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ABSTRACT 

This paper deals with a production inventory system with retrial of customers under (𝑠,𝑆) policy. The time between 
additions of two successive items by production to the inventory is exponentially distributed. When the inventory level lies 
between  0 and 𝑠, items are produced at higher rate. The higher production rate will reduce customers’ loss in the absence 
of inventory. Arrival of customers is according to a Poisson process and service times are exponentially distributed. An 
arriving customer who finds the server busy or inventory level zero, proceeds to an orbit of infinite capacity and retry from 
there.  Inter-retrial times follow an exponential distribution. Some important system performance measures related to the 
model are defined and analyzed numerically.  A suitable cost function is constructed and its optimum values corresponding 
to different parameters are calculated graphically. The optimum (𝑠, 𝑆) pair is also obtained. 
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1. INTRODUCTION 

 
Research on queuing-inventory systems has got much attention of researchers nowadays. Investigations are being carried 
out on queuing-inventory systems attached with production of items. Different notions such as retrial of the customers, 
impatience of the customers, interruptions of the service as well as the production process are being studied. These 
investigations have applications in all manufacturing industries. Krishnamoorthy and Jose [5] analyzed and compared three 
production inventory systems with positive service time and retrial of customers by assuming all the underlying 
distributions to be exponential. They obtained that the model with buffer size equal to the inventoried items is the best 
profitable model for practical purposes. Benjaafar et al. [2] studied a production-inventory system with customer 
impatience. The patience time was random and varies from one customer to another. They formulated the problem as a 
Markov decision process and described the optimal policy by a production base-stock level and an admission threshold.  
 
Krishnamoorthy and Viswanath [6] studied a (𝑠,𝑆) production inventory system with positive service time. They obtained 
an explicit product form solution for the steady state probability vector, by assuming that no customer joins the queue when 
the inventory level is zero. They also expressed the expected length of a production cycle explicitly. The optimal values of 
𝑆 and 𝑠 were calculated analytically. Yu and Dong [13] analyzed a production inventory problem which included 
customers, one retailer, and one manufacturer. Production rate of the manufacturer was assumed to be a finite constant. The 
order arrival times from customers followed a general distribution. The optimal solution to the problem was obtained 
numerically. 
 
Rashid et al. [10] analyzed a production-inventory system by considering demand and production time as stochastic 
parameters and calculated long-run inventory costs. They also extended the model for multi-item inventory systems.  They 
obtained a heuristic algorithm and illustrated it with a case study in Electroestil Company. Beak and Moon [1] studied 
an (𝑠,𝑆) production–inventory system. The customers arrival and production process were assumed to be according to 
Poisson processes. They analyzed the model using a regenerative process. They obtained that the queue size and inventory 
level processes were independent in steady state. They proposed cost models using mean performance measures.  
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Otten et al. [9] considered a two-echelon production-inventory system. A continuous review base stock policy was used to 
control inventory replenishment. They derived stationary distributions of joint queue length and inventory processes in 
explicit product form and cost analysis was performed. Salini and Jose [11] considered a production inventory system with 
positive service time and retrial of customers. They assumed different rates of service depending on the inventory level and 
obtained the optimum service reduction value. Various system performance measures were derived and a cost function was 
constructed. 
 
Zare et al. [14] studied a two-echelon production–inventory system where the inventory replenished according to (𝑅,𝑄) 
policy. The time taken to transport inventory between the two echelons were generally distributed. The optimal reorder 
point at the distribution center was calculated. The optimal base-stock level in the warehouse and the batch order size at the 
distribution center were approximated. Chan et al. [3] investigated a production-inventory model for deteriorating items in 
which non-stop production is considered. The proposed model included production rate as one of the decision variables and 
considered deterioration during deliveries. They optimized the cost for the system in which some of the cost parameters 
were production rate dependent. 
 
The rest of the paper is organized as follows. In section 2, Mathematical modeling and analysis of the model is presented 
which includes stability and performance measures of the system. In section 3, Numerical Results and its interpretations are 
provided. Cost analysis is described in section 4. In section 5, we incorporate concluding remarks. 
 
The following notations are used in the proposed model 
𝑆: Maximum inventory level 
𝑠: Inventory level at which production starts 
𝐼(𝑡): Inventory level at time t. 
𝑁 (𝑡): Number of customers in the orbit at time t. 

