International Journal of Mathematical Archive-9(12), 2018, 41-49
 IMA Available online through www.ijma.info ISSN 2229-5046

ON F-LEAP INDICES AND F-LEAP POLYNOMIALS OF SOME GRAPHS

V. R. KULLI
Department of Mathematics, Gulbarga University, Gulbarga 585106, India.

(Received On: 17-11-18; Revised \& Accepted On: 10-12-18)

Abstract

We introduce the F-leap and F_{1}-leap indices of a graph. In this paper, the F-leap and F_{1}-leap indices and their polynomials of wheel graphs, gear graphs, helm graphs, flower graphs and sunflower graphs are determined.

Keywords: F-leap index, F_{1}-leap index, wheel, helm graph, flower graph.
Mathematics Subject Classification: 05C07, 05C12, 05C76.

1. INTRODUCTION

We consider only finite, connected, undirected graphs without multiple edges and loops. Let G be a graph with a vertex set $V(G)$ and an edge set $E(G)$. Let $d(v)$ be the number of vertices adjacent to v. The distance $d(u, v)$ between any two vertices u and v of G is the number of edges in a shortest path connecting these two vertices u and v. For a positive integer k and a vertex v in G, the open neighborhood of v in G is defined as $N_{k}(v / G)=\{u \in V(G): d(u, v)=k\}$. The k-distance degree of a vertex v in G is the number of k neighbors of v in G, and it is denoted by $d_{k}(v)$, see [1]. Any undefined term here may be found in [2].

In [1], the first leap Zagreb index was introduced based on the second vertex degrees. The first leap Zagreb index of a graph G is defined as

$$
L M_{1}(G)=\sum_{u \in V(G)} d_{2}^{2}(u)
$$

Considering the first leap Zagreb index, we introduce the first leap Zagreb polynomial of a graph G and it is defined as

$$
\begin{equation*}
L M_{1}(G, x)=\sum_{u \in V(G)} x^{d_{2}^{2}(u)} \tag{1}
\end{equation*}
$$

Very recently, some other leap indices were proposed and studied such as leap hyper-Zagreb indices, [3], augmented leap index [4], sum connectivity leap index and geometric-arithmetic leap index [5], minus leap index and square leap index [6].

The F-index was studied by Furtula and Gutman in [7] and it is defined as

$$
F(G)=\sum_{u \in V(G)} d(u)^{3}=\sum_{u v \in E(G)}\left[d(u)^{2}+d(v)^{2}\right] .
$$

The F-index was also studied in $[8,9,10,11,12,13]$.
Motivated by the definition of the F-index and its applications, we introduce the F-leap index and F_{1}-leap index of a graph as follows:

The F-leap index of a graph G is defined as

$$
\begin{equation*}
F L(G)=\sum_{u \in V(G)} d_{2}^{3}(u) \tag{2}
\end{equation*}
$$

V. R. Kulli/ On F-Leap Indices and F-Leap Polynomials of Some Graphs / IJMA- 9(12), Dec.-2018.

Considering the F-leap index, we propose the F-leap polynomial of a graph G as

$$
\begin{equation*}
F L(G, x)=\sum_{u \in V(G)} x^{d_{2}^{3}(u)} \tag{3}
\end{equation*}
$$

The F_{1}-leap index of a graph G is defined as

$$
\begin{equation*}
F_{1} L(G)=\sum_{u v \in E(G)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \tag{4}
\end{equation*}
$$

Considering the F_{1}-leap index, we propose the F_{1}-leap polynomial of a graph G as

$$
\begin{equation*}
F_{1} L(G, x)=\sum_{u v \in E(G)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \tag{5}
\end{equation*}
$$

Recently, some different type of polynomials were studied in [14, 15, 16, 17, 18, 19, 20, 21, 22].
In this paper, we consider wheel graphs and some related graphs, see [23]. We determine the F-leap and F_{1}-leap indices and their polynomials of wheel graphs and some related graphs.

2. RESULTS FOR WHEELS

The wheel W_{n} is the join of C_{n} and K_{1}. Clearly W_{n} has $n+1$ vertices and $2 n$ edges. The vertex K_{1} is called apex and the vertices of C_{n} are called rim vertices. The graph W_{n} is presented in Figure 1.

