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ABSTRACT 
Frequency-dependent selection between two non-mutating strategies in a Moran model of random genetic drift yields 
a well-known evolutionary rule. When the fixation probability of one strategy exceeds the selectively neutral value, 
being the reciprocal of population size, its relative frequency in the population equilibrates to less than ⅓. Maclaurin 
series of the singleton type fixation probability function calculated at second order enables the convergent domain of 
the payoff matrix to be obtained exactly. Results include identification of the dominant payoff matrix entries at second 
order with respect to potential influence on the stochastic evolution of the game. The extent of violation of this 
evolutionary rule can be shown to depend on the values in the payoff matrix and selection intensity.  Second order 
coefficients obtained by direct calculus and precise algebra yield functions of population size and payoff matrix entries.  
The calculations herein clarify the resultant sensitivity to selection intensity when compared to previous work. Finite 
population size convergence quantifies the applicability of the asymptotic inequalitiy from which the rule derives.  
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1. INTRODUCTION 
 
Fixation probabilities elementary in stochastic processes have led to advances on evolving exchange-value socialization 
([11], [27], [33]). Game-theoretical models being particularly useful for studying the evolutionary dynamics of social 
dilemmas in groups of individuals [2]. Selection intensity between game strategies, on the order of magnitude as the 
reciprocal of population size, accords with the drift-diffusion partial differential equations theory of population genetics 
([18]-[20]). This classic model of random genetic drift in continuous-time (with overlapping generations), akin to the 
discrete-time Wright-Fisher model (with intermittent generations), remains an important idealized ancestral process of 
modern population genetics [34]. The game-theoretical model herein does not require the assumption of a large 
population size, in contrast to the diffusion theory.   
 
Consider an evolutionary game in a finite population analogous to the Moran model of population genetics ([18]-[20]).  
The finite population of size N consists of i players of type C (co-operators) and N-i players of type D (defectors). 
These types do not mutate and thus represent pure strategies. The game involves pair-wise interactions being 
advantageous or disadvantageous between any two players according to a payoff matrix 

 𝐶 𝐷
𝐶
𝐷 �𝛼 𝛽

𝛾 𝛿�
                                                                                               (1) 

 
According to the first row of (1) a co-operator receives payoff α against another co-operator and receives payoff β 
against a defector.  In the second row of (1), a defector receives payoff γ against a co-operator and receives payoff δ 
against another defector.  
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The corresponding evolutionary game represents a social dilemma when α>δ, which ensures that exploitation of co-
operators by defectors eventually yields an overall population fitness decrease as defectors approach fixation.  Denote 
the selective parameter, 0 ≤ 𝜛 ≤ 1, being due to the payoff differential in the game.  Let the fitness of co-operation be 
𝑓𝑖 = 1−𝜛 +𝜛𝐹𝑖, where 𝐹𝑖 = 1

𝑁−1
[𝛼(𝑖 − 1) + 𝛽(𝑁 − 𝑖)].  Let the fitness of defection be 𝑔𝑖 = 1−𝜛 + 𝜛𝐺𝑖, where  

𝐺𝑖 = 1
𝑁−1

[𝛾𝑖 + 𝛿(𝑁 − 𝑖 − 1)]. Thus, 𝐹𝑖 and 𝐺𝑖 define the expected payoffs to players of type C and type D, 
respectively.  Let 𝜌𝐶(𝜛) = 1/[1 + ℎ(𝜛)] denote the fixation probability of a singleton type C individual in the 
population of size N, where  ℎ(𝜛) = ∑ ∏ 𝑔𝑖

𝑓𝑖

𝑗
𝑖=1

𝑁−1
𝑗=1 .   This result of stochastic processes ([9], Section 4.7) thus extends 

to frequency-dependent selection in the Moran model [22].   
 
The fixation probabilities of singleton types in this model yields an evolutionary rule [21], obtained in the limit of a 
large population size.  The second order Maclaurin series of 𝜌𝐶 equals 𝜌𝐶(𝜛) ≈ 𝜌𝐶(0) +𝜛[𝜌𝐶′ (𝜛)]𝜛=0 +
𝜛2

2
[𝜌𝐶′′(𝜛)]𝜛=0, where prime denotes differentiation with respect to 𝜛. Derivatives must be evaluated at 𝜛 = 0, 

whereas convergence of the resultant second order term in the limit of a large population size requires non-zero values, 
𝜛 = 𝜎/𝑁.  Where σ denotes non-negative selection intensity.  Linear truncation of the Maclaurin series yields the  
‘1/3-rule’ [21], 𝜌𝐶(𝜛) > 1

𝑁
⇒ 𝛿−𝛽

𝛼−𝛽−𝛾+𝛿
< 1

3
, since [𝜌𝐶′ (𝜛)]𝜛=0 = 𝛼

6
�1− 2

𝑁
�+ 𝛽

6
�2− 1

𝑁
� − 𝛾

6
�1 + 1

𝑁
� − 𝛿

6
�2− 4

𝑁
�.           

