A. DURAI BASKAR ${ }^{1}$, A. RAJESH KANNAN*2 ${ }^{* 2}$ AND R. RATHA JAYALAKSHMI ${ }^{3}$

${ }^{1}$ Research Scholar of Mathematics, Bharathiar University, Coimbatore - 641 046, Tamilnadu, India.
2,3Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India.

(Received On: 19-11-18; Revised \& Accepted On: 17-01-19)

Abstract

A function f is called a logarithmic mean labeling of a graph $G(V, E)$ with p vertices and q edges if $f: V(G) \rightarrow$ $\{1,2,3, \ldots, q+1\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ defined as $$
f^{*}(u v)=\left|\frac{f(v)-f(u)}{\ln f(v)-\ln f(u)}\right|, \text { for all } u v \in E(G),
$$ is bijective. A graph that admits a logarithmic mean labeling is called a logarithmic mean graph. In this paper, we have discussed the logarithmic meanness of the graphs path P_{n}, the star graph $S_{n}, P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right), T W\left(P_{n}\right)$, the graph $P_{n} e S_{m}$, the graph $\left[P_{n} ; S_{m}\right]$, square graph of a path, total graph of a path, middle graph of a path, the graph $P(1,2,3, \ldots, n-1)$, the graph $S\left(P_{n} \circ K_{1}\right)$ and the arbitrary subdivision of S_{3}.

Keywords: labeling, logarithmic mean labeling, logarithmic mean graph.
2010 Mathematics Subject Classification: 05C78.

1. INTRODUCTION

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology, we follow [4]. For a detailed survey on graph labeling we refer to [3].

Path on n vertices is denoted by $P_{n} . K_{1, n}$ is called a star graph and it is denoted by S_{n}. A tree is a connected acyclic graph. $P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a tree obtained from a path on n vertices by attaching X_{i} pendent vertices at each $i^{\text {th }}$ vertex of the path, for $1 \leq i \leq n$. A Twig $T W\left(P_{n}\right), n \geq 3$ is a graph obtained from a path by attaching exactly two pendant vertices to each internal vertices of the path. If $v_{1}^{(i)}, v_{2}^{(i)}, v_{3}^{(i)}, \ldots, v_{m+1}^{(i)}$ and $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the star graph S_{m} and the path P_{n}, then the graph [$P_{n} ; S_{m}$] is obtained from n copies of S_{m} and the path P_{n} by joining u_{i} with the central vertex $v_{1}^{(i)}$ of the $i^{\text {th }}$ copy of S_{m} by means of an edge, for $1 \leq i \leq n$. The corona $G_{1} \circ G_{2}$ is a graph obtained by taking one copy of G_{1} of order p_{1} and p_{1} copies of G_{2} and then joining the $i^{t h}$ vertex of G_{1} with every vertex in the $i^{\text {th }}$ copy of G_{2}. The graph $P_{n} \circ K_{1}$ is called as comb. When $G_{2}=\overline{K_{m}}$, then the graph $G_{1} \circ G_{2}$ is denoted as $G_{1} \mathrm{e} S_{m}$. Square of a graph G, denoted by G^{2}, has the vertex set as in G and two vertices are adjacent in G^{2} if they are at a distance either 1 or 2 apart in G. The total graph $T(G)$ of a graph G is the graph whose vertex set is $V(G) \cup$ $E(G)$ and two vertices are adjacent if and only if either they are adjacent vertices of G or adjacent edges of G or one is a vertex of G and the other one is an edge incident on it. The middle graph $M(G)$ of a graph G is the graph whose vertex set is $\{v: v \in V(G)\} \cup\{e: e \in E(G)\}$ and the edge set is $\left\{e_{1} e_{2}: e_{1}, e_{2} \in E(G)\right.$ and e_{1} and e_{2} are adjacent edges of $\left.G\right\}$ $\cup\{v e: v \in V(G), e \in E(G)$ and e is incident with $v\}$. For a graph G the graph $S(G)$ is obtained by subdividing each edge of G by a vertex. An arbitrary subdivision of a graph G is a graph obtained from G by a sequence of elementary subdivisions forming edges into paths through new vertices of degree 2 . An arbitrary super subdivision $P\left(m_{1}, m_{2}, \ldots, m_{n-1}\right)$ of a path P_{n} is a graph obtained by replacing each $i^{\text {th }}$ edge of P_{n} by identifying its end vertices of the edge with a partition of $K_{2, m_{i}}$ having 2 elements, where m_{i} is any positive integer.

