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ABSTRACT 
In this chapter, we study the combined influence of Hall effects and radiation absorption on unsteady convective heat 
transfer flow of a viscous electrically conducting fluid through a porous medium past a stretching sheet in the presence 
of non-uniform heat source. The equations governing the flow of heat transfer have been solved by Galerkin Finite 
Element Analysis with three nodded line segments. The velocity, temperature have been analysed for different values of 
G,M, m, N, γ, A1, B1, Sc, Ec  and Q1. The rate of heat transfer on the plate has been evaluated numerically for different 
variations. 
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1. INTRODUCTION 
 
Mixed convection boundary layer flow of a binary mixture of fluids with heat transfer past a continuous moving 
surface has attracted considerable attention in the past several decades, due to its many important engineering and 
industrial applications (22, 34). In nature such flows are encountered in the oceans, lakes, solar ponds, and the 
atmosphere. They are also responsible for the geophysics of planets. In industry, a familiar example of a binary mixture 
of fluids is an emulsion, which is the dispersion of one fluid within another fluid. Typical emulsions are oil dispersed 
within water or water within oil. Another example where the mixture of fluids plays an important role is in multigrade 
oils. Polymeric-type fluids are added to the base oil so as to enhance the lubrication properties of mineral oil. 
Moreover, the mixed convection boundary layer problem is also encountered in aerodynamic extrusion of plastic and 
rubber sheets, cooling of an infinite metallic plate in a cooling path, which may be an electrolyte, crystal growing, the 
boundary layer along a liquid film in condensation processes, and a polymer sheet or filament extruded continuously 
from a die or along thread traveling between a feed roll and a windup roll are examples of practical applications of 
continuous moving surfaces. 
 
Several studies on boundary layer flow coupled with heat transfer have already appeared in the literature (11, 12, 27, 
28, 30). Similarly, the Soret or thermo-diffusion effect is the contribution to the mass fluxes due to temperature 
gradients. Moreover, when chemical species are introduced at a surface in the fluid domain with different (lower) 
density than the surrounding fluid, both Soret (thermo-diffusion) and Dufour (diffusion-thermal) effects can be 
influential. The effect of diffusion-thermal and thermal diffusion of heat has been developed from the kinetic theory of 
gases by Chapman and Cowling (13) and Hirshfelder et al. (21) they explained the phenomena and derived the 
necessary formulas to calculate the thermal diffusion coefficient and the thermal-diffusion factor for monatomic gases 
or for polyatomic gas mixtures. Kafoussias and Williams (25) studied the thermal diffusion and the diffusion-thermal 
effects on mixed free-forced convective steady laminar boundary layer flow, over a vertical flat plate, with temperature 
dependent viscosity. Alam and Rahman (4) studied the Dufour and Soret effects on mixed convection flow past a 
vertical porous flat plate with variable suction. Anghel et al. (7) investigated the Dufour and Soret effects on free 
convection boundary layer over a vertical surface embedded in a porous medium. Postelnicu (31) studied the influence 
of a magnetic field on heat transfer by natural convection from a vertical surface embedded in an electrically  
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conducting fluid-saturated porous medium considering Soret and Dufour effects with constant surface temperature and 
concentration. Alam et al. (6) presented an analysis of the Soret and Dufour effects on free convective heat transfer 
flow in a porous medium with time-dependent temperature and concentration. Beg et al. (9) investigated numerically 
the free convection magnetohydrodynamic heat transfer from a stretching surface to a saturated porous medium with 
Soret and Dufour effects. Various other aspects dealing with the Soret and Dufour effects on steady boundary layer 
flow with combined heat transfer problems have been reported (2, 10, 38, 35, 1, 4, 20, 18). 
 
Hall effect on MHD boundary layer flow over a continues semi-infinite flat plate moving with a uniform velocity in its 
own plane in an incompressible viscous and electrically conducting fluid in the presence of a uniform transverse 
magnetic field were investigated by Watanabe and Pop [41]. Abdallah [1] has analytic solution of heat and mass 
transfer over a permeable stretching plate affected by chemical reaction, internal heating, durous-soret effect and hall 
effect. The effect of Hall current on the study MHD flow of an electrically conducting, incompressible Burger’s fluid 
between two parallel electrically insulating infinite plane was studied by Rana et. al. [32]. 
 
