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ABSTRACT 
In this paper, the situation of Mixed Convective Flow of A Non-Newtonian Fluid with permeable walls by considering 
the influence of acceleration due to gravity has been examined in detail. It is noticed that, as  Prandtl number increases 
the temperature also increases. Not much of significant change is observed when the radiation parameter (R) is slightly 
decreased. However,  a drastic change is seen when the Prandtl number changes considerably along with the radiation 
parameter (R). Further, it is noticed that, as the radiation parameter (R) increses the temparature in the fluid also 
increases. However, not much of  significant change is noticed for a small change in the Prandtl number.But, there is a 
significant change  in the profiles for larger values of Prandtl number (Pr). It is seen that, as we move far away from 
the lower boundary then the temperature is found to be decreasing. Further, it is observed that, as the radiation 
parameter (R) increases the temperature of the fluid decreases.  
 
Key words: Newtonian fluid, Reynolds Number, Prandtl Number, Radiation Parameter. 
 
 
INTRODUCTION 
 
During the last several years fluid mechanics had made significant process in several areas of engineering, science and 
technology. An attempt has been made in this paper to explain the possibility of supporting thermal transfer in several 
areas of engineering, science and technology. Generally engineering systems are more complicated and experimentally 
confusing. It is characterized by complex systems where the fluid stream currents have a sudden change with reference 
to the geometry of the systems, which is not uncommon, but needs to be examined in detail.   
 
For the last many years, extraction of geothermal energy from the deep part of the earth, oil extraction, heat removal 
from the nuclear debris, flow of liquids through ion exchange beds, drug permeation through human skin and glands 
are few such wide applications. In view of several applications in physics, chemistry and chemical technology, the 
problem has gained more importance, where the transfer of liquid from one container to another container is involved, 
the rate at which such transfer takes place at the thin film adhering to the surface of the containers needs to be taken 
into account. Generally in the chemical processing industry the walls of the reactor are subjected to the corrosion due to 
the reaction with in the vessels. Such a phenomena causes loss of production and then consuming more reaction time 
for the next cycle of chemical processing. 
 
The porous medium can be considered as an ordered flow in a disordered geometry. The porous medium may be either 
an aggregate of large number of particles such as sand or a solid containing more capillaries such as a porous rock. 
When the fluid percolates through a porous material, because of the complexity of microscopic flow in the pores, the 
actual part of an individual fluid particle cannot be analytically analysed.  However, the process can be defined in terms 
of equilibrium forces. 
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The resistance force is characterised by Darcy's semi-empirical law set up by Darcy [1]. The simplest model for flow 
through a porous medium in one dimensional model derived by Darcy [1]. Heat transfer in the porous media has 
become most prominent due to the exploitation of geothermal energy, nuclear waste disposal, fossil fuel identification, 
regenerator bed, etc. Using the method of similarity solution, Murthy and Singh [2] studied the effect of lateral mass 
and thermal penetration in porous media. Later, Cheng and Minkowycz [3] analyzed sustainable free convection of 
vertical plates on porous dynamics in the form of dissipative inequality (Clausius – Duhem), and generally accepted 
idea of the specific Helmholtz free power balance must be minimum in the equilibrium state.  Subsequently, Dupit and 
Frochheimer presented empirical evidence, MacDonald et.al [4] and others presented the balance between speed and 
pressure variations, breaks down for large enough flow speed (compilation of many experimental results). This was 
subsequently emphasized by Joseph et.al [5] who stressed that Frochheimer’s actions were forced to work in the 
opposite direction to the velocity vector. In a multi-stream flow, it follows that the momentum equations are at least 
predictable for each speed component derived by Frochheimer's expanded Darcy equation. The effects of the existence 
of solid boundary and the presence of initial forces on mass transfer in Porous Media were submitted by Vafai and Tien 
[6].  Later, Knupp and Lage [7] analyzed the theoretical generalization to the tensor permeability case of emphatically 
obtained Frochheimer's extended Darcy’s unidirectional flow model. Thereafter, MacDonald et al. [8] presented the 
balance between speed and pressure contradictions - a large enough flow rate (compilation of many experimental 
results). Further, they had discussed the combined effect of heat exchanges and liquid injection on Darcy mixed 
transfer. Hussain et al [9] studied the effects of heat dissemination and side effects on mixed synthesis problems and 
established the trend of heat transfer rate from a vertical plate in porous medium and researched in drain and 
temperature sectors.  Later, Kuznetsov [10] examined the effect of transverse thermal dispersion on forced convection 
in porous media and found favourable conditions for heat transfer with dispersion effects. Mohahammadien and El-
Amin [11]  studied the dispersion and radiation effects in fluid saturated porous medium and the effects of radiation on 
the heat transfer rate for both Darcy and non- Darcy Medium. Cheng and Lin [12] in their observation pointed out that 
the rate of unsteady heat transfer can be accelerated by thermal dispersion. Without taking MHD into consideration 
Chamka and Quadri [13] examined the heat and mass transfer properties in mixed convective conditions. Wang et al 
[14] applied in explicit analytical techniques namely homotopy analysis to solve the Non-Darcy natural convection 
over a horizontal plate with surface mass flux and thermal diffusion and obtained a totally analytic and uniformly valid 
solution. 
 