𝐶(𝑡) = � 0, if the server is idle 
 l , if the server is busy

� 

𝐽(𝑡) = �0, if the production is in OFF mode
1, if the production is in ON mode

� 

𝒆 ∶  (1 , 1, …  1)′ a column vector of 1’s of appropriate order. 
 
2. MATHEMATICAL MODELING AND ANALYSIS 
 
We consider a production inventory system with retrial of customers under (𝑠, 𝑆) policy. When the inventory level reduces 
to 𝑠, production starts and stops when the inventory level reaches back to 𝑆. The time between additions of two successive 
items by production to the inventory is exponentially distributed. The production rate is 𝛼𝛽, where 𝛼 ∈ [1,𝑘], 𝑘 (finite) and 
greater than 1, when production starts; but the rate is  𝛽, when level crosses above 𝑠 (i.e., for the level from 𝑠 + 1 to 𝑆). 
Arrival of customers is according to a Poisson process with rate λ and service times are exponentially distributed with 
parameter µ. An arriving customer who finds the server busy or inventory level zero, proceeds to an orbit with probability 𝛾 
and is lost from the system with probability (1— 𝛾).  A retrial customer in the orbit who finds the server busy or inventory 
level zero, returns to the orbit with probability 𝛿 and is lost from the system with probability �1— 𝛿�. The time between 
retrials follow an exponential distribution with linear rate 𝑖𝜃 when there are 𝑖 customers in the orbit. 
 
Let 𝐼(𝑡) be the inventory level and 𝑁 (𝑡) be the number of customers in the orbit at time 𝑡. Let 𝐶(𝑡) be the sever status at 
time 𝑡, which is equal to 1 if the server is busy and 0 if the sever is idle. Let 𝐽 (𝑡) be the production status which is equal to 
1 if the production is in ON mode and 0 if the production is in OFF mode. Now { X(t), t ≥ 0}, where 
X(t)  = (N(t), C(t), J(t), I(t)) is a level dependent quasi birthdeath process on the state space                         
{(𝑖,𝑘, 0, 𝑗); 𝑖 ≥  0;  𝑘 =  0,1;  𝑠 + 1 ≤ 𝑗 ≤ 𝑆}𝑈{(𝑖, 0,1, 𝑗);  𝑖 ≥ 0;   0 ≤ 𝑗 ≤ 𝑆 − 1}𝑈 {(𝑖, 1,1, 𝑗); 𝑖 ≥ 0;   1 ≤ 𝑗 ≤ 𝑆 −  1}  The 
infinitesimal generator 𝑄, of the process is a block tri-diagonal matrix and it has the following form 
 

Q =    
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




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

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where the blocks A0 , A1,i (i ≥ 0) and A2,i ( i ≥ 1) are square matrices, each of order (4S − 2s − 1); they are given by 
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where 𝑢, 𝑣U denotes the entry corresponding to the variations of inventory level 𝑗 (phase) for a fixed 𝑖, the number of 
customers in the orbit (level). Here 𝑢 stands for server status and 𝑣, for production status. (𝑝, 𝑞)𝑡ℎ element of the matrices 
contained in 𝐴0, 𝐴1,𝑖 and 𝐴2,𝑖 are given by 

[𝐶1]𝑝𝑞 =  �1,   𝑝 = 𝑞 = 1
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

[𝐶2]𝑝𝑞 =  �𝛽,   𝑝 = 𝑆,   𝑞 = 𝑆 − 𝑠
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

� 

[𝐶3]𝑝𝑞 =  

⎩
⎪⎪
⎨

⎪⎪
⎧−�𝜆𝛾 + 𝛼𝛽 + 𝑖𝜃(1− 𝛿)�,   𝑝 = 𝑞 = 1 
−(𝜆 + 𝛼𝛽 + 𝑖𝜃),   2 ≤ 𝑝 ≤ 𝑠,   𝑞 = 𝑝   
−(𝜆 + 𝛽 + 𝑖𝜃), 𝑠 + 1 ≤ 𝑝 ≤ 𝑆,   𝑞 = 𝑝
𝛼𝛽, 1 ≤ 𝑝 ≤ 𝑠,   𝑞 = 𝑝 + 1                     
𝛽, 𝑠 + 1 ≤ 𝑝 ≤ 𝑆 − 1,   𝑞 = 𝑝 + 1     

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

[𝐶4]𝑝𝑞 =  �1, 2 ≤ 𝑝 ≤ 𝑆,   𝑞 = 𝑝 − 1       
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