Note that 𝜌𝐶(0) = 𝜌𝐷(0) = 1
𝑁

, the singleton type fixation probability under selective neutrality in a population of size 
N.  This evolutionary rule, in which the population relative frequency of co-operation equilibrates to less than one-third, 
has attracted research on frequency-dependent selection and random genetic drift ([3], [5], [14], [15], [24], [30]).  In 
Section 2.1, the set of second order Maclaurin series coefficients for 𝜌𝐶(𝜛) will be obtained.  Applicability of the ‘1/3-
rule’ remains with respect to the conundrum of evolved cooperation as an evolutionary stable strategy [23].  When 
defection confers advantage to the individual and cooperation confers individual disadvantage the common good or 
group selection must be invoked to explain altruistic behaviour, which represents an age-old problem of theoretical 
socio-biology [32].   
 
This rule has endured in the literature of evolutionary game theory ([6], [31]) without analytical proof, except in one 
special case ([1], [25]). Computer simulation studies ([28], [29]) and early heuristic analyses ([8], [35]) had supported 
the validity of this rule in two-player games.  Implications for the validity of the ‘1/3-rule’ therein with generalized 
selection intensity are found to require modification in the Moran model, according to Theorem 1 in the present article.  
In theoretical socio-biology the two-player game rules are axiomatic for generalized rules in multi-player evolutionary 
games ([10], [12], [16]).  To obtain these generalizations heuristics that simplify fixation probability truncate Maclaurin 
series at first order. A previous article [26] contains further details of the background theory that supplements this 
Introduction section. The calculations in Section 2.1, parts (i)-(x), of the present article yield a complete solution to the 
second order coefficients that supplant the heuristic coefficients proposed earlier [35].   

 
2. EXTEND THE ‘1/3 - RULE’ TO SECOND ORDER WITH MACLAURIN SERIES OF SINGLETON 
FIXATION PROBABILITY 
 
The calculations in Section 2.1 parts (i) - (x) culminate in proof of Theorem 1 that describes the quadratic limiting 
dominant term of the inequality from which the ‘1/3-rule’ derives. This requires the Maclaurin series of 𝜌𝐶(𝜛) up to 
second order. Theorem 1 implicitly describes the analytical convergent domain where the ‘1/3-rule’ remains valid. 
 
Theorem 1: Let 𝜌𝐶(𝜛) > 1

𝑁
. Then, in the limit of a large population size, the ‘1/3-rule’ at second order yields an 

inequality 
𝛿−𝛽

𝛼−𝛽−𝛾+𝛿
< 1

3
+ 𝜎

𝛼−𝛽−𝛾+𝛿
� 𝛼

2

180
+ 4𝛽2

45
+ 𝛾2

180
+ 4𝛿2

45
+ 13𝛼𝛽

180
− 𝛼𝛾

90
− 13𝛼𝛿

180
− 13𝛽𝛾

180
− 8𝛽𝛿

45
+ 13𝛾𝛿

180
�                                      (2) 

 
Remarks 1:  

I. Equal payoff matrix entries, 𝛼 = 𝛽 = 𝛾 = 𝛿, corresponds to selective neutrality. In that case, the fixation 
probability then equals 1/N the zeroth order term in the Maclaurin series.  Furthermore, at finite population 
size N, the entire set of second order coefficients that are derived in Section 2.1 that comprise the proof of 
Theorem 1 sum to zero.   

II. According to inequality (2), the total value of the second order term shown being negative reduces the 
corresponding upper bound of the inequality such that the ‘1/3-rule’ holds. Alternatively, the total value of the 
second order term shown being positive increases the corresponding upper bound of the inequality which 
violates the ‘1/3-rule’.   

III. Inequality (2) yields immediately the dominant entries of the payoff matrix (1) are β and δ, due to their 
product having the coefficient of largest magnitude. Comparison of both rows and both diagonals in (1) 
reveals symmetric influence, whereas column two �∙ 𝛽

∙ 𝛿
� clearly dominates column one �

𝛼 .
𝛾 .�.  
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2.1 Calibration of the ‘1/3-rule’ at second order requires ten quadratic coefficients  
 
Proof of Theorem 1:   
 
The second order coefficients require calculation of [𝜌𝐶′′(𝜛)]𝜛=0 = [−𝑁−2ℎ′′(𝜛) + 2𝑁−3{ℎ′(𝜛)}2]𝜛=0. A special 
case [1] that simplifies the payoff matrix 𝛽 = 𝛾, 𝛿 = (𝛼 + 𝛽)/2  obtains second order coefficients in the Maclaurin 
series of 𝜌𝐶 that equal (𝛼 − 𝛽)2/120.               
 
