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ABSTRACT 
Frequency-dependent selection between two non-mutating strategies, co-operate or defect, with random genetic drift 
yields a rule of biological evolutionary game dynamics. When the quotient of singleton type fixation probability 
functions, that being co-operate upon defect, exceeds unity the relative frequency of the risk-dominant strategy in the 
population equilibrates to less than ½. Maclaurin series of this quotient of singleton type fixation probability functions 
calculated at second and third orders enable the convergent domain of the payoff matrix to be obtained exactly. Novel 
corollaries identify a reduced domain of convergence in which this evolutionary rule holds. Finite population size 
convergence quantifies the applicability of the asymptotic inequality from which this rule derives. Violation of this 
evolutionary rule depends on the normalized payoff matrix entries and selection differential. Quantitative analysis 
illustrates non-negligibility of the quadratic and cubic coefficients in Maclaurin series with selection being inversely 
proportional to population size.    
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1. INTRODUCTION 
 
Evolved co-operation can persevere through various mechanisms within hawk-dove type communities where predatory 
individuals present a competitive strategy of antagonistic exploitation ([1], [9]). Population genetics can be utilized to 
explain ideal mechanisms of socio-biological evolution [24]. A key feature of such models must be to calibrate the 
selective differential between competing strategies ([11], [27], [23]).  Herein, an idealized population where individuals 
present strategies of either cooperate or defect in pair-wise interactions enables characterization of the relative success 
of both strategies. Selection between game strategies, on the order of magnitude as the reciprocal of population size, 
accords with theory of ‘weak’ selection in population genetics [18]. A pioneering model of random genetic drift in 
continuous-time (with overlapping generations) ([15]-[17]) akin to the discrete-time Wright-Fisher model (with 
intermittent generations). Both these remain important elementary models of modern population genetics [26]. This 
game-theoretical model itself does not require the assumption of a large population size. Quantitative analysis herein 
compares finite populations to an asymptotic inequality of fixation probabilities obtained in the limit of a large 
population size.   
 
Consider an evolutionary game in a finite population analogous to the haploid Moran model of population genetics 
([15]-[17]). The finite population of size N consists of i players of type C (co-operators) and N-i players of type D 
(defectors).  According to stochastic realization 𝑖 ∈ {0, 1, 2, … ,𝑁}, where absorption occurs at 𝑖 = 0 or 𝑁.  These types 
do not mutate and thus represent pure strategies (cf. [14]). Population spatial structure ([10], [20]) being neglected it 
does not affect rates of asexual reproduction for each type. The game involves pair-wise interactions being 
advantageous or disadvantageous for any two players according to a payoff matrix 

 𝐶 𝐷
𝐶
𝐷 �𝛼 𝛽

𝛾 𝛿�
                                                                                 (1) 

According to the first row of (1) a co-operator receives payoff α against another co-operator and receives payoff β 
against a defector. In the second row of (1), a defector receives payoff γ against a co-operator and receives payoff δ 
against another defector.  
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The corresponding evolutionary game represents a social dilemma when α>δ, which ensures that exploitation of co-
operators by defectors eventually yields an overall population fitness decrease as defectors approach fixation.  Denote 
the selective parameter, 0 ≤ 𝜛 ≤ 1, being due to the payoff differential in the game.  Let the fitness of co-operation be 
𝑓𝑖 = 1−𝜛 +𝜛𝐹𝑖, where 𝐹𝑖 = 1

𝑁−1
[𝛼(𝑖 − 1) + 𝛽(𝑁 − 𝑖)].  Let the fitness of defection be 𝑔𝑖 = 1−𝜛 + 𝜛𝐺𝑖, where  

𝐺𝑖 = 1
𝑁−1

[𝛾𝑖 + 𝛿(𝑁 − 𝑖 − 1)]. Thus, 𝐹𝑖 and 𝐺𝑖 define the expected payoffs to players of type C and type D, 
respectively.  Let 𝜌𝐶(𝜛) and 𝜌𝐷(𝜛) denote the fixation probability of singleton type C and D individuals, respectively. 
An elementary result of stochastic processes yields the quotient of singleton fixation probabilities, which extends to 
frequency-dependent selection in the Moran model [21]; 𝜌𝐶(𝜛)

𝜌𝐷(𝜛) = ∏ 𝑓𝑖
𝑔𝑖

𝑁−1
𝑖=1 . Details of the derivation can be found 

elsewhere ([19], equation 3.1), including an extensive review of game-theoretical heuristics ([22], section 2.3.4). 
 