In all the above studies the physical situation is related to the process of uniform stretching sheet. For the development 
of more physically realistic characterization of the flow configuration it is very useful to introduce unsteadiness into the 
flow, heat transfer problems. The working fluid heat generation or absorption effects are very crucial in monitoring the 
heat transfer in the regions, heat removal from nuclear fuel debris, underground disposal of radioactive waste material, 
storage of food stuffs, exothermic chemical reactions and dissociating fluids in packed-bed reactors. This heat source 
can occurs in the form of a coil or battery. Very few studies have been found in literature on unsteady boundary flows 
over a stretching sheet by taking heat generation/absorption into the account. Wang [40] studied the unsteady boundary 
layer flow of a liquid film over a stretching sheet. Later, Elbashbeshy and Bazid [19] have presented the heat transfer 
over an unsteady stretching surface. Tsai et al. [39] have discussed flow and heat transfer characteristics over an 
unsteady stretching surface by taking heat source into the account. Ishak et al. [23] analyzed the effect of prescribed 
wall temperature on heat transfer flow over an unsteady stretching permeable surface. Ishak [24] has presented 
unsteady MHD flow and heat transfer behavior over a stretching plate. Recently, Dulal pal [16] has described the 
analysis of flow and heat transfer over an unsteady stretching surface with non-uniform heat source/sink and thermal 
radiation. Dulal pal et al. [17] has presented MHD non-Darcian mixed convection heat transfer over a non-linear 
stretching sheet with Soret–Dufour effects, heat source/sink and chemical reaction. Salem and Aziz [33] analysed the 
effect of Hall current and chemical reaction on the steady flow, heat transfer laminar of a viscous, electrically 
conducting fluid over a continuously stretching surface in the presence of heat generation/absorption. Aziz [8] 
investigated the flow and heat transfer of a viscous fluid flow over an unsteady stretching surface with Hall effects. 
Recently Sarojamma et al. (36, 37) have discussed the effect of Hall current on the flow induced by a stretching 
surface. 
 
In this chapter, we study the combined influence of Hall effects and radiation absorption on unsteady convective heat 
transfer flow of a viscous electrically conducting fluid through a porous medium past a stretching sheet in the presence 
of non-uniform heat source.. The equations governing the flow of heat transfer have been solved by Galerkin finite 
element analysis with three nodded line segments.  

 
2. FORMULATION OF THE PROBLEM: 
 
We analyse the unsteady convective heat transfer flow of an electrically 
conducting fluid past a stretching sheet with the plane at y=0 and the flow 
is confined to the region y>0. A schematic representation of the physical 
model is exhibited in fig.1.We choose the frame of reference O(x,y,z) 
such that the x-axis is along the direction of motion of the surface, the y-
axis is normal to the surface and z-axis transverse to the (x-y) plane. An 
uniform magnetic field of strength H0 is applied in the positive y-
direction. The surface of the sheet is assumed to have a variable 
temperature Tw(x), while the ambient fluid has a uniform temperature T∞ , 

where Tw(x) > T∞  corresponds to a heated plate and Tw(x) <T∞ , 
corresponds to a cooling plate. The effects of thermo-diffusion, thermal radiation, Hall currents, viscous dissipation are 
considered. We consider Hall effects into consideration and assume the electron pressure gradient, the ion-slip and the 
thermo-electric effects are negligible. Using boundary layer approximation, Boussinesq’s approximation the basic 
equations governing the flow heat transfer is  
 
The equation of Continuity is  
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Fig.1 : Physical Configuration of the Problem 
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The Momentum equations are  
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The energy equation is  
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The coefficient q ′′′ is the rate of internal heat generation (>0) or absorption (<0). The internal heat generation 
/absorption q ′′′ is modeled as  
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Where A1 and B1 are coefficients of space dependent and temperature dependent internal heat generation or absorption 
respectively. It is noted that the case A1>0 and B1>0, corresponds to internal heat generation and that A1<0 and B1<0, 
the case corresponds to internal heat absorption case.  
 
The radiation heat term (Makinde [27] by using The Rosseland approximation is given by 
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The non-dimensional temperature 
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Where 
∞

=
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Twθ is the temperature parameter. 

 
Using (2.5) & (2.9), equation (2.4) reduces to  
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where T is the temperature in the fluid. kf is the thermal conductivity, Cp is the specific heat at constant pressure, β  is 
the coefficient of thermal expansion, qr is the radiative heat flux, k is the porous permeability parameter.  
 
The boundary conditions for this problem can be written as 
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Where u and v are the fluid velocity components along x and y-axis respectively and t is the time. 