The following summation ([26], equation 2.9) must be calculated to obtain the second derivative of the fixation 
probability  

[ℎ′′(𝜛)]𝜛=0 = ∑ ��∑ 𝐺𝑗 − 𝐹𝑗𝑖
𝑗=1 �2 +∑ 2𝐺𝑗 − 2𝐹𝑗 + 𝐹𝑗2 − 𝐺𝑗2𝑖

𝑗=1 �𝑁−1
𝑖=1                                                                     (3) 

 
After substitution of 𝐹𝑗  and 𝐺𝑗 , the next step calculates the entire summation of (3) that equals 

∑ �(𝑁 − 1)−2�∑ 𝛾𝑗 + 𝛿(𝑁 − 𝑗 − 1)− 𝛼(𝑗 − 1) − 𝛽(𝑁 − 𝑗)𝑖
𝑗=1 �2�𝑁−1

𝑖=1   
+2(𝑁 − 1)−1 ∑ (𝛾𝑗 + 𝛿(𝑁 − 𝑗 − 1) − 𝛼(𝑗 − 1) − 𝛽(𝑁 − 𝑗))𝑖

𝑗=1   
� +(𝑁 − 1)−2 ∑ ({𝛼(𝑗 − 1) + 𝛽(𝑁 − 𝑗)}2 − {𝛾𝑗 + 𝛿(𝑁− 𝑗 − 1)}2)𝑖

𝑗=1 �                              (4) 
Consider separately each of the ten quadratic coefficients that arise from the first and third inner summations of (4): 
 
(i) Note the coefficient of 𝛼2 herein corrects earlier work [26, equation (2.10)] that had an error of algebra. The 
coefficient of 𝛼2 from −𝑁−2ℎ′′(𝜛) equals  

−1
𝑁2(𝑁−1)2

∑ �𝑖
2(𝑖−1)2

4
+ 𝑖(𝑖−1)(2𝑖−1)

6
� = −1

𝑁2(𝑁−1)2
∑ �𝑖

4

4
− 𝑖3

6
− 𝑖2

4
+ 𝑖

6
�𝑁−1

𝑖=1
𝑁−1
𝑖=1   

                                                             = −1
𝑁2(𝑁−1)2

�𝑁(𝑁−1)(2𝑁−1)�3𝑁2−3𝑁−1�
120

− 𝑁2(𝑁−1)2

24
− 𝑁(𝑁−1)(2𝑁−1)

24
+ 𝑁(𝑁−1)

12
� 

                                                             = −1
𝑁(𝑁−1)

�6𝑁
3−9𝑁2+𝑁+1

120
− 𝑁2−𝑁

24
− 2𝑁−1

24
+ 1

12
� = −1

𝑁(𝑁−1)
�𝑁

3

20
− 7𝑁2

60
− 𝑁

30
+ 2

15
�     (5) 

Calculation of the index powers summations in (5) and those proceeding in this Section may be obtained with sums of 
descending factorials ([26], p. 657; [7], equation 2.50).  
 
For instance,∑ 𝑖4𝑁−1

𝑖=1 = ∑ 𝑖(4) + 6𝑖(3) + 7𝑖(2) + 𝑖(1) = 1
5
𝑁(5) + 3

2
𝑁(4) + 7

3
𝑁(3) + 1

2
𝑁(2)

𝑁−1
𝑖=1 ,  

where 𝑖(𝑚) = 𝑖(𝑖 − 1)⋯ (𝑖 − 𝑚 + 1).  These summations require a little algebra to get the succinct function of N for 
each power term shown on the middle line of (5).  These formulae can also be readily verified by successive evaluation 
for increasing values of N.  Namely, the summation of the fourth index power shown equals 1, 17, 98, 354, …; for 
𝑁 = 2, 3, 4, 5, … .   
 