[^0]
A. Durai Baskar ${ }^{1}$, A. Rajesh Kannan $*^{2}$ and R. Ratha Jayalakshmi ${ }^{3}$ /

Logarithmic Mean Labeling of Path Related Graphs / IJMA- 10(1), Jan.-2019.
The concept of mean labeling was first introduced by S. Somasundaram and R. Ponraj [5] and it was developed in [6]. Similarly the concept of F-geometric mean labeling was first introduced by A. Durai Baskar et al. [1] and it was developed in [2].

Motivated by the works of so many authors in the area of graph labeling, we introduced a new type of labeling called logarithmic mean labeling. A function f is called a logarithmic mean labeling of a graph $G(V, E)$ if $f: V(G) \rightarrow$ $\{1,2,3, \ldots, q+1\}$ is injective and the induced function $f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ defined as

$$
f^{*}(u v)=\left\lfloor\frac{f(v)-f(u)}{\ln f(v)-\ln f(u)}\right\rfloor, \text { for all } u v \in E(G)
$$

is bijective. A graph that admits a logarithmic mean labeling is called a logarithmic mean graph.

Figure-1.1: A logarithmic mean graph
In this paper, we have obtained the logarithmic meanness of the graphs path P_{n}, the star graph $S_{n}, P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$, $T W\left(P_{n}\right)$, the graph P_{n} e S_{m}, the graph $\left[P_{n} ; S_{m}\right]$, square graph of a path, total graph of a path, middle graph of a path, the graph $P(1,2,3, \ldots, n-1)$, the graph $S\left(P_{n} \circ K_{1}\right)$ and the arbitrary subdivision of S_{3}.

2. MAIN RESULTS

Theorem 2.1: Every path is a logarithmic mean graph.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}. We define $f: V\left(P_{n}\right) \rightarrow\{1,2, \ldots, n\}$ as follows $f\left(v_{i}\right)=i$, for $1 \leq i \leq n$. The induced edge labeling is as follows $f^{*}\left(v_{i} v_{i+1}\right)=i$, for $1 \leq i \leq n-1$. Hence f is a logarithmic mean labeling of the path P_{n}. Thus the path P_{n} is a logarithmic mean graph.

Figure-2.1: A logarithmic mean labeling of P_{7}.
Theorem 2.2: Union of any two trees is not a logarithmic mean graph.
Proof: Let G be the union of two trees S and T, then $|V(G)|=|V(S)|+|V(T)|$ and $|E(G)|=|E(S)|+|E(T)|=$ $|V(S)|+|V(T)|-2$. Since $|V(G)|>|E(G)|+1$, a logarithmic mean labeling does not exist on $V(G)$.

Corollary 2.3: Any forest is not a logarithmic mean graph.
Proof: By the above Theorem 2.2, the result follows.
Theorem 2.4: The star graph S_{n} is a logarithmic mean graph if and only if $n \leq 3$.
Proof: The number of vertices and edges of S_{n} are $n+1$ and n respectively. If f is a logarithmic mean labeling of S_{n}, then it is a bijective function from $V\left(S_{n}\right)$ to $\{1,2, \ldots, n+1\}$. As we have to label 1 for an edge, the vertex labels of its pair of adjacent vertices are either 1 and 2 or 1 and 3 . So, the central vertex of S_{n} is labeled as either 1 or 2 or 3.1 can not be a label for the central vertex in case of $n \geq 2$, since two of the pendant vertices of S_{n} are to be labeled as 2 and 3 . When $n \geq 3$, 2 cannot be the label for the central vertex, since two of its pendant vertices having the labels 3 and 4 . When $n \geq 4$, the pendant vertices are labeled to be 4 and 5 if the label of central vertex is 3 .