The fixation probabilities of singleton types in this model yield an evolutionary rule [21], obtained in the limit of a 
large population size.  The Maclaurin series for the quotient of singleton fixation probabilities yields the third order 
approximation 𝜌𝐶(𝜛)

𝜌𝐷(𝜛) ≈
𝜌𝐶(0)
𝜌𝐷(0) +𝜛 �𝜌𝐶(𝜛)

𝜌𝐷(𝜛)
�
′
|(𝜛=0) + 𝜛2

2
�𝜌𝐶(𝜛)
𝜌𝐷(𝜛)

�
′′

|(𝜛=0) + 𝜛3

6
�𝜌𝐶(𝜛)
𝜌𝐷(𝜛)

�
′′′

|(𝜛=0), where prime denotes the  
derivatives with respect to 𝜛 that must be evaluated at 𝜛 = 0.   Convergence of the resultant second and third order 
terms in the limit of a large population size requires non-zero values, 𝜛 = 𝜎/𝑁.  Where σ denotes non-negative 
selection intensity.  At a first order truncation of the Maclaurin series, the risk-dominance inequality states that 
𝜌𝐶(𝜛) > 𝜌𝐷(𝜛) ⇒ 𝛼 + 𝛽 > 𝛾 + 𝛿 ([5], [8], [21]), since [𝜌𝐶(𝜛)/𝜌𝐷(𝜛)]′𝜛=0 = 1

2
[𝛼(𝑁− 2) + 𝛽𝑁 − 𝛾𝑁 − 𝛿(𝑁− 2)].  

The risk to players being dissimilar strategy encounter; then the strategy of highest singleton fixation probability 
possesses the highest total payoff. Theoretical biologists have also developed this idea in social dilemmas 
characterizing strategic cooperation on simple networks [25].   
 
In Section 2, second and third order Maclaurin series coefficients for the quotient of singleton fixation probabilities 
were obtained as Theorem 1. Thus, second order negligibility required for truncation of the Maclaurin series at first 
order that yields risk-dominance were obtained analytically as Corollaries 1.1 and 1.2.  In Section 3.1, Figures 1 and 2, 
quantify finite population size convergence of these derived quadratic coefficients to their asymptotic values.  In 
Section 3.2, qualitative precursors to non-negligible linear series truncation error are derived from payoff matrix 
normalization inequalities.  Figure 3 quantifies violation in the rule up to its third order term extension with selection 
being inversely proportional to population size. The Conclusion section briefly summarizes the results and mentions 
some implications for future research.  
 
2. EXTEND RISK-DOMINANCE TO THIRD ORDER WITH MACLAURIN SERIES OF THE QUOTIENT 
OF SINGLETON FIXATION PROBABILITY FUNCTIONS 
 
The risk-dominance inequality can be rearranged slightly into a ‘1/2-rule’ such that 𝜌𝐶

𝜌𝐷
> 1 implies 

𝛼 + 𝛽 > 𝛾 + 𝛿 
𝛼 + 2𝛽 − 𝛽 > 𝛾 + 2𝛿 − 𝛿 
𝛼 − 𝛽 − 𝛾 + 𝛿 > 2(𝛿 − 𝛽) 
1
2

> 𝛿−𝛽
𝛼−𝛽−𝛾+𝛿

                                                                                                                                          (2) 
The calculations in Section 2.1 culminate in proof of Theorem 1 that describes the quadratic and cubic limiting 
dominant term of the ‘1/2-rule’. This requires the Maclaurin series of 𝜌𝐶(𝜛)/𝜌𝐷(𝜛) up to third order. In Sections 2.2 
and 2.3, corollaries of Theorem 1 describe the convergent domain of the ‘1/2-rule’ from non-harmful and harmful 
contests, respectively. 
 