The part of the coefficient of 𝛼2 from  2

𝑁3
[ℎ′(𝜛)𝜛=0]2 equals 

2
𝑁3

1
4

 �𝑁
2

3
− 2𝑁

3
�
2

=  (𝑁−2)2

18𝑁
= 𝑁3−5𝑁2+8𝑁−4

18𝑁(𝑁−1)
.                                                                                                                (6) 

Therefore, (5) plus (6) yields the total coefficient of 𝛼2  
−1

𝑁(𝑁−1)
�𝑁3 � 1

20
− 1

18
� − 𝑁2 � 7

60
− 5

18
� − 𝑁� 1

30
+ 4

9
� + 2

15
+ 2

9
� = 1

𝑁(𝑁−1)
� 𝑁

3

180
− 29𝑁2

180
+ 43𝑁

90
− 16

45
�.                            (7) 

 
Multiply (7) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛼2 equals 𝜎

360
; 

 
(ii) The coefficient of 𝛽2 from −𝑁−2ℎ′′(𝜛) equals  

−1
𝑁2(𝑁−1)2

∑ �1
4
𝑖4 − �𝑁 − 5

6
� 𝑖3 + �𝑁2 − 2𝑁 + 3

4
� 𝑖2 + �𝑁2 − 𝑁 + 1

6
� 𝑖�𝑁−1

𝑖=1   

 = −1
𝑁(𝑁−1)

�(2𝑁−1)�3𝑁2−3𝑁−1�
120

− �𝑁 − 5
6
� 𝑁(𝑁−1)

4
+ �𝑁2 − 2𝑁 + 3

4
� 2𝑁−1

6
+ �𝑁2 − 𝑁 + 1

6
� 1
2
 � 

 = −1
𝑁(𝑁−1)

�2𝑁
3

15
+ 𝑁2

20
− 7𝑁

60
− 1

30
�                                                                                                             (8)  

 
The part of the coefficient of 𝛽2 from  2

𝑁3
[ℎ′(𝜛)𝜛=0]2 equals 

 2
𝑁3
�𝑁

2

3
− 𝑁

6
�
2

=  (2𝑁−1)2

18𝑁
= 4𝑁3−8𝑁2+5𝑁−1

18𝑁(𝑁−1)
                                                                                                                 (9) 

 
Therefore, (8) plus (9) yields the total coefficient of 𝛽2  

−1
𝑁(𝑁−1)

�𝑁3 � 2
15
− 2

9
� +𝑁2 � 1

20
+ 4

9
� − 𝑁 � 7

60
+ 5

18
� − 1

30
+ 1

18
� = 1

𝑁(𝑁−1)
�4𝑁

3

45
− 89𝑁2

180
+ 71𝑁

180
− 1

45
�                           (10) 

 
Multiply (10) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛽2 equals 2𝜎

45
; 
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(iii) The coefficient of 𝛾2 from −𝑁−2ℎ′′(𝜛) equals 

−1
𝑁2(𝑁−1)2

∑ �𝑖
2(𝑖+1)2

4
− 𝑖(𝑖+1)(2𝑖+1)

6
�𝑁−1

𝑖=1  = −1
𝑁2(𝑁−1)2

�𝑁(𝑁−1)(2𝑁−1)�3𝑁2−3𝑁−1�
120

+ 𝑁2(𝑁−1)2

24
− 𝑁(𝑁−1)(2𝑁−1)

24
− 𝑁(𝑁−1)

12
�  

                                                            = −1
𝑁(𝑁−1)

�𝑁
3

20
− 𝑁2

30
− 7𝑁

60
− 1

30
�                                                                             (11) 

The part of the coefficient of 𝛾2 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
2
𝑁3

1
4
�𝑁

2

3
+ 𝑁

3
�
2

=  (𝑁+1)2

18𝑁
= 𝑁3+𝑁2−𝑁−1

18𝑁(𝑁−1)
                                                                                                                    (12) 

Therefore, (11) plus (12) yields the total coefficient of 𝛾2  
−1

𝑁(𝑁−1)
�𝑁3 � 1

20
− 1

18
� − 𝑁2 � 1

30
+ 1

18
� − 𝑁� 7

60
− 1

18
� − 1

30
+ 1

18
� = 1

𝑁(𝑁−1)
� 𝑁

3

180
+ 4𝑁2

45
+ 11𝑁

180
− 1

45
�.                        (13) 

 
Multiply (13) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛾2 equals 𝜎

360
; 

 
(iv) The coefficient of 𝛿2 from −𝑁−2ℎ′′(𝜛) equals  

−1
𝑁2(𝑁−1)2

∑ �1
4
𝑖4 − �𝑁 − 7

6
� 𝑖3 + �𝑁2 − 2𝑁 + 3

4
� 𝑖2 − �𝑁2 − 3𝑁 + 13

6
� 𝑖�𝑁−1

𝑖=1   

= −1
𝑁(𝑁−1)

�(2𝑁−1)�3𝑁2−3𝑁−1�
120

− �𝑁 − 7
6
� 𝑁(𝑁−1)

4
+ �𝑁2 − 2𝑁 + 3

4
� 2𝑁−1

6
− �𝑁2 − 3𝑁 + 13

6
� 1
2
 �  

= −1
𝑁(𝑁−1)