[𝐶5]𝑝𝑞 =  �𝜇,   2 ≤ 𝑝 ≤ 𝑆 − 𝑠,   𝑞 = 𝑝 − 1
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                             

� 

[𝐶6]𝑝𝑞 =  �𝜇,   𝑝 = 1,   𝑞 = 𝑠 + 1
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒             

� 

[𝐶7]𝑝𝑞 =  �𝜇,   1 ≤ 𝑝 ≤ 𝑆 − 1,   𝑞 = 𝑝
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                      

� 

[𝐶8]𝑝𝑞 =  �𝛽,   𝑝 = 𝑆 − 1, 𝑞 = 𝑆 − 𝑠
0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                   

� 

[𝐶9]𝑝𝑞 =  

⎩
⎪
⎨

⎪
⎧−�𝜆𝛾 + 𝛼𝛽 + µ + 𝑖𝜃(1− 𝛿)�, 1 ≤ 𝑝 ≤ 𝑠 − 1, 𝑞 = 𝑝
−�𝜆𝛾 + 𝛽 + 𝜇 + 𝑖𝜃(1 − 𝛿)�, 𝑠 ≤ 𝑝 ≤ 𝑆 − 1,𝑞 = 𝑝 
𝛼𝛽, 1 ≤ 𝑝 ≤ 𝑠 − 1,   𝑞 = 𝑝 + 1                            
𝛽, 𝑠 ≤ 𝑝 ≤ 𝑆 − 2,   𝑞 = 𝑝 + 1                              

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                  

� 

 
In order to modify the infinitesimal generator 𝑄 to the following form where 𝐴1,𝑖 = 𝐴1𝑎𝑛𝑑𝐴2,𝑖 = 𝐴2for 𝑖 ≥ 𝑁, Neuts– Rao 
[8] truncation method is used. 
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2.1 System Stability 
 
In order to find the stability of the system, we take the Lyapunov test function (Falin and Templeton [4]): 𝜑(𝑟) = 𝑖, if 𝑟 is a 
state in the level 𝑖 
 
The mean drift 𝑦𝑟 for any 𝑟 belonging to the level 𝑖 ≥ 1 is given by 

𝑦𝑟  = �𝑞𝑟𝑝(𝜑(𝑝) −𝜑(𝑟))
𝑝≠𝑟

 

      = �𝑞𝑟𝑢�𝜑(𝑢) −𝜑(𝑟)� +�𝑞𝑟𝑣�𝜑(𝑣) −𝜑(𝑟)� +�𝑞𝑟𝑤�𝜑(𝑤) − 𝜑(𝑟)�
𝑤𝑣𝑢

 

where  𝑢, 𝑣,𝑤 vary over the states belonging to the levels (𝑖 − 1), 𝑖 and (𝑖 + 1) respectively. Then by the definition of 
𝜑,   𝜑(𝑢) = 𝑖 − 1,   𝜑(𝑣) = 𝑖 and 𝜑(𝑤) = 𝑖 + 1 so that  

𝑦𝑟  = −�𝑞𝑟𝑢
𝑢

+�𝑞𝑟𝑤
𝑤

 

      = �−𝑖𝜃, if the server is idle and inventory level is positive
−𝑖𝜃(1− 𝛿) + 𝜆𝛾,                                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

� 

 
Since(1 − 𝛿)  > 0, for any 𝜀 >  0, we can find 𝑁 ′ large enough that 𝑦𝑟 < −𝜀 for any 𝑟 belonging to the level 𝑖 ≥ 𝑁 ′. 
Hence, the system under consideration is stable by Tweedi’s [12] result. 
 
2.2 Rate matrix Rand Truncation level N 
Rate matrix R is evaluated using Iterative method. We denote the sequence of R by {𝑅(𝑁)} and is defined by           
𝑅0(𝑁) = 0  and 𝑅𝑛+1(𝑁) = (−𝑅2(𝑁)𝐴2(𝑁) −𝐴0(𝑁))𝐴1−1(𝑁). As in Neuts [7], Elsner’s algorithm is used to evaluate the 
spectral radius 𝜂(𝑁) of 𝑅(𝑁). 𝑁 must be chosen such that  |𝜂(𝑁)− 𝜂(𝑁 + 1)| < 𝜀, where 𝜀  is an arbitrarily  small value. 