Theorem 1: With selective non-neutrality, when 𝜌𝐶(𝜛) > 𝜌𝐷(𝜛), extension of the ‘1/2-rule’ at third order yields an 
inequality 

𝛿−𝛽
𝛼−𝛽−𝛾+𝛿

< 1
2

+ 𝜎
8(𝛼−𝛽−𝛾+𝛿)

[𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 + 2(𝛼𝛽 − 𝛼𝛾 − 𝛼𝛿 − 𝛽𝛾 − 𝛽𝛿 + 𝛾𝛿)]  

                     + 𝜎2

48(𝛼−𝛽−𝛾+𝛿)
 [𝛼3 + 𝛽3 − 𝛾3 − 𝛿3 + 3(𝛼𝛾2 + 𝛽𝛾2 + 𝛼𝛿2 + 𝛽𝛿2 + 𝛼2𝛽 − 𝛾2𝛿)�  

                                                −3(𝛼2𝛾 + 𝛼2𝛿 + 𝛽2𝛾 + 𝛽2𝛿 + 𝛾𝛿2 − 𝛼𝛽2)�−6(𝛼𝛽𝛾 + 𝛼𝛽𝛿 − 𝛼𝛾𝛿 − 𝛽𝛾𝛿)]               (3)  
 
Remarks: According to inequality (3), the total value of the second and third order terms shown being negative 
reduces the corresponding upper bound of the inequality such that the ‘1/2-rule’ holds.  Alternatively, the total value of 
the second and third order terms shown being positive increases the corresponding upper bound of the inequality 
which violates the ‘1/2-rule’.   
 
2.1 Coefficients in third order Maclaurin series for the quotient of singleton fixation probabilities  
 
Proof of Theorem 1: 
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2.1.1: quadratic coefficients 
Consider non-neutral fixation probabilities such that 𝜌𝐶(𝜛)

𝜌𝐷(𝜛) > 1. Thus, the zeroth order term and the common factors 𝜛 
and ½, cancel out of the third order Maclaurin series to yield a simplified inequality  

0 < 𝛼 �1− 2
𝑁
�+ 𝛽 − 𝛾 − 𝛿 �1− 2

𝑁
� + 𝜛

𝑁
�𝜌𝐶(𝜛)
𝜌𝐷(𝜛)

�
′′

|(𝜛=0) + 𝜛2

3𝑁
�𝜌𝐶(𝜛)
𝜌𝐷(𝜛)

�
′′′

|(𝜛=0)                                              (4) 
 
Calculation of the second derivative, obtained in earlier work ([19], equation 3.4), yields two summation terms   

�𝜌𝐶
𝜌𝐷
�
′′

(𝜛=0)
= {∑ 𝐹𝑖 − 𝐺𝑖𝑁−1

𝑖=1 }2 + {∑ 2(𝐹𝑖 − 𝐺𝑖) − 𝐹𝑖2 + 𝐺𝑖2𝑁−1
𝑖=1 }.                                                                     (5) 

 
Equation (5) yields the quadratic coefficients of the payoff matrix entries as functions of population size. These 
quadratic coefficients were easily compiled from those found in earlier work ([19], equation 3.6). Calculation of the 
summation terms from (5) obtains the corresponding second order term in (4) that equals 
𝜎
𝑁2
�𝛼2 �(𝑁−2)2

4
− (𝑁−2)(2𝑁−3)

6(𝑁−1)
�� +𝛽2 �𝑁

2

4
− 𝑁(2𝑁−1)

6(𝑁−1)
�+ 𝛾2 �𝑁

2

4
+ 𝑁(2𝑁−1)

6(𝑁−1)
�+ 𝛿2 �(𝑁−2)2

4
+ (𝑁−2)(2𝑁−3)

6(𝑁−1)
� 

          +2𝛼𝛽 �𝑁(𝑁−2)
4

− 𝑁(𝑁−2)
6(𝑁−1)