�2𝑁
3

15
− 13𝑁2

15
+ 9𝑁

5
− 6

5
�                                                                                                          (14)  

The part of the coefficient of 𝛿2 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 

 2
𝑁3
�𝑁

2

3
− 2𝑁

3
�
2

=  2(𝑁−2)2

9𝑁
= 2(𝑁3−5𝑁2+8𝑁−4)

9𝑁(𝑁−1)
                                                                                                           (15) 

Therefore, (14) plus (15) yields the total coefficient of 𝛿2  
−1

𝑁(𝑁−1)
�𝑁3 � 2

15
− 2

9
� − 𝑁2 �13

15
− 10

9
� +𝑁 �9

5
− 16

9
� − 6

5
+ 8

9
� = 1

𝑁(𝑁−1)
�4𝑁

3

45
− 11𝑁2

45
− 𝑁

45
+ 14

45
�                                (16) 

 
Multiply (16) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛿2 equals 2𝜎

45
; 

 
(v) The coefficient of 𝛼𝛽 from −𝑁−2ℎ′′(𝜛) equals 

−2
 𝑁2(𝑁−1)2

∑ �− 𝑖4

4
+ (3𝑁 − 2)  𝑖3

6
+ 𝑖2

4
− (3𝑁 − 2) 𝑖

6
�𝑁−1

𝑖=1   

= −2
𝑁(𝑁−1)

�− (2𝑁−1)�3𝑁2−3𝑁−1�
120

+ (3𝑁−2)𝑁(𝑁−1)
24

+ 2𝑁−1
24

− 3𝑁−2
12

� = −2
𝑁(𝑁−1)

�3𝑁
3

40
− 2𝑁2

15
− 11𝑁

120
+ 7

60
�     (17) 

The part of the coefficient of 𝛼𝛽 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
2
𝑁3
�𝑁

2

3
− 2𝑁

3
� �𝑁

2

3
− 𝑁

6
� =  (𝑁−2)(2𝑁−1)

9𝑁
= 2𝑁3−7𝑁2+7𝑁−2

9𝑁(𝑁−1)
                                                                                          (18) 

Therefore, (17) plus (18) yields the total coefficient of 𝛼𝛽 
−2

𝑁(𝑁−1)
�𝑁3 � 3

40
− 1

9
� − 𝑁2 � 2

15
− 7

18
� − 𝑁 � 11

120
+ 7

18
� − 7

60
+ 1

9
� = 2

𝑁(𝑁−1)
�13𝑁

3

360
− 23𝑁2

90
+ 173𝑁

360
− 41

180
�                    (19) 

 
Multiply (19) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant term coefficient of 𝛼𝛽 equals 13𝜎

360
; 

 
(vi) The coefficient of 𝛼𝛾 from −𝑁−2ℎ′′(𝜛) equals 

−2
𝑁2(𝑁−1)2

∑ �− 𝑖(𝑖+1)
2

𝑖(𝑖−1)
2
�𝑁−1

𝑖=1 = 1
𝑁(𝑁−1)

�6𝑁
3−9𝑁2+𝑁+1

60
− 2𝑁−1

12
� = 1

𝑁(𝑁−1)
�𝑁

3

10
− 3𝑁2

20
− 3𝑁

20
+ 1

10
�                             (20) 

The part of the coefficient of 𝛼𝛾 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
−2
𝑁3

1
2
�𝑁

2

3
+ 𝑁

3
� �𝑁

2

3
− 2𝑁

3
� =  − (𝑁+1)(𝑁−2)

9𝑁
= −𝑁3+2𝑁2+𝑁−2

9𝑁(𝑁−1)
                                                                                       (21) 

Therefore, (20) plus (21) yields the total coefficient of 𝛼𝛾 
1

𝑁(𝑁−1)
�𝑁3 � 1

10
− 1

9
� − 𝑁2 � 3

20
− 2

9
� − 𝑁 � 3

20
− 1

9
� + 1

10
− 2

9
� = 1

𝑁(𝑁−1)
�−𝑁3

90
+ 13𝑁2

180
− 7𝑁

180
− 11

90
�                            (22) 

 
Multiply (22) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛼𝛾 equals −𝜎

180
; 

 
(vii) The coefficient of 𝛼𝛿 from −𝑁−2ℎ′′(𝜛) equals 

2
𝑁2(𝑁−1)2

∑ �(𝑁−1)𝑖2(𝑖−1)
2

− 𝑖2(𝑖2−1)
4

�𝑁−1
𝑖=1  = 2

𝑁(𝑁−1)
�− (2𝑁−1)(3𝑁2−3𝑁−1)

120
+ 𝑁(𝑁−1)2

8
− (2𝑁−3)(2𝑁−1)