Figure-1: Wheel W_{n}
Lemma 1: Let W_{n} be a wheel with $n+1$ vertices, $n \geq 3$. Then there are two types of the 2-distance degree of vertices as given below:

$$
\begin{array}{ll}
V_{1}=\left\{u \in V\left(W_{n}\right) \mid d_{2}(u)=0\right\}, & \left|V_{1}\right|=1 . \\
V_{2}=\left\{u \in V\left(W_{n}\right) \mid d_{2}(u)=n-3\right\}, & \left|V_{2}\right|=n .
\end{array}
$$

Lemma 2: Let W_{n} be a wheel with $n+1$ vertices, $n \geq 3$. Then there are two types of the 2-distance degree of edges as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(W_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-3\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(W_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-3\right\}, & \left|E_{2}\right|=n .
\end{array}
$$

Theorem 3: Let W_{n} be a wheel with $n+1$ vertices, $n \geq 3$. Then the F-leap index of W_{n} is

$$
F L\left(W_{n}\right)=n(n-3)^{3}
$$

Proof: From equation (2) and by Lemma 1, we deduce

$$
\begin{aligned}
F L\left(W_{n}\right) & =\sum_{u \in V\left(W_{n}\right)} d_{2}^{3}(u)=\sum_{u \in V_{1}} d_{2}^{3}(u)+\sum_{u \in V_{2}} d_{2}^{3}(u) \\
& =1 \times 0+n(n-3)^{3}=n(n-3)^{3} .
\end{aligned}
$$

Theorem 4: Let W_{n} be a wheel with $n+1$ vertices, $n \geq 3$. Then
(a) $L M_{1}\left(W_{n}, x\right)=x^{0}+n x^{(n-3)^{2}}$.
(b) $F L\left(W_{n}, x\right)=x^{0}+n x^{(n-3)^{3}}$.

Proof:

(a) From equation (1) and by Lemma 1, we have

$$
\begin{aligned}
& L M_{1}\left(W_{n}, x\right)=\sum_{u \in V\left(W_{n}\right)} x^{d_{2}^{2}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{2}(u)} \\
& =x^{0}+n x^{(n-3)^{2}}
\end{aligned}
$$

(b) From equation (3) and by Lemma 1, we obtain

$$
\begin{gathered}
F L\left(W_{n}, x\right)=\sum_{u \in V\left(W_{n}\right)} x^{d_{2}^{3}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)} \\
=x^{0}+n x^{(n-3)^{3}}
\end{gathered}
$$

Theorem 3: Let W_{n} be a wheel with $n+1$ vertices, $n \geq 3$. Then
(a) $F_{1} L\left(W_{n}\right)=3 n(n-3)^{2}$
(b) $F_{1} L\left(W_{n}, x\right)=n x^{(n-3)^{2}}+n x^{2(n-3)^{2}}$.

Proof:

(a) From equation (4) and Lemma 2, we deduce

$$
\begin{aligned}
F_{1} L\left(W_{n}\right) & =\sum_{u v \in E\left(W_{n}\right)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \\
& =n\left[0^{2}+(n-3)^{2}\right]+n\left[(n-3)^{2}+(n-3)^{2}\right]=3 n(n-3)^{2}
\end{aligned}
$$

(b) From equation (5) and by Lemma 2, we derive

$$
\begin{aligned}
F_{1} L\left(W_{n}, x\right) & =\sum_{u v \in E\left(W_{n}\right)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \\
& =n x^{0^{2}+(n-3)^{2}}+n x^{(n-3)^{2}+(n-3)^{2}}=n x^{(n-3)^{2}}+n x^{2(n-3)^{2}}
\end{aligned}
$$

3. RESULTS FOR GEAR GRAPHS

A bipartite wheel graph is a graph obtained from W_{n} with $n+1$ vertices adding a vertex between each pair of adjacent rim vertices and this graph is denoted by G_{n} and also called as a gear graph. Clearly, $\left|V\left(G_{n}\right)\right|=2 n+1$ and $\left|E\left(G_{n}\right)\right|=3 n$. A gear graph G_{n} is depicted in Figure 2.