 
2.3 System Performance Measures 
We partition the steady state probability vector 𝐱 =  (𝑥0,𝑥1, . . . ,𝑥𝑁−1,𝑥𝑁 , . . . ) such that its (𝑖 +  1)𝑡ℎ component is given 
by 
𝑥𝑖 =  �𝑦𝑖,0,0,𝑠+1, … , 𝑦𝑖,0,0,𝑆 ,𝑦𝑖,0,1,0, … ,𝑦𝑖,0,1,𝑆−1,𝑦𝑖,1,0,𝑠+1, … ,𝑦𝑖,1,0,𝑆 ,𝑦𝑖,1,1,1, … , 𝑦𝑖,1,1,𝑆−1�. Then, 

i. Expected Inventory level, 𝐸𝐼, in the system is given by 

𝐸𝐼 = �� � 𝑗𝑦𝑖,𝑘,0,𝑗 +���𝑗𝑦𝑖,𝑘,1,𝑗

𝑆−1

𝑗=1

1

𝑘=0

∞

𝑖=0

𝑆

𝑗=𝑠+1

1

𝑘=0

∞

𝑖=0

 

ii. Expected number of customers, 𝐸𝐶, in the orbit is given by 

𝐸𝐶 = ��𝑖𝑥𝑖

∞

𝑖=1

�𝒆 = ��� 𝑖𝑥𝑖

𝑁−1

𝑖=1

�+ 𝑥𝑁  (𝑁(𝐼 − 𝑅)−1 + 𝑅(𝐼 − 𝑅)−2)�𝒆 

iii. Expected switching rate, 𝐸𝑆𝑅, is given by 

𝐸𝑆𝑅 = µ�𝑦𝑖,1,0,𝑠+1

∞

𝑖=0

 

iv. Expected number of departures, 𝐸𝐷𝑆, after completing service is  

𝐸𝐷𝑆 = µ� � 𝑦𝑖,1,0,𝑗

𝑆

𝑗=𝑠+1

∞

𝑖=0

+ µ��𝑦𝑖,1,1,𝑗

𝑆−1

𝑗=1

∞

𝑖=0
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v. Expected number of external customers lost, 𝐸𝐿1, before entering the orbit per unit time is 

𝐸𝐿1 = (1 − 𝛾)𝜆��𝑦𝑖,0,1,0 + � 𝑦𝑖,1,0,𝑗 +�𝑦𝑖,1,1,𝑗

𝑆−1

𝑗=1

𝑆

𝑗=𝑠+1

�
∞

𝑖=0

 

vi. Expected number of customers lost, 𝐸𝐿2, due to retrials per unit time 

𝐸𝐿2 = 𝜃(1− 𝛿)�𝑖�𝑦𝑖,0,1,0 + � 𝑦𝑖,1,0,𝑗

𝑆

𝑗=𝑠+1

+�𝑦𝑖,1,1,𝑗

𝑆−1

𝑗=1

�
∞

𝑖=1

 

vii. Overall rate of retrials, 𝑂𝑅𝑅, is given by,  

𝑂𝑅𝑅 = 𝜃��𝑖𝑥𝑖

∞

𝑖=1

�𝒆 

viii. Successful rate of retrials, 𝑆𝑅𝑅, is given by, 

𝑆𝑅𝑅 = 𝜃�𝑖 � � 𝑦𝑖,0,0,𝑗

𝑆

𝑗=𝑠+1

+�𝑦𝑖,0,1,𝑗

𝑆−1

𝑗=1

�
∞

𝑖=0

 

ix. Server busy probability, 𝑆𝐵𝑃, is given by,  

𝑆𝐵𝑃 = � � 𝑦𝑖,1,0,𝑗

𝑆

𝑗=𝑠+1

∞

𝑖=0

+��𝑦𝑖,1,1,𝑗

𝑆−1

𝑗=1

∞

𝑖=0

 

 
3. NUMERICAL RESULTS AND INTERPRETATIONS   
 
Here we analyze the nature of overall rate of retrials (𝑂𝑅𝑅), successful rate of retrials (𝑆𝑅𝑅) and server busy probability 
(𝑆𝐵𝑃) with respect to the variations of different parameters in the model.  Table 1 and Table 2 contain values of 𝑂𝑅𝑅, 𝑆𝑅𝑅 
and 𝑆𝐵𝑃 with respect to variations of 𝛼 and 𝜇. When the production rate and service rate increase, the number of customers 
in the orbit decreases. Hence overall rate of retrials decreases and the successful rate of retrials increases. As the production 
rate increases, 𝑆𝐵𝑃 increases and as the service rate increases, 𝑆𝐵𝑃 decreases. Tables 3, 4 and 5 show the changes of 𝑂𝑅𝑅, 
𝑆𝑅𝑅 and 𝑆𝐵𝑃 with respect to variations of  𝛾, 𝛿 and 𝜆 respectively. In all these cases, as the values of 𝛾,𝛿 and 𝜆 increase, 
the number of customers in the orbit increases and hence the overall and successful rate of retrials and server busy 
probability increase. Table 6 shows that, as the retrial rate 𝜃 of customers in the orbit increases, the overall and successful 
rate of retrials increase. 𝑆𝐵𝑃 also increases with retrial rate. 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