24
�  

                                                               = 2
𝑁(𝑁−1)

�3𝑁
3

40
− 41𝑁2

120
+ 27𝑁

60
− 2

15
�                                                             (23) 

The part of the coefficient of 𝛼𝛿 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
−2
𝑁3
�𝑁

2

3
− 2𝑁

3
�
2

=  −2(𝑁−2)2

9𝑁
= 2(−𝑁3+5𝑁2−8𝑁+4)

9𝑁(𝑁−1)
                                                                                                        (24) 
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Therefore, (23) plus (24) yields the total coefficient of 𝛼𝛿 

2
𝑁(𝑁−1)

�𝑁3 � 3
40
− 1

9
� − 𝑁2 � 41

120
− 5

9
� +𝑁 �27

60
− 8

9
� − 2

15
+ 4

9
� = 2

𝑁(𝑁−1)
�− 13𝑁3

360
+ 77𝑁2

360
− 79𝑁

180
+ 14

45
�                       (25)  

 
Multiply (25) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛼𝛿 equals −13𝜎

360
; 

 
(viii) The coefficient of 𝛽𝛾 from −𝑁−2ℎ′′(𝜛) equals 

2
𝑁2(𝑁−1)2

∑ �𝑁𝑖
2(𝑖+1)
2

− 𝑖2(𝑖+1)2

4
�𝑁−1

𝑖=1 = 2
𝑁(𝑁−1)

�− (2𝑁−1)�3𝑁2−3𝑁−1�
120

+ 𝑁(𝑁−1)2

8
+ (2𝑁−1)2

24
�  

                                                        = 2
𝑁(𝑁−1)

�3𝑁
3

40
− 𝑁2

120
− 𝑁

20
+ 1

30
�                                                                         (26) 

The part of the coefficient of 𝛽𝛾 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
−2
𝑁3
�𝑁

2

3
+ 𝑁

3
� �𝑁

2

3
− 𝑁

6
� =  − (𝑁+1)(2𝑁−1)

9𝑁
= −2𝑁3+𝑁2+2𝑁−1

9𝑁(𝑁−1)
                                                                                        (27) 

Therefore, (26) plus (27) yields the total coefficient of 𝛽𝛾 
2

𝑁(𝑁−1)
�𝑁3 � 3

40
− 1

9
� − 𝑁2 � 1

120
− 1

18
� − 𝑁� 1

20
− 1

9
� + 1

30
− 1

18
� = 2

𝑁(𝑁−1)
�− 13𝑁3

360
+ 17𝑁2

360
+ 11𝑁

180
− 1

45
�                    (28) 

 
Multiply (28) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛽𝛾 equals −13𝜎

360
; 

 
(ix) The coefficient of 𝛽𝛿 from −𝑁−2ℎ′′(𝜛) equals 

2
𝑁2(𝑁−1)2

∑ �𝑖
4

4
− (𝑁 − 1)𝑖3 + �2𝑁2 − 4𝑁 + 3

2
� 𝑖

2

2
�𝑁−1

𝑖=1   

                        = 2
𝑁(𝑁−1)

�(2𝑁−1)�3𝑁2−3𝑁−1�
120

− 𝑁(𝑁−1)2

4
+

�2𝑁2−4𝑁+32�(2𝑁−1)

12
� = 2

𝑁(𝑁−1)
�2𝑁

3

15
− 49𝑁2

120
+ 41𝑁

120
− 7

60
�     (29) 

The part of the coefficient of 𝛽𝛿 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
−2(2)
𝑁3

�𝑁
2

3
− 2𝑁

3
� �𝑁

2

3
− 𝑁

6
� =  − 2(𝑁−2)(2𝑁−1)

9𝑁
= 2(−2𝑁3+7𝑁2−7𝑁+2)

9𝑁(𝑁−1)
                                                                           (30) 

Therefore, (29) plus (30) yields the total coefficient of 𝛽𝛿 
2

𝑁(𝑁−1)
�𝑁3 � 2

15
− 2

9
� − 𝑁2 � 49

120
− 7

9
� +𝑁 � 41

120
− 7

9
� − 7

60
+ 2

9
� = 2

𝑁(𝑁−1)
�− 4𝑁3

45
+ 133𝑁2

360
− 157𝑁

360
+ 19

180
�                  (31) 

 
Multiply (31) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛽𝛿 equals −4𝜎

45
; 

 
(x) The coefficient of 𝛾𝛿 from −𝑁−2ℎ′′(𝜛) equals 

−2
𝑁2(𝑁−1)2

∑ �− 𝑖4

4
+ �𝑁

2
− 2

3
� 𝑖3 + 𝑖2

4
− �𝑁

2
− 2

3
� 𝑖�𝑁−1

𝑖=1   

              = 2
𝑁(𝑁−1)