Figure-2: Gear graph G_{n}
Lemma 6: Let G_{n} be a gear graph with $2 n+1$ vertices, $n \geq 3$. Then G_{n} has three types of the 2-distance degree of vertices as follows:

$$
\begin{array}{lll}
V_{1}=\left\{u \in V\left(G_{n}\right) \mid d_{2}(u)=n\right\}, & & \left|V_{1}\right|=n . \\
V_{2}=\left\{u \in V\left(G_{n}\right) \mid d_{2}(u)=n-1\right\}, & \left|V_{2}\right|=n . \\
V_{3}=\left\{u \in V\left(G_{n}\right) \mid d_{2}(u)=3\right\}, & \left|V_{3}\right|=n .
\end{array}
$$

V. R. Kulli/ On F-Leap Indices and F-Leap Polynomials of Some Graphs / IJMA- 9(12), Dec.-2018.

Lemma 7: Let G_{n} be a gear graph with $3 n$ edges, $n \geq 3$. Then G_{n} has two types of the 2 -distance degree of edges as follows:

$$
\begin{aligned}
& E_{1}=\left\{u \in E\left(G_{n}\right) \mid d_{2}(u)=n, d_{2}(v)=n-1\right\}, \quad\left|E_{1}\right|=n . \\
& E_{2}=\left\{u \in E\left(G_{n}\right) \mid d_{2}(u)=3,, d_{2}(v)=n-1\right\}, \quad\left|E_{2}\right|=2 n .
\end{aligned}
$$

Theorem 8: Let G_{n} be a gear graph with $2 n+1$ vertices, $n \geq 3$. Then the F-leap index of G_{n} is

$$
F L\left(G_{n}\right)=n^{4}-2 n^{3}+3 n^{2}+26 n
$$

Proof: By using equation (2) and by Lemma 6, we have

$$
\begin{aligned}
F L\left(G_{n}\right) & =\sum_{u \in V\left(W_{n}\right)} d_{2}^{3}(u)=\sum_{u \in V_{1}} d_{2}^{3}(u)+\sum_{u \in V_{2}} d_{2}^{3}(u)+\sum_{u \in V_{3}} d_{2}^{3}(u) \\
& =n^{3}+n(n-1)^{3}+n \times 3^{3}=n^{4}-2 n^{3}+3 n^{2}+26 n .
\end{aligned}
$$

Theorem 9: Let G_{n} be a gear graph with $2 n+1$ vertices, $n \geq 3$. Then
(a) $L M_{1}\left(G_{n}, x\right)=x^{n^{2}}+n x^{(n-1)^{2}}+n x^{9}$.
(b) $F L\left(G_{n}, x\right)=x^{n^{3}}+n x^{(n-1)^{3}}+n x^{27}$.

Proof:

(a) By using equation (1) and by Lemma 6, we obtain

$$
\begin{aligned}
L M_{1}\left(G_{n}, x\right) & =\sum_{u \in V\left(G_{n}\right)} x^{d_{2}^{2}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{2}(u)} \\
& =x^{n^{2}}+n x^{(n-1)^{2}}+n x^{9}
\end{aligned}
$$

(b) By using equation (3) and by Lemma 6, we have

$$
\begin{aligned}
F L\left(G_{n}, x\right) & =\sum_{u \in V\left(G_{n}\right)} x^{d_{2}^{3}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{3}(u)} \\
& =x^{n^{3}}+n x^{(n-1)^{3}}+n x^{27}
\end{aligned}
$$

Theorem 10: Let G_{n} be a gear graph with $3 n$ edges, $n \geq 3$. Then
(a) $F_{1} L\left(G_{n}\right)=4 n^{3}-6 n^{2}+21 n$.
(b) $F_{1} L\left(G_{n}, x\right)=n x^{2 n^{2}-2 n+1}+2 n x^{n^{2}-2 n+1}$.

Proof:

(a) From equation (4) and Lemma 7, we deduce

$$
\begin{aligned}
F_{1} L\left(G_{n}\right) & =\sum_{u v \in E\left(G_{n}\right)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \\
& =n\left[n^{2}+(n-1)^{2}\right]+2 n\left[3^{2}+(n-1)^{2}\right]=4 n^{3}-6 n^{2}+21 n
\end{aligned}
$$

(b) From equation (5) and by Lemma 7, we derive

$$
\begin{aligned}
F_{1} L\left(G_{n}, x\right) & =\sum_{u v \in E\left(G_{n}\right)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \\
& =n x^{\left[n^{2}+(n-1)^{2}\right]}+2 n x^{\left[3^{2}+(n-1)^{2}\right]}=n x^{2 n^{2}-2 n+1}+2 n x^{n^{2}-2 n+1}
\end{aligned}
$$

4. RESULTS FOR HELM GRAPHS

The helm graph H_{n} is a graph obtained from W_{n} (with $n+1$ vertices) by attaching an end edge to each rim vertex of W_{n}. Clearly, $\left|V\left(H_{n}\right)\right|=2 n+1$ and $\left|E\left(H_{n}\right)\right|=3 n$. A graph H_{n} is shown in Figure 3.