In all above said examinations, several researchers have employed different techniques viz, nearly approximate 
solution, mixed perturbation technique and even some times the traditional methods of solving the differential 
equations. The novelty of the present method is to re-examine the problem by employing a simple and regular 
perturbation method. The results obtained when compared to the earlier investigations are found to be more accurate 
and sometimes even matching with their results.    
 
FORMULATION OF THE PROBLEM 
 
We consider the laminar mixed convection flow of a Newtonian fluid through a porous medium in a vertical permeable 
channel, the space between the plates h being the same. It is expected that the rate of injection at a wall is equal to the 
suction rate at the other wall. A rectangular coordinate system (x, y) x - axis is parallel to the gravitational acceleration 
vector 𝑔, the y-axis is perpendicular to the x – axis. The left wall (i.e. y = 0) is maintained at constant temperature 
𝑇1and the right wall (at y = h) is maintained at constant temperature 𝑇2. It is always maintained that 𝑇1 > 𝑇2. The flow 
is assumed to be laminar, steady and is fully developed, i.e. the transverse velocity is zero. Then the equation of 
continuity drops down to 𝜕𝑢

𝜕𝑥
= 0. 

 
The basic equations of momentum and energy governing such a flow, subject to the Boussinesq approximation, are   

𝜌𝑉0
𝑑𝑢
𝑑𝑦

= − 𝑑𝑝
𝑑𝑥

+ 𝜇 𝑑2𝑢
𝑑𝑦2

+ 𝛼1𝑉0
𝑑3𝑢
𝑑𝑦3

− 𝜇
𝑘0
𝑢 + 𝜌𝑔𝛽(𝑇 − 𝑇0)                                                                                 (1) 

𝑉0
𝑑𝑇
𝑑𝑦

= 𝛼 𝑑2𝑇
𝑑𝑦2

                                                                                                                                                       (2)  
Where 𝑝 is the pressure, 𝜌 is the density, 𝜇 is the dynamic viscosity of the fluid, 𝑔 is the acceleration due to gravity, 𝛽 
coefficient of thermal expansion, ,𝛼1 is the viscoelastic parameter, 𝑘0 is the permeability of the porous medium and 𝑉0 
is the transpiration cross flow velocity. Further, here 𝑑𝑝

𝑑𝑥
 is a constant. 

 
The boundary conditions are given by  

𝑢(0) = 𝑢(ℎ) = 0 ,𝑇(0) = 𝑇1    and 𝑇(ℎ) = 𝑇2                                                                                                   (3) 
 
Introducing the following non-dimensional variables 
𝑦 = 𝑦

ℎ 
  ,     𝑢 = 𝑢

ℎ2
   and   𝜃 = 𝑇−𝑇0

𝑇2−𝑇0
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into the  equations (1) and (2), we obtain 

𝑘𝑅 𝑑3𝑢
𝑑𝑦3

+ 𝑑2𝑢
𝑑𝑦2

− 𝑅 𝑑𝑢
𝑑𝑦
− 1

𝐷𝑎
𝑢 + 𝐺𝑟

𝑅𝑒
𝜃 + 𝐴 + 𝐺 sin∅ = 0                                                                                      (4) 