1/2( , ) ( ) (0)w
Uwv x t f
x

ν
= − . The flow is caused by the stretching of the sheet which moves in its own plane with the 
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surface velocity ( , ) ,
(1 )w

axU x t
ct

=
−

where a (stretching rate) and c are the positive constants having dimension 

time-1
 (with t < 1, c ≥ 0).It is noted that the stretching rate 

(1 )
a
ct−

 increases with time, since a > 0. The surface 

temperature of the sheet varies with the distance x from the slot and time t in the form so that surface temperature 
2
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−
where a≥0 .The particular form of Uw(x,t) and Tw(x, t) has been chosen in order to 

derive a similarity transformation which transforms the governing partial differential equations (2.2), (2.3) and (2.10) 
into a set of highly nonlinear ordinary differential equations. 
 
The radiation heat term (Brewester) by using the Rosseland approximation is given by 
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The non-dimensional temperature 
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The stream function ѱ(x, t) is defined as: 
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we introduce the similarity variables (Dulal Pal [16]) as 
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Using equations (2.16) - (2.19) into equations (2.2), (2.3) and (2.10) we get 
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where S=c/a is the unsteadiness parameter.
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The transformed boundary conditions (2.11) & (2.12) reduce to  
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Where wvfw
aν

=  is the heat transfer coefficient such that fw>0 represents suction and fw<0 represents injection at 

the surface. 
 
3. FINITE ELEMENT ANALYSIS 
 
The method basically involves the following steps:  

(1) Division of the domain into elements, called the finite element mesh. 
(2) Generation of the element equations using variational formulations. 
(3) Assembly of element equations as in step 2. 
(4) Imposition of boundary conditions to the equations obtained in step 3 
(5) Solution of the assumed algebraic equations. 

The assumed equations can be solved by any of the numerical technique viz. Gaussian elimination, LU Decomposition 
method etc. 
 
VARIATIONAL FORMULATION: The variational form associated with the equations (2.21)-(2.23) over a typical 
two nodded line at element ( ), 1+ee ηη is given by 
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Where w1, w2, w3, w4, w5 are arbitrary test functions and may be regarded as the variations in f, h, g, θ and 
φ respectively. 
 
FINITE ELEMENT FORMULATION 
 
The finite element method may be obtained from (3.1)-(3.4) by substituting finite element approximations of the form 
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Using (3.6) we can write equations (3.1) - (3.4) as 
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Following Galerkin weighted residual method and integration by parts method the equations (3.7)-(3.10) we obtain 
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Expressing  kkk hf θ,, in terms of local nodal values (3.12)-(3.15) we obtain  
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Choosing different j
jiψ  corresponding to each element ηe in the equation (3.16) yields a local stiffness matrix of order 

3x3 in the form 
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Likewise the equations (3.17), (3.18) & (3.19) give rise to a stiffness matrices 
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jj SandSRRQQ are 3x1 column matrices and such stiffness matrices (3.21)-(3.22) in 
terms of local nodes in each element are assembled using inter element continuity and equilibrium conditions to obtain 
the coupled global matrices in terms of the global node values of h, f and g. In case we choose n quadratic elements 
then the global matrices are of order 2n+1.The ultimate coupled global matrices are solved to determine the unknown 
global values of velocity, temperature in the fluid region. In solving these matrices an iteration procedure has been 
adopted. 
 
The shape functions are 
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4. STIFFNESS MATRICES 
 The global matrix for θ is   A3X3=B3 

 The global matrix for h is   A4X4=B4 

 The global matrix for f is   A5X5=B5 

 The global matrix for g is   A6X6=B6 
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5. SKIN FRICTION and NUSSELT NUMBER  
 
The physical quantities of engineering interest in this problem are the skin friction coefficient Cf, the Local Nusselt 
number Nux which are expressed as  

 
1 1(0), (0),
2 2f ex fz ezC R f C R g′′ ′= =            )0(/1/ θ=exRNux  

Where 
p

k
C

µ
ρ

= is the dynamic viscosity of the fluid and Rex is the Reynolds number. 

 
For the computational purpose and without loss of generality ∞  has been fixed as ηmax=8.The whole domain is divided 
into 11 line elements of equal width, each element being three nodded. 
 