V. R. Kulli/ On F-Leap Indices and F-Leap Polynomials of Some Graphs / IJMA- 9(12), Dec.-2018.

Figure-3: Helm graph H_{n}
Lemma 11: Let H_{n} be a helm graph with $2 n+1$ vertices, $n \geq 3$. Then H_{n} has three types of the 2-distance degree of vertices as given below:

$$
\begin{array}{ll}
V_{1}=\left\{u \in V\left(H_{n}\right) \mid d_{2}(u)=n\right\}, & \left|V_{1}\right|=1 . \\
V_{2}=\left\{u \in V\left(H_{n}\right) \mid d_{2}(u)=n-1\right\}, & \left|V_{2}\right|=n . \\
V_{3}=\left\{u \in V\left(H_{n}\right) \mid d_{2}(u)=3\right\}, & \left|V_{3}\right|=n .
\end{array}
$$

Lemma 12: Let H_{n} be a helm graph with $3 n$ edges, $n \geq 3$. Then H_{n} has three types of the 2-distance degree of edges as follows:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=n, d_{2}(v)=n-1\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=3, d_{2}(v)=n-1\right\}, & \left|E_{2}\right|=n . \\
E_{3}=\left\{u v \in E\left(H_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-1\right\}, & \left|E_{3}\right|=n .
\end{array}
$$

Theorem 13: Let H_{n} be a helm graph with $2 n+1$ vertices, $n \geq 3$. Then the F-leap index of H_{n} is

$$
F L\left(H_{n}\right)=n^{4}-2 n^{3}+3 n^{2}+26 n
$$

Proof: By using equation (2) and by Lemma 11, we obtain

$$
\begin{aligned}
F L\left(H_{n}\right) & =\sum_{u \in V\left(H_{n}\right)} d_{2}^{3}(u)=\sum_{u \in V_{1}} d_{2}^{3}(u)+\sum_{u \in V_{2}} d_{2}^{3}(u)+\sum_{u \in V_{3}} d_{2}^{3}(u) \\
& =n^{3}+n(n-1)^{3}+n \times 3^{3}=n^{4}-2 n^{3}+3 n^{2}+26 n .
\end{aligned}
$$

Theorem 14: Let H_{n} be a helm graph with $2 n+1$ vertices, $n \geq 3$. Then
(a) $L M_{1}\left(H_{n}, x\right)=x^{n^{2}}+n x^{(n-1)^{2}}+n x^{9}$.
(b) $F L\left(H_{n}, x\right)=x^{n^{3}}+n x^{(n-1)^{3}}+n x^{27}$.

Proof:

(a) By using equation (1) and by Lemma 11, we have

$$
\begin{aligned}
L M_{1}\left(H_{n}, x\right) & =\sum_{u \in V\left(H_{n}\right)} x^{d_{2}^{2}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{2}(u)} \\
& =x^{n^{2}}+n x^{(n-1)^{2}}+n x^{9}
\end{aligned}
$$

(b) From equation (3) and Lemma 11, we duce

$$
\begin{aligned}
F L\left(H_{n}, x\right) & =\sum_{u \in V\left(H_{n}\right)} x^{d_{2}^{3}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{3}(u)} \\
& =x^{n^{3}}+n x^{(n-1)^{3}}+n x^{27}
\end{aligned}
$$

Theorem 15: Let H_{n} be a helm graph with $3 n$ edges, $n \geq 3$. Then
(a) $F_{1} L\left(H_{n}\right)=5 n^{3}-8 n^{2}+13 n$.
(b) $F_{1} L\left(H_{n}, x\right)=n x^{2 n^{2}-2 n+1}+n x^{n^{2}-2 n+10}+n x^{2\left(n^{2}-2 n+1\right)}$.