� −2𝛼𝛾 𝑁(𝑁−2)
4

 −2𝛼𝛿 (𝑁−2)2

4
 −2𝛽𝛾 𝑁2

4
− 2𝛽𝛿 𝑁(𝑁−2)

4
 �+2𝛾𝛿 �𝑁(𝑁−2)

4
+ 𝑁(𝑁−2)

6(𝑁−1)
��             (6) 

where the common factor in (6) equals 𝜛/𝑁, after substitution of the selection intensity. Therefore, in the limit of a 
large population size, (6) yields the second order contribution to risk-dominance in (4),  

0 < 𝛼 + 𝛽 − 𝛾 − 𝛿 + 𝜎
4
�𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 + 2(𝛼𝛽 − 𝛼𝛾 − 𝛼𝛿 − 𝛽𝛾 − 𝛽𝛿 + 𝛾𝛿)�.   

 
2.1.2: dominant cubic coefficients 
Calculation of the third derivative, proceeds from that obtained in earlier work ([19], p. 660), and yields three 
summation terms   
�𝜌𝐶
𝜌𝐷
�
′′′

(𝜛=0)
= {∑ 𝐹𝑖 − 𝐺𝑖𝑁−1

𝑖=1 }3 + 3{∑ 2(𝐹𝑖 − 𝐺𝑖)− 𝐹𝑖2 + 𝐺𝑖2𝑁−1
𝑖=1 }{∑ 𝐹𝑖 − 𝐺𝑖𝑁−1

𝑖=1 }  

                            +2{∑ 3(𝐺𝑖2 − 𝐹𝑖2) + 3𝑁−1
𝑖=1 (𝐹𝑖 − 𝐺𝑖) + 3(𝐹𝑖3 − 𝐺𝑖3)}.                                                                          (7) 

 
The first summation term on the right side of (7) yields a result of 𝒪(𝑁3), the second summation term yields a product 
of two results each of 𝒪(𝑁), and the last summation term yields a result of 𝒪(𝑁). Thus, the first summation dominates, 
calculation of which being easily obtained from the first derivative raised to an exponent three.  The resultant dominant 
cubic coefficients at finite population size equal 1

8
�𝛼(𝑁 − 2) + 𝛽𝑁 − 𝛾𝑁 − 𝛿(𝑁 − 2)�3.  Therefore, in the limit of a 

large population size, (7) yields the third order contribution to risk-dominance in (4), an addition to the first and second 
order contributions, 0 < 𝛼 + 𝛽 − 𝛾 − 𝛿 + 𝜎

4
�𝛼2 + 𝛽2 + 𝛾2 + 𝛿2 + 2(𝛼𝛽 − 𝛼𝛾 − 𝛼𝛿 − 𝛽𝛾 − 𝛽𝛿 + 𝛾𝛿)�+

𝜎2

24
(𝛼3 + 𝛽3 − 𝛾3 − 𝛿3 + 3(𝛼𝛾2 + 𝛽𝛾2 + 𝛼𝛿2 + 𝛽𝛿2 + 𝛼2𝛽 − 𝛾2𝛿) � − 3(𝛼2𝛾 + 𝛼2𝛿 + 𝛽2𝛾 + 𝛽2𝛿 + 𝛾𝛿2 − 𝛼𝛽2) 

−6�(𝛼𝛽𝛾 + 𝛼𝛽𝛿 − 𝛼𝛾𝛿 − 𝛽𝛾𝛿)�. Hence, slight rearrangement of the first order term in that just derived obtains the 
standard form of the ‘1/2-rule’ and yields Inequality (3).     
 
This completes the proof of Theorem 1, Q.E.D. 
 
2.2 Non-harmful contests 
When 𝛼 < 𝛾 and 𝛽 < 𝛿 then defectors dominate due to relatively higher payoffs. The payoff scenario 𝛽 < 𝛿 implies 
non-harmful contests, or strong exploitation of co-operators by defectors. Note that 𝛼 + 𝛿 > 𝛽 + 𝛾 ensures non-
degenerate equilibria of the deterministic evolution of the game in this case.    
 