Figure-2.2: A logarithmic mean labeling of $S_{n}, n \leq 3$.

Theorem 2.5: $P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a logarithmic mean graph, for $1 \leq X_{i} \leq 3$ and $\left|X_{i}-X_{i+1}\right| \leq 1$, for $1 \leq i \leq n$.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n}. Let $v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{X_{i}}^{(i)}$ be the pendant vertices attached at u_{i}, for $1 \leq i \leq n$.
Define $f: V\left(P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right) \rightarrow\left\{1,2,3, \ldots, \sum_{i=1}^{n} X_{i}+n\right\}$ as follows:
$f\left(v_{1}^{(1)}\right)=1, f\left(v_{i}^{(1)}\right)=\sum_{k=1}^{i-1} X_{k}+i$, for $2 \leq i \leq n$,
for $2 \leq i \leq n$,

$$
f\left(v_{i}^{(j)}\right)= \begin{cases}f\left(v_{i}^{(1)}\right)+2 & X_{i}=2 \text { and } j=2 \\ f\left(v_{i}^{(1)}\right)+1 & X_{i}=3 \text { and } j=2 \\ f\left(v_{i}^{(1)}\right)+3 & X_{i}=3 \text { and } j=3\end{cases}
$$

for $1 \leq i \leq n$,

$$
f\left(u_{i}\right)= \begin{cases}f\left(v_{i}^{(1)}\right)+1 & X_{i}=1,2 \\ f\left(v_{i}^{(1)}\right)+2 & X_{i}=3\end{cases}
$$

The induced edge labeling is as follows:
for $1 \leq i \leq n-1$,

$$
f^{*}\left(u_{i} u_{i+1}\right)= \begin{cases}f\left(u_{i}\right) & X_{i}=1 \\ f\left(u_{i}\right)+1 & X_{i}=2,3\end{cases}
$$

for $1 \leq i \leq n$,

$$
f^{*}\left(v_{i}^{(1)} u_{i}\right)=f\left(v_{i}^{(1)}\right) \text { and }
$$

for $1 \leq i \leq n$,

$$
f^{*}\left(v_{i}^{(j)} u_{i}\right)= \begin{cases}f\left(u_{i}\right) & X_{i}=2 \text { and } j=2 \\ f\left(u_{i}\right)-1 & X_{i}=3 \text { and } j=2 \\ f\left(u_{i}\right) & X_{i}=3 \text { and } j=3\end{cases}
$$

Hence, f is a logarithmic mean labeling of $P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. Thus the graph $P_{n}\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a logarithmic mean graph for $1 \leq X_{i} \leq 3$ and $\left|X_{i}-X_{i+1}\right| \leq 1$.

Figure-2.3: A logarithmic mean labeling of $P_{6}(2,1,2,3,3,2)$
Corollary 2.6: $T W\left(P_{n}\right)$ is a logarithmic mean graph for $m \leq 3$.
Corollary 2.7: $P_{n} \circ S_{m}$ is a logarithmic mean graph for $m \leq 3$.
Theorem 2.8: $\left[P_{n} ; S_{m}\right]$ is a logarithmic mean graph, for $m \leq 2$ and $n \geq 1$.
Proof: Let $u_{1}, u_{2}, \ldots, u_{n}$ be the vertices of the path P_{n} and Let $v_{1}^{(i)}, v_{2}^{(i)}, \ldots, v_{m+1}^{(i)}$ be the vertices of the star graph S_{m} such that $v_{1}^{(i)}$ is the central vertex of S_{m}, for $1 \leq i \leq n$.