Proof:

(a) From equation (4) and Lemma 12, we obtain

$$
\begin{aligned}
F_{1} L\left(H_{n}\right) & =\sum_{u v \in E\left(H_{n}\right)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \\
& =n\left[n^{2}+(n-1)^{2}\right]+n\left[3^{2}+(n-1)^{2}\right]+n\left[(n-1)^{2}+(n-1)^{2}\right] \\
& =5 n^{3}-8 n^{2}+13 n .
\end{aligned}
$$

(b) From equation (5) and by Lemma 12, we have

$$
\begin{aligned}
F_{1} L\left(H_{n}, x\right) & =\sum_{u v \in E\left(H_{n}\right)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \\
& =n x^{\left[n^{2}+(n-1)^{2}\right]}+n x^{\left[3^{2}+(n-1)^{2}\right]}+n x^{\left[(n-1)^{2}+(n-1)^{2}\right]} \\
& =n x^{2 n^{2}-2 n+1}+n x^{n^{2}-2 n+10}+2 n x^{2\left(n^{2}-2 n+1\right)}
\end{aligned}
$$

5. RESULTS FOR FLOWER GRAPHS

The graph $F l_{n}$, is a flower graph obtained from a helm graph H_{n} by joining an end vertex to the apex of the helm graph. Then $\left|V\left(F l_{n}\right)\right|=2 n+1$ and $\left|E\left(F l_{n}\right)\right|=4 n$. A graph $F l_{n}$ is shown in Figure 4.

Figure-4: Flower graph $F l_{n}$
Lemma 16: Let $F l_{n}$ be a flower graph with $2 n+1$ vertices, $n \geq 3$. Then $F l_{n}$ has three types of the 2-distance degree of vertices as given below:

$$
\begin{array}{ll}
V_{1}=\left\{u \in E\left(F l_{n}\right) \mid d_{2}(u)=0\right\}, & \left|V_{1}\right|=1 . \\
V_{2}=\left\{u \in E\left(F l_{n}\right) \mid d_{2}(u)=n-5\right\}, & \left|V_{2}\right|=n . \\
V_{3}=\left\{u \in E\left(F l_{n}\right) \mid d_{2}(u)=n-2\right\}, & \left|V_{3}\right|=n .
\end{array}
$$

Lemma 17: Let $F l_{n}$ be a flower graph with $4 n$ edges, $n \geq 3$. Then $F l_{n}$ has four types of the 2-distance degree of edges as follows:

$$
\begin{aligned}
& E_{1}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-5\right\},\left|E_{1}\right|=n . \\
& E_{2}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=n-2\right\},\left|E_{2}\right|=n . \\
& E_{3}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=n-5, d_{2}(v)=n-2\right\},\left|E_{3}\right|=n . \\
& E_{4}=\left\{u v \in E\left(F l_{n}\right) \mid d_{2}(u)=d_{2}(v)=n-5\right\}, \quad\left|E_{4}\right|=n .
\end{aligned}
$$

Theorem 18: Let $F l_{n}$ be a flower graph with $2 n+1$ vertices, $n \geq 3$. Then the F-leap index of $F l_{n}$ is

$$
F L\left(F l_{n}\right)=2 n^{4}-21 n^{3}+87 n^{2}-133 n
$$

Proof: From equation (2) and by Lemma 16, we have

$$
\begin{aligned}
F L\left(F l_{n}\right) & =\sum_{u \in V\left(F l_{n}\right)} d_{2}^{3}(u)=\sum_{u \in V_{1}} d_{2}^{3}(u)+\sum_{u \in V_{2}} d_{2}^{3}(u)+\sum_{u \in V_{3}} d_{2}^{3}(u) \\
& =0+n(n-5)^{3}+n(n-2)^{3}=2 n^{4}-21 n^{3}+87 n^{2}-133 n .
\end{aligned}
$$

Theorem 19: Let $F l_{n}$ be a flower graph with $2 n+1$ vertices, $n \geq 3$. Then
(a) $L M_{1}\left(F l_{n}, x\right)=x^{0}+n x^{(n-5)^{2}}+n x^{(n-2)^{2}}$.
(b) $F L\left(F l_{n}, x\right)=x^{0}+n x^{(n-5)^{3}}+n x^{(n-2)^{3}}$.