COMPARISON: Comparison of Nu(0) for M=m=G=Ec= fw, A1=B1=0, θw=0, A=A11=0 
 

 
Pr 

Chen(14a) Grubka and  
Bobba (20a) 

Aziz(18a) Sarojamma  
et al (37) 

Present results 

0.01 0.02942 0.0294 0.02948 0.02949 0.029479 
0.72 1.08853 1.0885 1.08855 1.08857 1.088559 
1.0 1.33334 1.3333 1.33333 1.33335 1.333329 
3.0 2.50972 2.5097 2.50972 2.50974 2.509736 
7.0 3.97150  3.97151 3.97152 3.971519 
10.0 4.79686 4.7969 4.79687 4.79688 4.796869 
100.0 15.7118 15.712 15.7120 15.7122 15.71212 

 
6. DISCUSSION OF THE NUMERICAL RESULTS 
 
In order to validate the accuracy of the numerical scheme employed we have compared the local temperature gradient 
of the present analysis with those of Chen (15). Grubka and Bobba (20a), Aziz(8) and Sarojamma et al. (36) for 
different values of Prandtl number in absence of magnetic field, thermal and solutal buoyancy, radiation absorption, 
viscous dissipation, temperature parameter and suction for steady flow M=Gr= Ec= fw=A1=B1=0 = θw =0 =A11=0 
and presented in table.1 and are found to be in  good agreement. 
 
Figs.2 a-2c represents the velocity, temperature wit Hall parameter (m). As mentioned above the Lorentz force has a 
retarding effect on the primary velocity, this retardation is enhanced with increase in the Hall parameter and hence the 
primary velocity is enhanced and consequently the momentum boundary layers become thicker. The secondary velocity 
increases as the Hall parameter increases. The effect of Hall parameter on temperature shows that the temperature 
reduces with increase in Hall parameter (m). This is due to the reduction of thermal boundary layer. 
 
Figs.3a-3c represent the impact of thermal radiation on the velocities, temperature. It can be seen from the profiles that 
higher the radiative heat flux, larger the velocities, temperature. This is due to the fact that the thickness of the 
momentum and thermal boundary layers with increase in the radiation parameter (Nr). 
 
Figs.4a-4c show the variation of velocity, temperature with Eckert number (Ec). It is pointed out that the presence of 
Eckert number enhances the primary and secondary velocity components. This is due to the fact that the energy is 
generated in the fluid. An increase in Ec increases the temperature. This is owing to the fact that the thermal energy is 
generated in the fluid on account of frictional heating. Hence, the temperature distribution rises in the entire thermal 
boundary layer. 
 
Figs.5a-5c and 6a-6d represent the velocity, temperature with space dependent heat source and temperature dependent 
source. An increase in the space dependent source (A1>0) enhances the velocities, temperature owing to the generation 
of energy in the boundary layer while in the case of heat absorption source (A1<0), the primary, secondary velocities, 
the temperature reduce in the boundary layer. In the case of temperature dependent generating source (B1>0), the 
velocities, temperature enhance and for B1<0, it reduces in the flow region. 
 
Figs.7a-7c represent the velocity, temperature with unsteady parameter S. It can be seen from the profiles that an 
increase in S reduces the primary velocity in the entire flow region, while the secondary velocity reduces with S in the 
region(0,2.5) and enhances in the remaining flow region. This is due to the fact that the thickness of the momentum 
boundary layer reduces with increase in unsteady parameter S. The variation of θ  with S shows that the thickness of 
thermal boundary layer increases with increasing S. 
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Fig.8a-8c represent the effect of slip parameter (A11) on the velocities, temperature. From the profiles we find that the 
primary velocity reduces with slip parameter (A11) in the entire region. The secondary velocity reduces in the flow 
region (0, 2.0) and enhances in the remaining region. An increase in A11 increases the temperature in the entire flow 
region. 
 
Figs.9a-9c illustrate the variation of velocities, temperature with temperature parameter (A). Higher the values of 
temperature parameter (A≤1.5) smaller the velocities, temperature in the boundary layer and for higher A≥2.0, we 
notice an enhancement in velocities, temperature in the flow region. Thus the non-linearity of thermal radiation leads to 
a reduction in velocities, temperature. 
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Table – 2: Skin friction, Nusselt number at η=0 
Parameter τx(0) τz(0) Nu(0) 

m 

0.5 -0.404281 0.058909 0.565719 
1 -0.391572 0.0718493 0.566888 

1.5 -0.363934 0.0715603 0.569485 
2 -0.349105 0.0544777 0.570909 

A1 

0.1 -0.404281 0.058909 0.565719 
0.3 -0.382347 0.059674 0.550298 
-0.1 -0.424696 0.058191 0.580827 
-0.3 -0.445637 0.0574487 0.597143 

