4) (1985), 179-186.
- 5. Nelson, D.L. and B.L. Simmons, Eustress: an elusive construct, an engaging pursuit, Research in Occupational Stress and Well-being, Vol. 3 (2003), 265-322.
- 6. Parker, K.J. and D. Maestripieri, Identifying key features of early stressful experiences that produce stress vulnerability and resilience in primates, Neurosci. Biobehav. Rev., 35 (2011), 1466-1483.
- 7. Selye, H., The physiology and pathology of exposure to stress, a treatise based on the concepts of the general adaptation syndrome and the diseases of adaptation, Ind Med Gaz., Sep; 87(9) (1952), 431.
- 8. Selye, H., The stress syndrome. The American Journal of Nursing, 65(3) (1965), 97–99.
- 9. Tajularipin, S., H. Aminuddin, S. Vizata and A. Saifuddin, The level of stress among students in urban and rural secondary schools in malaysia. European Journal of Social Sciences, 10(2) (2009), 43-65.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]