Corollary 1.1: Let 𝛼 = 𝑐𝛾,𝛽 = 𝑑𝛿, where 0 < 𝑐, 𝑑 < 1. In this case, by Theorem 1 and Remarks, the ‘1/2-rule’ fails to 
hold at second order when 

𝑐 > 1
2−𝑑

                                                                                                                                                    (8) 
 
Proof of Corollary 1.1: 

With the substitutions described the second order term of (3) equals 
𝜎

8[(1−𝑑)𝛿−(1−𝑐)𝛾]
[(1− 𝑐)𝛾 + (1 − 𝑑)𝛿]2                                                                                                                  (9) 

Formula (9) remains positive when (1 − 𝑑)𝛿 > (1 − 𝑐)𝛾. Hence, according to this condition the right side of (3) 
exceeds the ‘1/2-rule’ upper bound value. Recall, the social dilemma requires 𝛼 > 𝛿. Now, the corresponding 
inequality can be rearranged, 1 > 𝛿

𝛼
> 1−𝑐

𝑐(1−𝑑)
.  Equivalently, 𝑐 > 1−𝑐

1−𝑑
.  Solve for 𝑐 to obtain Inequality (8).    

 
Corollary 1.1 being therefore proven, Q.E.D. 
 
Note Corollary 1.1 implies 1 > 𝑐 > 1

2
, which constrains the exploitation of co-operators such that  1

2
𝛾 < 𝛼 < 𝛾.  
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2.3 Harmful contests 
When 𝛼 < 𝛾 and 𝛽 > 𝛿 defector pairs endure combative attrition in contests. The payoff scenario 𝛽 > 𝛿 implies 
harmful contests, or weak exploitation of co-operators by defectors. Note that 𝛼 + 𝛿 < 𝛽 + 𝛾 ensures non-degenerate 
equilibria of the deterministic evolution of the game in this case.    

 
Corollary 1.2: Let 𝛼 = 𝑐𝛾,𝛿 = 𝑏𝛽, where 0 < 𝑏, 𝑐 < 1. In this case, by Theorem 1 and Remarks, the ‘1/2-rule’ always 
holds, although the upper bound value can be substantially reduced.  
Proof of Corollary 1.2: 
With the substitutions described the second order term of (3) equals 

−𝜎
8[(1−𝑏)𝛽+(1−𝑐)𝛾]

[(1− 𝑐)𝛾 − (1 − 𝑏)𝛽]2 < 0                                                                                                                (10) 
 
Hence, (10) proves the ‘1/2-rule’ always holds with harmful contests. In this case, by (3) the upper bound value ½ can 
be substantially reduced as the selection intensity increases.   
 
Corollary 1.2 being therefore proven, Q.E.D. 
 
3. QUANTITATIVE VALIDITY OF THE RISK-DOMINANCE INEQUALITY 
 
3.1 Finite population size convergence 
Biological game theory [2] can model various sociological interactions with finite population sizes. Recent studies with 
either genetic, learned or aspirational transitions [13], the fitness value of discernment [7], and punitive actions [4] that 
facilitate evolved cooperative behaviour all utilize selection within small groups. The formulae derived in Section 2.1 
herein enable evaluation of population size reduction disparate with the asymptotic inequality of Theorem 1, since the 
second order Maclaurin series coefficients exceed or fall short of limiting values. Models of strongly localized groups 
require a plausible greatest lower bound on population size such that the evolutionary rule remains meaningful; refer to 
Figures 1 and 2. 
 
Formula (6) shows the risk-dominance inequality quadratic coefficients as functions of N and their convergence can be 
quantified; refer to Figures 1 and 2. 