B1 
0.1 -0.404281 0.058909 0.565719 
0.3 -0.363964 0.060293 0.537686 
-0.1 -0.438645 0.0577126 0.591893 
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Parameter τx(0) τz(0) Nu(0) 
-0.3 -0.471073 0.0565699 0.618806 

Nr 

0.5 -0.404281 0.058909 0.565719 
1.5 -0.225458 0.0648081 0.457641 
3.5 0.0345795 0.0727485 0.355834 
5 0.221987 0.0780472 0.305255 

Ec 

0.01 -0.404281 0.058909 0.565719 
0.03 -0.402784 0.0589593 0.564633 
0.06 -0.40196 0.0589871 0.563986 
0.07 -0.399854 0.059058 0.562423 

S 

0.1 -0.404281 0.058909 0.565719 
0.3 -0.602118 0.0476791 0.615421 
0.5 -0.486037 0.0249963 0.653827 
0.7 -0.0202435 0.00339035 2.46159 

A 

1.01 -0.404281 0.058909 0.565719 
1.5 -0.414303 0.0585557 0.572582 
2.0 -0.292712 0.062304 0.487525 
2.5 -0.181817 0.0662635 0.438195 

A11 

0.2 -0.404281 0.058909 0.565719 
0.4 -0.307205 0.0574862 0.561963 
0.6 -0.252386 0.0566687 0.559805 
0.8 -0.214252 0.0560938 0.558289 

 
The skin friction coefficients (τx) and (τz) are exhibited in table.2 for different values of m, Ec, S, A, A1, A11, B1, and 
Nr. An increase in the Hall parameter (m) reduces τx and enhances τy at the wall η=0. The variation of stress with 
radiation parameter (Nr) shows that τx reduces with increase in Nr≤3.5 and enhances with higher values of Nr≥5.0, 
while τy increases with higher radiative heat flux on the wall. Higher the dissipative heat smaller τx and larger τY at the 
wall. An increase in space dependent/temperature dependent heat generating source reduces τx for A1 (>0) or B1 (>0) 
and enhances with A1<0 or B1<0. τy enhances at the wall with A1>0 or B1>0 while a reversed effect is noticed at the 
wall for A<0 or B1<0. The variation of stress components with temperature parameter (A) shows that an increases in 
A≤1.5 enhances τx and reduces τy and for still higher A≥2.0, a reversed effect is noticed in their behaviour. Thus the 
non-linearity in thermal radiation leads to an enhancement in the stress component τy and reduction in τy at the wall for 
smaller values of A and for higher values of A ,τx  reduces and τy enhances at the wall. With respect to the partial 
slip(A11),we find that both the stress components  reduce on the wall η=0. 
 
The rate of heat transfer (Nusselt number) at the wall ƞ=0 is exhibited in table.2.for different parametric variations. It is 
found that the rate of heat transfer increases with Hall parameter (m). Higher the dissipative energy (Ec) or thermal 
radiation(Nr) smaller Nu  on the wall. │Nu│ decreases with increase in the space dependent/ temperature dependent 
heat source and for A1<0 or B1<0, Nu enhances on the wall. The effect of unsteady parameter S is to enhance the rate 
of heat transfer on the wall. The rate of heat transfer at the wall enhances with increase in temperature parameter A≤1.5 
and reduces with higher values of A ≥2.0.Thus non-linearity in thermal radiation leads to an enhancement in Nu for 
smaller values of A and reduces for higher values of A. With respect to slip parameter (A11), we find that the Nusselt 
number reduces on the wall. 
 
7. CONCLUSIONS 
 
The coupled equations governing the flow heat transfer have been solved by employing Finite element method. The 
velocity, temperature is discussed graphically for different variations. The conclusions of this analysis are: 

 An increase in Hall parameter (m) reduces the primary and secondary velocities, temperature reduces. The 
stress component τx enhances, Nusselt number and the stress component τy reduce at the wall. 

 The primary, secondary velocities, temperature enhance reduces with increase in A1>0 while they experience 
a reduction with A1<0.An increase in B1>0 reduces the velocities, enhances the temperature. A reversed 
effect is notices with B1<0. 

 The velocity components, the temperature enhances, reduces with increase in Nr. The rate of heat transfer 
enhances while the Sherwood number reduces at the wall. 

 Higher the dissipation smaller the velocities, and smaller temperature. The, stress component τy and rate of 
heat transfer, reduces, the secondary velocity,τx enhances on the wall. 

 An increase in Unsteady parameter S reduces the velocities, reduces the temperature and in the flow region. 
The stress component τx and Nusselt number reduces on the wall. 
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