Proof:

(a) By using equation (1) and by Lemma 16, we obtain

$$
\begin{aligned}
L M_{1}\left(F l_{n}, x\right) & =\sum_{u \in V\left(F l_{n}\right)} x^{d_{2}^{2}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{2}(u)} \\
& =x^{0}+n x^{(n-5)^{2}}+n x^{(n-2)^{2}}
\end{aligned}
$$

(b) From equation (3) and Lemma 16, we deduce

$$
\begin{aligned}
F L\left(F l_{n}, x\right) & =\sum_{u \in V\left(F l_{n}\right)} x^{d_{2}^{3}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{3}(u)} \\
& =x^{0}+n x^{(n-5)^{3}}+n x^{(x-2)^{3}}
\end{aligned}
$$

Theorem 20: Let $F l_{n}$ be a flower graph with $4 n$ edges, $n \geq 3$. Then
(a) $F_{1} L\left(F l_{n}\right)=6 n^{3}-48 n^{2}+108 n$.
(b) $F_{1} L\left(F l_{n}, x\right)=n x^{n^{2}-10 n+25}+n x^{n^{2}-4 n+4}+n x^{2 n^{2}-14 n+29}+n x^{2 n^{2}-20 n+50}$.

Proof:

(a) From equation (4) and Lemma 17, we deduce

$$
\begin{aligned}
F_{1} L\left(F l_{n}\right)= & \sum_{u v \in E\left(F I_{n}\right)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \\
& =n\left[0^{2}+(n-5)^{2}\right]+n\left[0^{2}+(n-2)^{2}\right]+n\left[(n-5)^{2}+(n-2)^{2}\right] \\
& +n\left[(n-5)^{2}+(n-5)^{2}\right]=6 n^{3}-48 n^{2}+108 n .
\end{aligned}
$$

(b) From equation (5) and by Lemma 17, we derive

$$
\begin{aligned}
F_{1} L\left(F l_{n}, x\right) & =\sum_{u v \in E\left(F l_{n}\right)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \\
& =n x^{\left[0^{2}-(n-5)^{2}\right]}+n x^{\left[0^{2}+(n-2)^{2}\right]}+n x^{\left[(n-5)^{2}+(n-1)^{2}\right]}+n x^{\left[(n-5)^{2}+(n-5)^{2}\right]} \\
& =n x^{n^{2}-10 n+25}+n x^{n^{2}-4 n+4}+n x^{2 n^{2}-14 n+29}+n x^{2 n^{2}-20 n+50}
\end{aligned}
$$

6. RESULTS FOR SUNFLOWER GRAPHS

The graph $S f_{n}$, is a sunflower graph which is obtained from the flower graph $F l_{n}$ by attaching n end edges to the apex vertex. Then we have $\left|V\left(S f_{n}\right)\right|=3 n+1$ and $\left|E\left(S f_{n}\right)\right|=5 n$. A graph $S f_{n}$ is presented in Figure 5.

Figure-5: Sunflower graph $S f_{n}$

Lemma 21: Let $S f_{n}$ be a sunflower graph with $3 n+1$ vertices, $n \geq 3$. Then $S f_{n}$ has four types of the 2 -distance degree of vertices as follows:

$$
\begin{array}{ll}
V_{1}=\left\{u \in E\left(S f_{n}\right) \mid d_{2}(u)=0\right\}, & \left|V_{1}\right|=1 . \\
V_{2}=\left\{u \in E\left(S f_{n}\right) \mid d_{2}(u)=3 n-4\right\}, & \left|V_{2}\right|=n . \\
V_{3}=\left\{u \in E\left(S f_{n}\right) \mid d_{2}(u)=3 n-2\right\}, & \left|V_{3}\right|=n . \\
V_{4}=\left\{u \in E\left(S f_{n}\right) \mid d_{2}(u)=3 n-1\right\}, & \left|V_{4}\right|=n .
\end{array}
$$

Lemma 22: Let $S f_{n}$ be a sunflower graph with $5 n$ edges, $n \geq 3$. Then $S f_{n}$ has five types of the 2-distance degree of edges as given below:

$$
\begin{array}{ll}
E_{1}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-4\right\}, & \left|E_{1}\right|=n . \\
E_{2}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-2\right\}, & \left|E_{2}\right|=n . \\
E_{3}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=0, d_{2}(v)=3 n-1\right\}, & \left|E_{3}\right|=n . \\
E_{4}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=d_{2}(v)=3 n-4\right\},\left|E_{4}\right|=n . \\
E_{5}=\left\{u v \in E\left(S f_{n}\right) \mid d_{2}(u)=3 n-4, d_{2}(v)=3 n-2\right\}, & \left|E_{5}\right|=n .
\end{array}
$$