𝑑2𝜃
𝑑𝑦2

− 𝑅𝑃𝑟𝑑𝜃
𝑑𝑦

= 0                                                                                                                                                (5) 

 where k = 𝛼1
𝜌ℎ2

  is the viscoelastic  parameter , 𝑅 = 𝜌𝑉0ℎ
𝜇

  is the cross flow Reynolds number, 𝐺𝑟 = 𝑔𝛽(𝑇2−𝑇1)ℎ3

𝑉2
  is the 

Grashof number, 𝑅𝑒 = 𝜌𝑈0ℎ
𝜇

  is the Reynolds number,  𝑃𝑟 = 𝑉
𝛼
  is the Prandtl number, 𝛾𝑇 = 𝑇1−𝑇0

𝑇2−𝑇0
  is the wall 

temperature parameter,  𝐴 = −(𝑑𝑝
𝑑𝑥

) 𝑈0𝑉
ℎ2

  is the constant pressure gradient. 
 
The corresponding dimensionless boundary conditions are given by  

𝑢(0) = 𝑢(1) = 0 ;   𝜃(0) = 𝛾𝑇   and  𝜃(1) = 1                                                                                                 (6) 
 
Solution of the problem 
We consider the first – order perturbation solution of the BVP (1) – (2) for small𝜖. The perturbation solution obtained 
by retaining the terms up to the same order of smallness of 𝜖 must be quite logical and reasonable. We write  

𝑢 = 𝑢0 + 𝜖𝑢1                                                                                                                                                      (7)   
and         𝜃 = 𝜃0 + 𝜖𝜃1                                                                                                                                                      (8)  
 
Using equations (7) and (8) into equations (4) and (5) and boundary conditions (6) and then equating the like powers of 
𝜖, we then get 
 
Zeroth-Order system (𝝐𝟎) : 

𝑘𝑅 𝑑3𝑢0
𝑑𝑦3

+ 𝑑2𝑢0
𝑑𝑦2

− 𝑅 𝑑𝑢0
𝑑𝑦

− 1
𝐷𝑎
𝑢0 = −𝐺𝑟

𝑅𝑒
𝜃0 − 𝐴 − 𝐺 sin𝜑                                                              

  
Under the assumption that 𝑑

3

𝑑𝑦3
 is negligible the above equation reduces to  

𝑑2𝑢0
𝑑𝑦2

− 𝑅 𝑑𝑢0
𝑑𝑦

− 1
𝐷𝑎
𝑢0 = 𝐺𝑟

𝑅𝑒
𝜃0 − 𝐴 − 𝐺 sin𝜑                                                                                                      (9) 

𝑑2𝜃0
𝑑𝑦2

− 𝑅𝑃𝑟 𝑑𝜃0
𝑑𝑦

= 0                                                                                                                                           (10) 
 
Together with the set of boundary conditions 

𝑢0(0) = 𝑢0(1) = 0;  𝜃0(0) = 𝛾𝑇  𝑎𝑛𝑑 𝜃0(1) = 1                                                                                           (11)    
 
First-Order system (𝝐𝟏) : 
𝑘𝑅 𝑑3𝑢1

𝑑𝑦3
+ 𝑑2𝑢1

𝑑𝑦2
− 𝑅 𝑑𝑢1

𝑑𝑦
− 1

𝐷𝑎
𝑢1 = 𝐺𝑟

𝑅𝑒
𝜃1    

 
Under the assumption that 𝑑

3

𝑑𝑦3
 is negligible the above equation reduces to                             

𝑑2𝑢1
𝑑𝑦2

− 𝑅 𝑑𝑢1
𝑑𝑦

− 1
𝐷𝑎
𝑢1 = 𝐺𝑟

𝑅𝑒
𝜃1                                                                                                                            (12) 

𝑑2𝜃1
𝑑𝑦2

− 𝑅𝑃𝑟 𝑑𝜃1
𝑑𝑦

= 0                                                                                                                                           (13) 
 
Together with the set of boundary conditions 

𝑢1(0) = 𝑢1(1) = 0; and 𝜃1(0) = 𝜃1(1) = 0                                                                                                  (14) 
 
Zeroth-Order solution: 
 Solving equations (9) and (10) using the boundary conditions (11), we get 

𝜃0 = �1−𝛾𝑇𝑒𝑅𝑃𝑟�+(𝛾𝑇−1)𝑒𝑅𝑃𝑟𝑦

(1−𝑒𝑅𝑃𝑟)
                                                                                                                             (15) 