�(2𝑁−1)�3𝑁2−3𝑁−1�
120

− �𝑁
2
− 2

3
� 𝑁(𝑁−1)

4
− 2𝑁−1

24
+ �𝑁

2
− 2

3
� 1
2
 � = 2

𝑁(𝑁−1)
�−3𝑁

3

40
+ 13𝑁2

60
+ 𝑁

120
− 17

60
�  (32)  

The part of the coefficient of 𝛾𝛿 from  2
𝑁3

[ℎ′(𝜛)𝜛=0]2 equals 
2
𝑁3
�𝑁

2

3
+ 𝑁

3
� �𝑁

2

3
− 2𝑁

3
� =  2(𝑁+1)(𝑁−2)

9𝑁
= 2(𝑁3−2𝑁2−𝑁+2)

9𝑁(𝑁−1)
                                                                                          (33) 

Therefore, (32) plus (33) yields the total coefficient of 𝛾𝛿 
2

𝑁(𝑁−1)
�𝑁3 �−3

40
+ 1

9
� +𝑁2 �13

60
− 2

9
�+ 𝑁� 1

120
− 1

9
� − 17

60
+ 2

9
� = 2

𝑁(𝑁−1)
�13𝑁

3

360
− 𝑁2

180
− 37𝑁

360
− 11

180
�                           (34) 

 
Multiply (34) by 𝜛/2 and in the limit 𝑁 → ∞ the dominant coefficient of 𝛾𝛿 equals 13𝜎

360
. 

 
Gather the limiting dominant terms of (7), (10), (13), (16), (19), (22), (25), (28), (31) and (34).  Their sum yields the 
asymptotic form of the second order contribution to the ‘1/3-rule’ inequality.  The Maclaurin series at second order 
after cancellations of the zeroth order term, and the common factor 𝜛 of the first and second order terms, yields the 
simplified inequality 

0 < 𝜌𝐶′ (𝜛)|(𝜛=0) + 𝜛
2
�𝜌𝐶′′(𝜛)|(𝜛=0)�                                                                                                                      (35) 

 
Next, the common factor ⅙  of the first derivative cancels out as a divisor of the second derivative from (35) in 
derivation of the ‘1/3-rule’.  Therefore, in the limit of a large population size, 
0 < 𝛼 + 2𝛽 − 𝛾 − 2𝛿 + 𝜎

60
(𝛼2 + 16𝛽2 + 𝛾2 + 16𝛿2 + 13𝛼𝛽 − 2𝛼𝛾 − 13𝛼𝛿 − 13𝛽𝛾 − 32𝛽𝛿 + 13𝛾𝛿). 

Straightforward rearrangement of that just derived to obtain the standard form of the ‘1/3-rule’ yields Inequality (2).    
This completes the proof of Theorem 1, Q.E.D.  
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2.2 Finite population size convergence  

Competitive and localized sociological interactions were always a raison d’être of biological game theory that 
often models evolutionary dynamics with small population sizes ([2]). The formulae derived in parts (i)-(x) of Section 
2.1 enable evaluation of population size reduction disparate with the asymptotic inequality, since the second order 
Maclaurin series coefficients fall short of limiting values. Models of strongly localized groups require a plausible 
greatest lower bound on population size such that the evolutionary rule remains meaningful; refer to Figures 1 and 2.  

 
Figure-1:  Formulae (7), (10), (13) and (16) when population size 𝑁 = 2, 3, … , 100 yield the coefficients of 𝛼2, 𝛽2, 𝛾2 
and 𝛿2, respectively.  These squared coefficients quantify negligibility of second order Maclaurin series for the 
singleton fixation probability.  In derivation of the ‘1/3-rule’, common factors ⅙  and 𝜛 of the first order term are 
divisors of the second order term. Thus, the quantities evaluated in this plot are constituents of 3𝜛[𝜌𝐶′′(𝜛)]𝜛=0.  
According to Theorem 1, negligibility of the asymptotic values shown determines the validity of the ‘1/3-rule’.  
Selection intensity 𝜎 = 1.   

 
 
Figure-2: Formulae (19), (22), (25), (28), (31) and (34) evaluated when population size 𝑁 = 2, 3, … , 100 yield the 
coefficients of 𝛼𝛽, 𝛼𝛾, 𝛼𝛿, 𝛽𝛾, 𝛽𝛿 (lowest curve) and 𝛾𝛿 (highest curve), respectively.  These non-squared coefficients 
quantify negligibility of second order Maclaurin series for the singleton fixation probability. In derivation of the ‘1/3-
rule’, common factors ⅙  and 𝜛 of the first order term are divisors of the second order term. Thus, the quantities 
evaluated in this plot are constituents of 3𝜛[𝜌𝐶′′(𝜛)]𝜛=0. According to Theorem 1, negligibility of the asymptotic 
values shown determines the validity of the ‘1/3-rule’.  Selection intensity 𝜎 = 1.   
 