 
Figure-1: Formula (6) evaluated when population size 𝑁 = 2, 3, … , 100 yield the squared coefficients of 𝛼2 (●), 
𝛽2 (●), 𝛾2 (●) and 𝛿2 (●).  Selection intensity 𝜎 = 1. These squared coefficients quantify negligibility of second 
order Maclaurin series for the quotient of singleton fixation probabilities from (4), 𝜛

𝑁
��𝜌𝐶
𝜌𝐷
�
′′

|𝜛=0�. Negligibility 
of the asymptotic values shown determines the validity of the risk-dominance inequality, according to Theorem 1. 
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Figure-2: Formula (6) evaluated when population size 𝑁 = 2, 3, … , 100 yield non-squared quadratic coefficients 
of 𝛼𝛽 (●), 𝛼𝛿 (●), 𝛽𝛿 (●) and 𝛾𝛿 (●).  Note the coefficient of 𝛼𝛾 equals that of 𝛽𝛿 (shown), and 𝛽𝛾 (●) ≡ −1

2
.  

Selection intensity 𝜎 = 1.  These non-squared coefficients quantify negligibility of second order Maclaurin series 
for the quotient of singleton fixation probabilities from (4), 𝜛

𝑁
��𝜌𝐶
𝜌𝐷
�
′′

|𝜛=0�.  Negligibility of the asymptotic values 
shown determines the validity of the risk-dominance inequality, according to Theorem 1. 
 
Convergence of the risk-dominance quadratic coefficients can be quantified as in Figures 1 and 2, the 
continuation of which Table 1 summarizes.   
 
Table-1: Convergence of the risk-dominance quadratic coefficients evaluated as N increases, according to (6).  
Selection intensity 𝜎 = 1.  For the coefficients 𝛼2, 𝛽2, 𝛿2, 𝛼𝛾 and 𝛼𝛿 the population sizes shown correspond to 
minimum 90% and 95% of their asymptotic values.  Note coefficient equivalences occur such that 𝛽2 = 2𝛾𝛿, 
𝛿2 = 2𝛼𝛽, 𝛼𝛾 = 𝛽𝛿 and 𝛽𝛾 ≡ −1

2
.  Note that 𝛼𝛿, 𝛽𝛾 and 𝛽𝛿 have negative valued coefficients.  Note also the 

coefficient of 𝛾2 converges from above; maximum 110% and 105% of its asymptotic value at the population sizes 
shown.   

𝑁�(𝛼2)−10% 𝑁�(𝛽2)−10% 𝑁�(𝛾2)+10% 𝑁�(𝛿2)−10% 𝑁�(𝛼𝛽)−10% 𝑁�(𝛼𝛾)−10% 𝑁�(𝛼𝛿)−10% 𝑁�(𝛾𝛿)−10% 

52 14 14 27 27 20 39 14 

𝑁�(𝛼2)−5% 𝑁�(𝛽2)−5% 𝑁�(𝛾2)+5% 𝑁�(𝛿2)−5% 𝑁�(𝛼𝛽)−5% 𝑁�(𝛼𝛾)−5% 𝑁�(𝛼𝛿)−5% 𝑁�(𝛾𝛿)−5% 

106 28 28 54 54 40 79 28 
 
The precision of Table 1 corresponds to absolute errors in small magnitude coefficients and therefore represents 
conservative convergence thresholds. 
 
3.2 Violation of the ‘1/2-rule’ from non-harmful contests 
Recall from Section 2.2, where the polarity of the second order term in (3) was positive according to Corollary 1.1.   
Consider the payoff matrix (1) in which the number of pairwise comparisons �42� = 6. The design of the game as a 
trade-off between cooperation and defection yields the following constraints: (i) 𝛼 > 𝛿; (ii) 𝛿 > 𝛽; (iii) 𝛾 > 𝛿; (iv) 
𝛾 > 𝛼; (v) 𝛼 > 𝛽; and (vi) 𝛾 > 𝛽. Condition (i) prescribes the game as a social dilemma, and (ii) represents non-
harmful contests.  Condition (iii) prescribes rivalry between defectors that causes a reduced payoff due to their 
competitive interaction.  Condition (iv) prescribes the exploitative gain of defectors against cooperators.  Condition (v) 
prescribes the cost cooperators suffer due to the loss of cooperation when they encounter a defector. Condition (vi) 
prescribes the gain of defectors compared to the loss of cooperators from dissimilar strategy encounter.      
    