Theorem 23: Let $S f_{n}$ be a sunflower graph with $3 n+1$ vertices, $n \geq 3$. Then the F-leap index of $S f_{n}$ is

$$
F L\left(S f_{n}\right)=81 n^{4}-189 n^{3}+189 n^{2}-73 n
$$

Proof: From equation (2) and by Lemma 21, we have

$$
\begin{aligned}
F L\left(S f_{n}\right) & =\sum_{u \in V\left(S f_{n}\right)} d_{2}^{3}(u)=\sum_{u \in V_{1}} d_{2}^{3}(u)+\sum_{u \in V_{2}} d_{2}^{3}(u)+\sum_{u \in V_{3}} d_{2}^{3}(u)+\sum_{u \in V_{4}} d_{2}^{3}(u) \\
& =0+n(3 n-4)^{3}+n(3 n-2)^{3}+n(3 n-1)^{3} \\
& =81 n^{4}-189 n^{3}+189 n^{2}-73 n .
\end{aligned}
$$

Theorem 24: Let $S f_{n}$ be a sunflower graph with $3 n+1$ vertices, $n \geq 3$. Then
(a) $L M_{1}\left(S l_{n}, x\right)=x^{0}+n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}$.
(b) $F L\left(S f_{n}, x\right)=x^{0}+n x^{(3 n-4)^{3}}+n x^{(3 n-2)^{3}}+n x^{(3 n-1)^{3}}$.

Proof:

(a) By using equation (1) and by Lemma 21, we derive

$$
\begin{aligned}
L M_{1}\left(S f_{n}, x\right) & =\sum_{u \in V\left(S f_{n}\right)} x^{d_{2}^{2}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{2}(u)}+\sum_{u \in V_{4}} x^{d_{2}^{2}(u)} \\
& =x^{0}+n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}
\end{aligned}
$$

(b) From equation (3) and Lemma 21, we duce

$$
\begin{aligned}
F L\left(S f_{n}, x\right) & =\sum_{u \in V\left(S f_{n}\right)} x^{d_{2}^{3}(u)}=\sum_{u \in V_{1}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{3}} x^{d_{2}^{3}(u)}+\sum_{u \in V_{2}} x^{d_{2}^{3}(u)} \\
& =x^{0}+n x^{(3 n-4)^{3}}+n x^{(3 n-2)^{3}}+n x^{(3 n-1)^{3}}
\end{aligned}
$$

Theorem 25: Let $S f_{n}$ be a sunflower graph with $5 n$ edges, $n \geq 3$. Then
(a) $F_{1} L\left(S f_{n}\right)=63 n^{3}-120 n^{2}+70 n$.
(b) $F_{1} L\left(S f_{n}, x\right)=n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}+n x^{2(3 n-4)^{2}}+n x^{18 n^{2}-30 n+17}$.

Proof:

(a) From equation (4) and Lemma 22, we have

$$
\begin{aligned}
F_{1} L\left(S f_{n}\right)= & \sum_{u v \in E\left(S f_{n}\right)}\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right] \\
= & n\left[0^{2}+(3 n-4)^{2}\right]+n\left[0^{2}+(3 n-2)^{2}\right]+n\left[0^{2}+(3 n-1)^{2}\right] \\
& +n\left[(3 n-4)^{2}+(3 n-4)^{2}\right]+n\left[(3 n-4)^{2}+(3 n-2)^{2}\right] \\
= & 63 n^{3}-120 n^{2}+70 n .
\end{aligned}
$$

(b) From equation (5) and by Lemma 22, we obtain

$$
\begin{aligned}
F_{1} L\left(S f_{n}, x\right) & =\sum_{u v \in E\left(S f_{n}\right)} x^{\left[d_{2}^{2}(u)+d_{2}^{2}(v)\right]} \\
& =n x^{\left[0^{2}+(3 n-4)^{2}\right]}+n x^{\left[0^{2}+(3 n-2)^{2}\right]}+n x^{\left[0^{2}+(3 n-1)^{2}\right]}+n x^{\left[(3 n-4)^{2}+(3 n-4)^{2}\right]}+n x^{\left[(3 n-4)^{2}+(3 n-1)^{2}\right]} \\
& =n x^{(3 n-4)^{2}}+n x^{(3 n-2)^{2}}+n x^{(3 n-1)^{2}}+n x^{2(3 n-4)^{2}}+n x^{18 n^{2}-30 n+17} .
\end{aligned}
$$

