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ABSTRACT 
A set D of vertices of a jump graph J(G) is a total efiient dominating set, if every vertex in V(J(G)) is adjacent to 
exactly one vertex in D. Total efficient domination number 𝛾teJ(G)) of J(G) is the minimum cardinality of a total 
efficient dominating set of J(G). In this paper the exact values of  𝛾te (J(G)) for some standared graphs are found and 
some bounds are obtained .Also a Nordhus-Gadumm type result is obtained . In addition the total efficient domatic 
number dte(J(G)) of J(G) is defined to be maximum order of a partition of the vertex set of J(G) into total efficient 
dominating set of J(G). Also a relation between (J(G) and  dte(J(G)) is established. 
 
Keywords; Efficient dominating set, total dominating set, total efficient dominating set, total efficient domination 
number. 
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INTRODUCTION 
 
By a graph we mean a finite, undirected without loops multiple edges and isolated vertices Terms undefined here may 
be found in Kulli [1] 
 
A set D of vertices in ajump graph J(G) = (V,E) is called dominating set if every vertex in V-D is adjacent to some 
vertex in D. The domination number 𝛾(J(G)) of graph J(G) is the minimum cardinality of a dominating set of J(G). 
Recently many new domination parameter given by Venkangoud et.al., 
 
A dominating set D of J(G) is an efficient dominating set if every vertex in V – D ia adjacent to exactly one vertex in 
D. The efficient domination number 𝛾e(J(G)) of J(G) is the minimum cardinality of an efficient dominating set of J(G). 
 
Kulli and Patwari [28] introduced the concept of total domination. 
 
A set D of vertices in a graph J(G) is a total efficient dominating set of J(G) if every vertex in V is adjacent to exactly 
one vertex in D. The total efficient domination number 𝛾te(J(G)) of J(G) is the minimum cardinality of a total efficient 
dominating set of J(G). 
 
A 𝛾te-set is a minimum total efficient dominating set. Let ∆(J(G) (δ(J(G))) denote the maximum 9minimum) dgree 
mong the vertices of J(G), let ┌ x ┐ denote the least integer greater than  or equal to x. 
 
We note that 𝛾t(J(GH)) and 𝛾te(J(G)) are only defined for J(G) with δ(J(G)) ≥ 1 
 
2. TOTAL EFFICIENT DOMINATION NUMBER 
 
We list exact values of the total efficient domination number for some standard graphs. 
 
Proposition 1: If Pp is a path with p vertices, then 

𝛾te(J(Pp)) =  ┌  𝑝
2
  ┐  where  p ≡ 0 (mod 4) and  p ≡ 3 (mod 4) 

 
Proposition 2: If Cp is a cycle with p vertices, then  

𝛾te(J(Cp)) =  𝑝
2
  when p ≡ 0 (mod 4) 
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Proposition 3: If Km,n is a complete biparatite graph  1 ≤ m ≤ n, then 

𝛾te (J(Km,n)) = 2 
 
Remark 4: Every graph J(G) without isolated vertices does not contain a total efficient dominating set. It implies that 
𝛾te(J(G)) does not exist. 
 
Proposition 5: If Kp is a complete graph with  p ≥ 3 vertices, then 𝛾te (J(Kp)) does not exist. 
 
Proposition 6: If 𝛾te(J(G)) exists, then 

𝛾t(J(G)) ≤ 𝛾te(J(G))  and this bound is sharp. 
 
Proof: Clearly every efficient total dominating set is an efficient dominating set, thus the above inequality holds 
 
The complete bipartite graphs Km,n 1 ≤ m ≤ n achieve this bound. 
 
Proposition 7: If 𝛾te(J(G)) exists, then 

𝛾t(J(G) )  ≤ 𝛾te(J(G))  and this bound is sharp. 
 
Proof: Clearly every efficient total dominating set is an efficient dominating set, thus the above inequality holds 
The complete bipartite graphs Km,n 2 ≤ m ≤ n achieve this bound. 
 
Theorem 8: Let J(G) be a (p, q) connected graph with p ≥ 2 vertices, Then  

2(p – q) ≤ 𝛾te(J(G)) . 
 
Furthermore inequality holds if and only if J(G) is a tree with exactly one cut vertex or exactly two cut vertices. 
 
Proof: Let  D be a –set of J(G). Then for each vertex u ∈ V – D, there exists a vertex v in D such that uv ∈ E Also for 
each vertex x ∈ D, there exists unique vertex y ∈ D such that xy ∈ E. Then  
       q  ≥ |𝐷|

2
 + |V – D| 

or   2q ≥ |D| + 2|v –D| 
or   2q ≥ 𝛾te(J(G)) + 2p – 2 𝛾te((J(G)) 
or   2(q– P) ≤ 𝛾te(J(G)) 
 
We prove the second part. 
 
Suppose J(G) is a tree with exactly one cut vertex or two cut vertices. 
Then   𝛾te(J(G)) = 2= 2(p – q), since p – q = 1 
 
Conversely suppose 𝛾te(J(G)) = 2(p – q),. We now prove that J(G) is a tree with at most two cut vertices. Clearly for 
any graph without isolated vertices, 𝛾te(J(G))  ≥ 2 
 
Suppose p < q. Then 2(p – q) is negative, which is a contradiction. 
 
Suppose p = q. Then 2(p – q) is zero, which is contradiction. 
 