Define three constants, 0 ≤ 𝑐1, 𝑐2, 𝑐3 ≤ 1, such that condition (iii) implies 𝛿 = 𝑐3𝛾, (iv) 𝛼 = 𝑐1𝛾, and (vi) 𝛽 = 𝑐2𝛾.  
Furthermore, conditions (i) and (ii) imply 𝑐1 > 𝑐3 > 𝑐2. Substitution into the deterministic equilibrium relative 
frequency of cooperation 𝛿−𝛽

𝛼−𝛽−𝛾+𝛿
= 𝑐3−𝑐2

𝑐1−𝑐2−1+𝑐3
⇒ 𝑐1 + 𝑐3 > 1, when 𝑐2 = 0. Note also the risk-dominance inequality 

may be written 𝑐1 + 𝑐2 > 1 + 𝑐3, which yields the contradiction 𝑐1 − 𝑐3 > 1, when 𝑐2 = 0. This contradiction implies 
linear truncation error must exist in derivation.  These non-negligible higher order terms were quantified in Figure 3.     
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Figure-3: Quantified quadratic (second order) and cubic (third order) terms in the ‘1/2-rule’ extension, via inequality 
(3) of Theorem 1. Non-negligible sums, quadratic plus cubic terms, were also quantified.  Setting 𝛽 = 0 and 𝛾 = 1 
simplified the plot in two-dimensions, without loss of generality. Values in parentheses (𝑐1, 𝑐3), increments of 0.1 from 
left to right, where 0 < 𝑐1, 𝑐3 < 1 such that 𝑐1 > 𝑐3, or equivalently 𝛼 > 𝛿.  Necessarily 𝑐1 + 𝑐3 > 1 ensures non-
degenerate deterministic equilibrium relative frequency of cooperation. Selection intensity 𝜎 = 1. Horizontal axis 
represents term value zero.   
 
Hence, according to Corollaries 1.1-2, only non-harmful contests yields violation of the rule.      
 
4. CONCLUSION 
 
Theorem 1 can be used to calibrate selection such that the risk-dominance inequality remains a reasonably valid first 
order truncation. Corollaries 1.1-2 show that weak selection does not always preserve risk-dominance, although the 
corresponding inequality holds in a reduced domain of the payoff matrix. When 𝛼 < 𝛾 and 𝛽 < 𝛿 defectors dominate.  
In this case, the reduced domain proven was such that 1

2
𝛾 < 𝛼 yields violation of the risk-dominance inequality due to 

additional non-negligible terms.  Equivalently, the deterministic relative frequency of co-operation does not equilibrate 
to less than ½. Thus, preservation of the rule required exploitation of cooperators by defectors that exceeds doubled 
payoff.  Therefore, exploitation must be escalated to preserve this evolutionary rule when defectors dominate.  
Otherwise, when 𝛽 > 𝛿, violations of the rule were proven non-existent.  
 
Derived inequality (4) will enable quantification of error thresholds due to second and third order terms as values of the 
payoff matrix entries vary when the selection differential between game strategies 𝜛~𝑁−(1+𝑝), where 0 ≤ 𝑝 ≤ 1. This 
sharpens the calibration of selection that was deduced previously [19]. Note that first derivatives of one singleton 
fixation probability 𝜌𝐶′ (𝜛) and the quotient of singleton fixation probabilities [𝜌𝐶(𝜛)/𝜌𝐷(𝜛)]′ ([19], equations 2.6-9 
and 3.4) convert by insertion of an inner summation within each resultant term of the requisite derivatives of the 
quotient; refer to (5) herein. Higher order derivatives do not convert similarly, due to additional components in the 
singleton fixation probability absent from the quotient derivatives. 
 
Generalization of risk-dominance to multi-player games [3] must account for negligible singleton fixation probabilities 
in at least second order Maclaurin series. Generalizations of risk-dominance may exist within graphical spatially 
structured populations and their effects on fixation probabilities ([6], [12]).  
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