Convergence of the ‘1/3-rule’ quadratic coefficients can be quantified as in Figures 1 and 2, the continuation of 
which Table 1 summarizes. 
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Table-1:  Convergence of the Maclaurin series second order coefficients from (35), evaluated as N increases. Set 
selection intensity 𝜎 = 1.  Evaluation of formulae (7), (10), (16), (19), (22), (25), (28) and (31), when all multiplied by 
½, yield the corresponding coefficients of 𝛼2, 𝛽2, 𝛿2 𝛼𝛽, 𝛼𝛾, 𝛼𝛿, 𝛽𝛾 and 𝛽𝛿. The population sizes shown in the Table 
correspond to a minimum 90% of the asymptotic coefficient values.  Note that 𝛼𝛾,𝛼𝛿,𝛽𝛾 and 𝛽𝛿 have negative valued 
coefficients.  Similarly, multiplied by ½, formula (13) of coefficient 𝛾2 and (34) of 𝛾𝛿 converge from above; maximum  
110% of their asymptotic values at the population sizes shown.   
 

𝑁�(𝛼2)−10% 𝑁�(𝛽2)−10% 𝑁�(𝛾2)+10% 𝑁�(𝛿2)−10% 
278 46 172 19 

 
𝑁�(𝛼𝛽)−10% 𝑁�(𝛼𝛾)−10% 𝑁�(𝛼𝛿)−10% 𝑁�(𝛽𝛾)−10% 𝑁�(𝛽𝛿)−10% 𝑁�(𝛾𝛿)+10% 

60 56 48 7 31 4 
 
The precision of Table 1 corresponds to absolute errors in small magnitude coefficients and therefore represent 
conservative convergence thresholds. The selection intensity being a linear scale factor the convergence behaviour of 
Table 1 should be robust under varied settings of σ, with the same convergence thresholds.    
 
3. CONCLUSION 
 
Theorem 1 restricts the ‘1/3-rule’ such that selection intensity 𝜛~𝑁−(1+𝑝), where 0 ≤ 𝑝 ≤ 1. Such calibrations can be 
deduced that render the corresponding violations of this evolutionary rule at second order of negligible magnitude.  
This sharpens the calibration of the selection intensity obtained previously [26]. Quantitative analysis of error 
thresholds when violation of this rule occurs will clarify this qualitative statement on selection intensity. 
 
Earlier work ([35], equation 19) proposed a dominant quadratic term of the singleton fixation probability series that 
resembles that obtained from (3) herein, namely [𝑢2(𝑁 + 1)(𝑁 + 2) + 15𝑢𝑣(𝑁 + 1) + 30𝑣2] (𝑁−1)(𝑁−2)

360
, where  

𝑢 = (𝑎 − 𝑏 − 𝑐 + 𝑑)/(𝑁 − 1) and 𝑣 = (𝑁𝑏 − 𝑁𝑑 − 𝑎 + 𝑑)/(𝑁− 1).  This almost yields an asymptotically correct 
leading order result with inaccuracies that diminish as finite population size N increases, except that it also inflates the 
result by an order of magnitude in N.  Conversely, their lower order terms ([35], equation 19) remain unrecognizable by 
comparison with those obtained from the precise algebra in parts (i)-(x) of Section 2.1 herein. Their generalization 
([35], equation 19) also includes an ill-defined heuristic multiplicative factor [𝑓′(0)]2, where 𝑓(𝛽𝜋) is said to define 
any function of the product of selection intensity 𝛽 and payoff π (in their notation).  Whilst their appendix equation 
(A.4) does present the correct third order series of the singleton fixation probability that agreed with further calculus, 
subsequent errors of algebra and a heuristic generalized payoff function incur disagreement.   
 
The work herein suggests a variety of further investigations on mathematical heuristics and alternative statistical 
processes with which this evolutionary rule arises. These include application of matrix analysis methods [8] and the 
Kingman coalescent of population genetics [13].  Evolutionary stability concepts in biological games often utilize drift-
diffusion partial differential equations [4].  Diffusion theory approaches to the evolutionary rule considered herein have 
suggested robustness that extends to strong selection [36]. The ‘1/3-rule’ observed in simulation studies where 
alternative statistical processes model frequency-dependent selection [17] raises further questions about the generality 
of this evolutionary rule.   
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