Case-i. $m=1$.
Define $f: V\left(\left[P_{n} ; S_{m}\right]\right) \rightarrow\{1,2,3, \ldots, 3 n\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}3 i & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i-2 & 1 \leq i \leq n \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{1}^{(i)}\right)=3 i-1, \text { for } 1 \leq i \leq n \text { and } \\
& f\left(v_{2}^{(i)}\right)= \begin{cases}3 i-2 & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{gathered}
f^{*}\left(u_{i} u_{i+1}\right)=3 i, \text { for } \\
f^{*}\left(u_{i} v_{1}^{(i)}\right)= \begin{cases}3 i-1 & 1 \leq i \leq n-1, \\
3 i-2 & 1 \leq i \leq n \text { and } i \text { is odd }\end{cases} \\
\text { and } f^{*}\left(v_{1}^{(i)} v_{2}^{(i)}\right)= \begin{cases}3 i-2 & 1 \leq i \leq n \text { and } i \text { is odd } \\
3 i-1 & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{gathered}
$$

Case-ii. $m=2$.
Define $f: V\left(\left[P_{n} ; S_{m}\right]\right) \rightarrow\{1,2,3, \ldots, 4 n\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)= \begin{cases}4 i & 1 \leq i \leq n \text { and } i \text { is odd } \\
4 i-2 & 1 \leq i \leq n \text { and } i \text { is even, }\end{cases} \\
& f\left(v_{1}^{(i)}\right)=4 i-1, \text { for } \quad 1 \leq i \leq n \text {, } \\
& f\left(v_{2}^{(i)}\right)=4 i-3, \text { for } \quad 1 \leq i \leq n \text { and } \\
& f\left(v_{3}^{(i)}\right)= \begin{cases}4 i-2 & 1 \leq i \leq n \text { and } i \text { is odd } \\
4 i & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(u_{i} u_{i+1}\right)=4 i, \text { for } \quad 1 \leq i \leq n-1, \\
& f^{*}\left(u_{i} v_{1}^{(i)}\right)= \begin{cases}4 i-1 & 1 \leq i \leq n \text { and } i \text { is odd } \\
4 i-2 & 1 \leq i \leq n \text { and } i \text { is even }\end{cases} \\
& f^{*}\left(v_{1}^{(i)} v_{2}^{(i)}\right)=4 i-3, \text { for } 1 \leq i \leq n \text { and } \\
& f^{*}\left(v_{1}^{(i)} v_{3}^{(i)}\right)= \begin{cases}4 i-2 & 1 \leq i \leq n \text { and } i \text { is odd } \\
4 i-1 & 1 \leq i \leq n \text { and } i \text { is even. }\end{cases}
\end{aligned}
$$

Hence, f is a logarithmic mean labeling of $\left[P_{n} ; S_{m}\right]$. Thus the graph $\left[P_{n} ; S_{m}\right]$ is a logarithmic mean graph, for $m \leq 2$ and $n \geq 1$.

Figure-2.4: A logarithmic mean labeling of $\left[P_{7} ; S_{1}\right]$ and $\left[P_{8} ; S_{2}\right]$
Theorem 2.9: P_{n}^{2} is a logarithmic mean graph for every $n \geq 3$.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n}.
Define $f: V\left(P_{n}^{2}\right) \rightarrow\{1,2,3, \ldots, 2(n-1)\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=2 i-1, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f\left(v_{n}\right)=2(n-1)
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=2 i-1, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f^{*}\left(v_{i} v_{i+2}\right)=2 i, \text { for } 1 \leq i \leq n-2
\end{aligned}
$$

Hence, f is a logarithmic mean labeling of the graph P_{n}^{2}. Thus the graph P_{n}^{2} is a logarithmic mean graph, for $n \geq 3$.