REFERENCES

1. A.M. Naji, N.D. Soner and I Gutman, On leap Zagreb indices of graphs, Commun. Comb. Optim. 2 (2017) 99117.
2. V.R.Kulli, College Graph Theory, Vishwa International Publications, Gulbarga, India (2012).
3. V.R.Kulli, Leap hyper-Zagreb indices and their polynomials of certain graphs, International Journal of Current Research in Life Sciences, 7(10) (2018) 2783-2791.
4. V.R. Kulli, On augmented leap index and its polynomial of some wheel graphs, submitted.
5. V.R. Kulli, Sum connectivity leap index and geometric-arithmetic leap indices of certain windmill graphs, submitted.
6. V.R.Kulli, Minus leap and square leap indices and their polynomials of some special graphs, International Research Journal of Pure Algebra, 8(11) (2018) 54-60.
7. B. Furtula and I. Gutman, A forgotten topological index, J. Math. Chem. 53 (2015), 1184-1190.
8. N. De and S.M.A. Nayeem, Computing the F-index of nanostar dendrimers, Pacific Science Review A: Natural Science and Engineering (2016) DOI: http:/dx.doi.org/10.1016/j.psra.2016.06.001.
9. V.R.Kulli, Computation of F-reverse and modified reverse indices of some nanostructures, Annals of Pure and Applied Mathematics, 18(1) (2018) 37-43.
10. V.R.Kulli, Computing the F-ve-degree index and its polynomial of dominating oxide and regular triangulate oxide networks, International Journal of Fuzzy Mathematical Archive, 16(1) (2018) 1-6.
11. V.R. Kulli, Computing F-reverse index and F-reverse polynomial of certain networks, International Journal of Mathematical Archive, 8(8) (2018).
12. V.R. Kulli, Computing the F-Revan index and modified Revan indices of certain nanostructures, Journal of Computer and Mathematical Sciences, 9(10) (2018) 1326-1333.
13. V.R Kulli, Edge version of F-index, general sum connectivity index of certain nanotubes, Annals of Pure and Applied Mathematics, 14(3) (2017) 449-455.
14. V.R. Kulli, General Zagreb polynomials and F-polynomial of certain nanostructures, International Journal of Mathematical Archive, 8(10) (2017) 103-109.
15. V.R.Kulli, Certain topological indices and their polynomials of dendrimer nanostars, Annals of Pure and Applied Mathematics 14(2) (2017) 263-268.
16. V.R.Kulli, General fifth M-Zagreb indices and fifth M-Zagreb polynomials of PAMAM dendrimers, International Journal of Fuzzy Mathematical Archive, 13(1) (2017) 99-103.
17. V.R. Kulli, On augmented reverse index and its polynomial of certain nanostar dendrimers, Journal of Engineering Sciences and Research Technology, 7(8) (2018) 237-243.
18. V.R. Kulli, Reduced second Zagreb index and its polynomial of certain silicate networks, Journal of Mathematics and Informatics, 14 (2018) 11-16.
19. V.R. Kulli, On augmented Revan index and its polynomial of certain families of benzenoid systems, International Journal of Mathematics and its Applications, 6(4) (2018) 43-50.
20. V.R. Kulli, On the square ve-degree index and its polynomial of certain oxide networks, Journal of Global Research in Mathematical Archives, 5(10) (2018) 1-4.
21. V.R. Kulli, On KV indices and their polynomials of two families of dendrimers, International Journal of Current Research in Life Sciences, 7(9) (2018) 2739-2744.
22. V.R. Kulli, Computing square Revan index and its polynomial of certain benzenoid systems, International Journal of Mathematics and its applications, (2018).
23. P. Shiladhar, A.M. Naji and N.D. Soner, Leap Zagreb indices of some wheel related graphs, Journal of Computer and Mathematical Sciences, 9(3) (2018) 221-231.

Source of support: Nil, Conflict of interest: None Declared.

[Copy right © 2018. This is an Open Access article distributed under the terms of the International Journal of Mathematical Archive (IJMA), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.]