Suppose p>q. Since J(G) is connected, it implies that J(G) is a tree with exactly 3 vertices, then t Remark 4  𝛾te(J(G)) 
does not exist. If J(G) is a tree with at least 4 cut vertices  then  𝛾te(J(G)) ≥4 ≠2(p – q), since p – q=1. Thus we conclude 
that J(G) is a tree with at most two cut vertices. 
 
Next we characterize graphs for which  𝛾te(J(G))=p. 
 
Theorem 9: Let J(G) be a graph without isolated vertices and with p ≥ 2 vertices. Thus 𝛾te(J(G)) =p if and only if  
J(G) = mK2, m ≥ 1. 
 
Proof: Suppose J(G)= mK2, m≥ 1. Obviously 𝛾te(J(G)) = p 
 
Conversely Suppose 𝛾te(J(G)) =p We now prove that J(G)= mK2, m ≥ 1. Assume J(G) ≠ mK2

. Then degG u ≥ 2 .Let D 
be a 𝛾te(J(G)) –set of J(G). Since 𝛾te(J(G)) =p, it implies that |V – D | = ɸ . Hence u ∈ D. Since degGu ≥ 2, it implies that 
u is adjacent with at least two vertices in D, which is a contradiction. Suppose degG u < 1. Then u is an isolated vertex, 
again a contradiction.  
 
Thus degG u = 1 Since u is arbitrary6, it follow that J(G)= mK2, m≥ 1. 
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The following theorem gives a lower bound for 𝛾te(J(T)). 
 
Theorem 10 :  Let J(T) be a tree with p ≥ 3 vertices, If 𝛾te(J(T)) exists, then 

𝛾te(J(T)) ≤ ┌  𝑚
2

  ┐ + 1 
Where m is the number of cut vertex of J(T). 
 
Proof:  Let J(T) be a  tree with p ≥ 3 vertices Suppose 𝛾te(J(T)) exists. We now prove that 𝛾te(J(T)) ≤ ┌ 𝑚

2
 ┐ + 1. On the 

contrary, assume 𝛾te(J(T)) ≤ ┌ 𝑚
2

 ┐+1. Then there exist 3 cut vertices u, v, w in D such that uv, vw are edges of J(T) 
whee D is a  𝛾te-set  of J(T). By remark 4  𝛾te(J(T)) does not exist which is a contradiction. This prove that   
 𝛾te(J(T))  ≤  ┌  𝑚

2
  ┐ + 1. 

 
Nordhaus-Gaddum type results were obtained for many parameters for example, in [30, 31, 32, 33, 34, 35, 36]. 
 
Now we establish Nordhaus-Gaddum type result. 
 
Theorem 11: Let J(G) and J(�̅� ) have no isolated vertices. If both 𝛾te(J(G)) and 𝛾te(J(�̅�)) exist, then  

4 ≤ 𝛾te(J(G)) +  𝛾te(J(�̅�)). ≤ p+3. 
 
Proof: Let J(G) and J(�̅� ) have no isolated vertices. If both 𝛾te(J(G)) and 𝛾te(J(�̅�)) exist, then 𝛾te(J(G)) ≥ 2 and  
 𝛾te(J(�̅�)) ≥ 2 Therefore  4 ≤  𝛾te(J(G)) +  𝛾te(J(�̅�)). 
 
We have    𝛾te(J(G)) ≤ p - ∆(J(G)) + 1 
 
Therefore   𝛾te(J(G)) ≤ p – δ(J(G)) + 1 
 
Also we have   𝛾te(J(�̅�)) ≤ p - ∆(�̅� ) + 1 
 
Thus         𝛾te(J(G))  + 𝛾te(J(�̅�)) ≤ 2p –  [δ(J(G)) +  ∆(�̅� ) ] + 2 
                                                  ≤ p – ( p – 1 ) + 2 
                                                  ≤ p + 3 
The graph P4 achieves the lower bound. 
 
3. TOTAL EFFICIENT DOMATIC NUMBER 
 
Definition 12: The total efficient dogmatic number dte(J(G)) for some standard graphs. 
 
Proposition 13: For any cycle C4n, n≥ 1 

dte(J(C4n)) = 2 
 
Proposition 14: For any complete bipartite graph Km,n  1 ≤ m ≤ n 

dte(J(Km,n)) = m 
 
Proposition 15: For any tree T with p ≥ 2 vertices, 

dte(J(T)) = 1 
 
Proposition 16: Let J(G) be a graph without isolated vertices, If 𝛾te(J(G)) exists, then 

dte(J(G)) ≤   
                                               𝛾te(J(G)) 

  P 

 
Proposition 17: Let J(G) be a graph without isolated vertices If  dte(J(G)) exists, then 

dte(J(G)) ≤ δ(J(G)). 
 
Proposition 18: If J(G) is a graph without isolated vertices and if 𝛾te(J(G)) exists, then 

𝛾te(J(G))  + dte(J(G))  ≤ p + 1. 
 
Furthermore, equality holds if J(G) = mK2  m ≥ 1 
 
Proof: By theorem 11  we have 
                     𝛾te(J(G)) ≤ p - ∆(J(G)) + 1 
 Or                𝛾te(J(G)) ≤ p – δ(J(G)) + 1 
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By proposition 17 we have  𝛾te(J(G))  ≤ δ(J(G)). 
 
Hence     𝛾te(J(G)) + dte(J(G)) ≤ p + 1. 
 
We pove the second part. 
 
If J(G) = mK2, m ≥ 1 then  by theoem9, 𝛾te(J(G)) = p. Also dte(J(G)) = 1  
 
Thus 𝛾te(J(G)) + dte(J(G)) = p + 1. 
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