Figure-2.5: A logarithmic mean labeling of P_{9}^{2}
Theorem 2.10: $T\left(P_{n}\right)$ is a logarithmic mean graph, for any $n \geq 2$.
Proof: Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of the path P_{n}. Then

$$
\begin{aligned}
& V\left(T\left(P_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\} \text { and } \\
& E\left(T\left(P_{n}\right)\right)=\left\{v_{i} v_{i+1}, e_{i} v_{i}, e_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i} e_{i+1} ; 1 \leq i \leq n-2\right\} .
\end{aligned}
$$

Define $f: V\left(T\left(P_{n}\right)\right) \rightarrow\{1,2,3, \ldots, 4(n-1)\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=4 i-3, \text { for } 1 \leq i \leq n-1 \\
& f\left(v_{n}\right)=4 n-4 \text { and } \\
& f\left(e_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i} v_{i+1}\right)=4 i-2, \text { for } 1 \leq i \leq n-1 \\
& f^{*}\left(e_{i} e_{i+1}\right)=4 i \text {, for } 1 \leq i \leq n-2, \\
& f^{*}\left(e_{i} v_{i}\right)=4 i-3, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f^{*}\left(e_{i} v_{i+1}\right)=4 i-1, \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

Hence, f is a logarithmic mean labeling of the graph $T\left(P_{n}\right)$. Thus the graph $T\left(P_{n}\right)$ is a logarithmic mean graph, for $n \geq 2$.

Figure-2.6: A logarithmic mean labeling of $T\left(P_{5}\right)$
Theorem 2.11: The middle graph of a path is a logarithmic mean graph.
Proof: Let $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(P_{n}\right)=\left\{e_{i}=v_{i} v_{i+1} ; 1 \leq i \leq n-1\right\}$ be the vertex set and edge set of the path P_{n}.
Then $V\left(M\left(P_{n}\right)\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}, e_{1}, e_{2}, \ldots, e_{n-1}\right\}$ and

$$
E\left(M\left(P_{n}\right)\right)=\left\{v_{i} e_{i}, e_{i} v_{i+1} ; 1 \leq i \leq n-1\right\} \cup\left\{e_{i} e_{i+1} ; 1 \leq i \leq n-2\right\}
$$

Define $f: V\left(M\left(P_{n}\right)\right) \rightarrow\{1,2, \ldots, 3 n-3\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=3 i-2, \text { for } 1 \leq i \leq n-1 \\
& f\left(v_{n}\right)=3 n-3 \text { and } \\
& f\left(e_{i}\right)=3 i-1, \text { for } 1 \leq i \leq n-1
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i} e_{i}\right)=3 i-2, \text { for } 1 \leq i \leq n-1, \\
& f^{*}\left(e_{i} v_{i+1}\right)=3 i-1, \text { for } 1 \leq i \leq n-1 \text { and } \\
& f^{*}\left(e_{i} e_{i+1}\right)=3 i, \text { for } 1 \leq i \leq n-2
\end{aligned}
$$

Hence, f is a logarithmic mean labeling of the middle graph $M\left(P_{n}\right)$. Thus the middle graph $M\left(P_{n}\right)$ is a logarithmic mean graph.

Figure-2.7: A logarithmic mean labeling of $M\left(P_{6}\right)$
Theorem 2.12: For any $n \geq 2, P(1,2,3, \ldots, n-1)$ is a logarithmic mean graph.
Proof: Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of the path P_{n} and let $u_{i j}$ be the vertices of the partition of $K_{2, m_{i}}$ with cardinality $m_{i}, 1 \leq i \leq n-1$ and $1 \leq j \leq m_{i}$.
Define $f: V(P(1,2, \ldots, n-1)) \rightarrow\{1,2,3, \ldots, n(n-1)+1\}$ as follows:

$$
\begin{aligned}
& f\left(v_{i}\right)=i(i-1)+1, \text { for } 1 \leq i \leq n \text { and } \\
& f\left(u_{i j}\right)=i(i-1)+2 j, \text { for } 1 \leq j \leq i \text { and } 1 \leq i \leq n-1 .
\end{aligned}
$$

The induced edge labeling is as follows:
$f^{*}\left(v_{i} u_{i j}\right)=i(i-1)+j$, for $1 \leq j \leq i$ and $1 \leq i \leq n-1$ and
$f^{*}\left(u_{i j} v_{i+1}\right)=i^{2}+j$, for $1 \leq j \leq i$ and $1 \leq i \leq n-1$.
Hence, f is a logarithmic mean labeling of the graph $P(1,2, \ldots, n-1)$. Thus the graph $P(1,2, \ldots, n-1)$ is a logarithmic mean graph.