𝑢0 = 𝑐1𝑒𝑎𝑦 + 𝑐2𝑒𝑏𝑦 + 𝐺𝑟
𝑅𝑒

(𝑓1 − 𝑓2𝑒𝑅𝑃𝑟 𝑦) + 𝐴𝐷𝑎 + 𝐺𝐷𝑎 sin𝜑                                                                       (16) 

Where    𝑎 = 𝑅+�𝑅2+ 4 𝐷𝑎⁄
2

   𝑏 = 𝑅−�𝑅2+4 𝐷𝑎⁄
2

     𝑓1 = �1−𝛾𝑇𝑒𝑅𝑃𝑟�𝐷𝑎
(1−𝑒𝑅𝑃𝑟)

 

𝑓2 = (𝛾𝑇−1)
�1−𝑒𝑅𝑃𝑟�(𝑅2𝑃𝑟2−𝑅2𝑃𝑟−1 𝐷𝑎⁄  ,  𝑓3 = 𝐺𝑟

𝑅𝑒
(𝑓1 − 𝑓2) + 𝐴𝐷𝑎 +𝐷𝑎𝐺 sin𝜑 

𝑓4 = 𝐺𝑟
𝑅𝑒

(𝑓1 − 𝑓2𝑒𝑅𝑃𝑟) + 𝐴𝐷𝑎 + 𝐷𝑎𝐺 sin𝜑 , 𝐶1 = 𝑓4−𝑓3𝑒𝑏

𝑒𝑏−𝑒𝑎
   ,  𝐶2 = 𝑓3𝑒𝑎−𝑓4

𝑒𝑏−𝑒𝑎
  . 

 
First Order solution:  
Solving equation (13) with boundary conditions, we obtain  

𝜃1 = 0                                                                                                                                                               (17) 
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Using equation (17) in the equation (12) and then solving the resulting equation with the corresponding conditions, we 
get 

𝑢1 = 0. 
 
RESULTS AND DISCUSSIONS 
 
Figure 1, figure 2, figure 3 and figure 4 illustrates the variation of temperature with respect to Prandtl number for 
different values of radiation parameter. In each of these observations it is noticed that, as a Prandtl number increases, 
the temperature also increases. Not much of significant change is observed when the radiation parameter (R) is slightly 
decreased. However, a drastic change is noticed when the Prandtl number changes considerably along with the 
radiation parameter (R). The result is in agreement with Cheng et.al [3] and Vafai [6]. 

 
Figure-1: Temperature Profiles Along The Width Of The Channel 

    
Figure-2: Variation Of Temperature Along The Width Of The Channel 

  

      
Figure-3: Distribution Of Temperature Profiles Along The Width Of The Channel 
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Figure-4: Variation Of Temperature Profiles Along The Width Of The Channel 

 
The nature of temperature distribution along the width of the channel for different values of the Prandtl number with 
respect to the radiation parameter has been shown graphically in figure 5, figure 6, figure 7, figure 8 and figure 9. In 
each of these illustrations it is observed that, as the radiation parameter (R) increses the temparature in the fluid also 
increases. Not much of significant change is noticed for a small change in the Prandtl number. However, there is a 
considerable change  in the profiles for larger values of Prandtl number (Pr).  The illustations are in good agreement 
with the results obtained by Cheng et al [12] and Chamka et al [13]. 

 
Figure-5: Temperature Profiles Along The Width Of The Channel 

 

 
Figure-6: Temperature Profiles Along The Width Of The Channel 
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Figure-7: Temperature Profiles Along The Width Of The Channel 

 

 
Figure-8: Temperature Profiles Along The Width Of The Channel 

 

 
Figure-9: Temperature Profiles Along The Width Of The Channel 

 
Figure 10 and figure 11 demonstrates the distribution of temperature profiles in the fluid medium for different values of 
Prandtl number (Pr). In both of these illustrations it is observed that as we move far away from the lower boundary the 
temperature decreases. Further it is observed that as the radiation parameter (R) increases the temperature of the fluid 
decreases.  
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Figure-10: Variation Of Temperature Profiles 

 

 
Figure-11: Distribution Of Temperature Profiles 
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