A. Durai Baskar ${ }^{1}$, A. Rajesh Kannan* ${ }^{2}$ and R. Ratha Jayalakshmi ${ }^{3}$ /

 Logarithmic Mean Labeling of Path Related Graphs / IJMA- 10(1), Jan.-2019.

Figure-2.8: A logarithmic mean labeling of $P(1,2,3,4,5)$
Theorem 2.13: $S\left(P_{n} \circ K_{1}\right)$ is a logarithmic mean graph, for $n \geq 2$.
Proof: Let $V\left[P_{n} \circ K_{1}\right]=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$. Let x_{i} be the vertex which divides the edge $u_{i} v_{i}$, for $1 \leq i \leq n$ and y_{i} be the vertex which divides the edge $u_{i} v_{i+1}$, for $1 \leq i \leq n-1$. Then

$$
\begin{aligned}
V\left[S\left(P_{n} \circ K_{1}\right)\right]= & \left\{u_{i}, v_{i}, x_{i}, y_{j} ; 1 \leq i \leq n, 1 \leq j \leq n-1\right\} \text { and } \\
& E\left[S\left(P_{n} \mathrm{e} K_{1}\right)\right]=\left\{u_{i} x_{i}, v_{i} x_{i} ; 1 \leq i \leq n\right\} \cup\left\{u_{i} y_{i}, y_{i} u_{i+1} ; 1 \leq i \leq n-1\right\} .
\end{aligned}
$$

We define $f: V\left[S\left(P_{n} \mathrm{e} K_{1}\right)\right] \rightarrow\{1,2,3, \ldots, 4 n-1\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n, \\
& f\left(y_{i}\right)=4 i+1, \text { for } 1 \leq i \leq n-1, \\
& f\left(x_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n \text { and } \\
& f\left(v_{i}\right)= \begin{cases}1 & i=1 \\
4 i-4 & 2 \leq i \leq n\end{cases}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(u_{i} y_{i}\right)=4 i-1, \text { for } 1 \leq i \leq n-1 \\
& f^{*}\left(y_{i} u_{i+1}\right)=4 i+1, \text { for } 1 \leq i \leq n-1 \\
& f^{*}\left(u_{i} x_{i}\right)=4 i-2, \text { for } 1 \leq i \leq n \text { and } \\
& f^{*}\left(v_{i} x_{i}\right)= \begin{cases}1 & i=1 \\
4 i-4 & 2 \leq i \leq n .\end{cases}
\end{aligned}
$$

Hence f is a logarithmic mean labeling of $S\left(P_{n} \circ K_{1}\right)$. Thus the graph $S\left(P_{n} \circ K_{1}\right)$ is a logarithmic mean graph, for $n \geq 2$.

Figure-2.9: A logarithmic mean labeling of $S\left(P_{5} \circ K_{1}\right)$.
Theorem 2.14: Arbitrary subdivision of S_{3} is a logarithmic mean graph.
Proof: Let G be a graph of arbitrary subdivision of S_{3}. Let v_{0}, v_{1}, v_{2} and v_{3} be the vertices of G in which v_{0} is the central vertex and v_{1}, v_{2} and v_{3} are the pendant vertices of S_{3}. Let the edges $v_{0} v_{1}, v_{0} v_{2}$ and $v_{0} v_{3}$ of S_{3} be subdivided by p_{1}, p_{2} and p_{3} number of vertices respectively.

Let $v_{0}, v_{1}^{(1)}, v_{2}^{(1)}, v_{3}^{(1)}, \ldots, v_{p_{1}+1}^{(1)}\left(=v_{1}\right), v_{0}, v_{1}^{(2)}, v_{2}^{(2)}, v_{3}^{(2)}, \ldots, v_{p_{2}+1}^{(2)}\left(=v_{2}\right)$ and $v_{0}, v_{1}^{(3)}, v_{2}^{(3)}, v_{3}^{(3)}, \ldots, v_{p_{3}+1}^{(3)}\left(=v_{3}\right)$ be the vertices of G and $v_{0}=v_{0}^{(i)}$, for $1 \leq i \leq 3$.

Let $e_{j}^{(i)}=v_{j-1}^{(i)} v_{j}^{(i)}, 1 \leq j \leq p_{i}+1$ and $1 \leq i \leq 3$ be the edges of G and it has $p_{1}+p_{2}+p_{3}+4$ vertices and $p_{1}+p_{2}+p_{3}+3$ edges with $p_{1} \leq p_{2} \leq p_{3}$.

Define $f: V(G) \rightarrow\left\{1,2,3, \ldots, p_{1}+p_{2}+p_{3}+4\right\}$ as follows:

$$
\begin{aligned}
& f\left(v_{0}\right)=p_{1}+p_{2}+3, \\
& f\left(v_{i}^{(1)}\right)=p_{1}+p_{2}+4-2 i, \text { for } 1 \leq i \leq p_{1}+1, \\
& f\left(v_{i}^{(2)}\right)= \begin{cases}p_{1}+p_{2}+3-2 i & 1 \leq i \leq p_{1}+1 \\
p_{2}+2-i & p_{1}+2 \leq i \leq p_{2}+1 \text { and } \\
f\left(v_{i}^{(3)}\right)=p_{1}+p_{2}+3+i, \text { for } 1 \leq i \leq p_{3}+1 .\end{cases}
\end{aligned}
$$

The induced edge labeling is as follows:

$$
\begin{aligned}
& f^{*}\left(v_{i}^{(1)} v_{i+1}^{(1)}\right)=p_{1}+p_{2}+2-2 i, \text { for } 1 \leq i \leq p_{1}, \\
& f^{*}\left(v_{i}^{(2)} v_{i+1}^{(2)}\right)= \begin{cases}p_{1}+p_{2}+1-2 i & 1 \leq i \leq p_{1} \\
p_{2}+1-i & p_{1}+1 \leq i \leq p_{2}\end{cases} \\
& f^{*}\left(v_{i}^{(3)} v_{i+1}^{(3)}\right)=p_{1}+p_{2}+3+i, \text { for } 1 \leq i \leq p_{3} \\
& f^{*}\left(v_{0} v_{1}^{(1)}\right)=p_{1}+p_{2}+2, \\
& f^{*}\left(v_{0} v_{2}^{(1)}\right)=p_{1}+p_{2}+1 \text { and } \\
& f^{*}\left(v_{0} v_{3}^{(1)}\right)=p_{1}+p_{2}+3 .
\end{aligned}
$$

Hence f is a logarithmic mean labeling of G. Thus the arbitrary subdivision of S_{3} is a logarithmic mean graph.

Figure-2.10: A logarithmic mean labeling of arbitrary subdivision of S_{3}.

REFERENCES

1. A. Durai Baskar, S. Arockiaraj and B. Rajendran, F-Geometric mean labeling of some chain graphs and thorn graphs, Kragujevac Journal of Mathematics, 37 (2013), 163-186.
2. A. Durai Baskar, S. Arockiaraj and B. Rajendran, Geometric meanness of graphs obtained from paths, Utilitas Mathematica, 101 (2016), 45-68.
3. J. A. Gallian, A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17(2017), \#DS6.
4. F. Harary, Graph theory, Addison Wesely, Reading Mass., 1972.
5. S. Somasundaram and R. Ponraj, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210-213.
6. S. Somasundaram and R. Ponraj, Some results on mean graphs, Pure and Applied Mathematika Sciences, 58(2003), 29-35.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2019. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

[^0]: Corresponding Author: A. Rajesh Kannan*2,
 ${ }^{2}$ Department of Mathematics, Mepco Schlenk Engineering College, Sivakasi - 626 005, Tamilnadu, India.