S=50,s=5,λ=1.5,γ=0.8,N=25, 
θ=1.5, δ=0.7, β=2, µ=3. 

 
α ORR SRR SBP 

1.1 3.4487 1.1724 0.5906 
1.2 3.4421 1.1744 0.5920 
1.3 3.4371 1.1758 0.5929 
1.4 3.4333 1.1768 0.5936 
1.5 3.4305 1.1775 0.5941 
1.6 3.4283 1.1780 0.5944 
1.7 3.4266 1.1783 0.5947 
1.8 3.4254 1.1785 0.5948 
1.9 3.4244 1.1787 0.5950 

Table-1: (Variations in 𝛼) 

 

S=50,s=5,λ=1.6,γ=0.6,N=25, 
θ=1.5, δ=0.7,β=2, α=1.4. 

 
µ ORR SRR SBP 

2.1 3.2599 0.8989 0.6750 
2.2 3.1914 0.9180 0.6622 
2.3 3.1260 0.9358 0.6497 
2.4 3.0636 0.9524 0.6375 
2.5 3.0041 0.9679 0.6257 
2.6 2.9474 0.9824 0.6142 
2.7 2.8934 0.9959 0.6029 
2.8 2.8420 1.0086 0.5920 
2.9 2.7930 1.0204 0.5814 

Table-2: (Variations in µ) 
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4. COST ANALYSIS  
 
We define the expected total cost function as 

𝐸𝑇𝐶 =  (𝐶 + (𝑆 − 𝑠)𝑐1) 𝐸𝑆𝑅 + 𝑐2𝐸𝐼 + 𝑐3𝐸𝐶 + 𝑐4𝐸𝐿1 + 𝑐5𝐸𝐿2 + 𝑐6𝐸𝐷𝑆 
where C is the fixed cost, c1 is the procurement cost per unit, c2 is the holding cost of inventory per unit per unit time, c3 is 
the holding cost of customers per unit per unit time, c4 is the cost due to loss of primary customers per unit per unit time, c5 
is the cost due to loss of retrial customers per unit per unit time, c6 is the cost due to service per unit per unit time. 
 
4.1 Graphical Illustrations and Interpretations 
Here we calculate the expected total cost per unit time by varying the parameters one at a time keeping others fixed. The 
convexity of the cost function is obtained graphically. In fig. 1, the minimum expected total cost is obtained by varying the 
value of 𝛼. For given parameter values, minimum expected total cost is 66.6981 when 𝛼 = 1.4. By varying the value of µ, 
the minimum expected total cost is obtained in fig 2. The minimum value of 𝐸𝑇𝐶 is 37.2199 at µ = 2.5. In fig.3, the 
convexity of the cost function is obtained by varying the values of the parameter 𝛾. The minimum value of 𝐸𝑇𝐶 is 33.3562 
at 𝛾 = .6. In fig.4, the convexity of the cost function is obtained by varying the values of the parameter 𝛿. The minimum 
value of 𝐸𝑇𝐶 is 35.6934 at 𝛿 = 0.7. The convexities of the cost function by varying the values of the parameters 𝜆 and 
𝜃 are obtained in fig.5 and fig.6 respectively. The minimum values of 𝐸𝑇𝐶 are 34.4906 at 𝜆 = 1.6 and 30.1236 at 𝜃 = 1.4. 
 
 
 
 
 
 
 
 
 
 
 

S=50,s=5,λ=1.5,N=25,θ=1.5,δ=0.7, 
β=2, µ=3, α=1.4. 

 
γ ORR SRR SBP 

0.1 1.5674 0.7699 0.5044 
0.2 1.6511 0.7937 0.5096 
0.3 1.7738 0.8264 0.5168 
0.4 1.9595 0.8726 0.5269 
0.5 2.2231 0.9337 0.5403 
0.6 2.5654 1.0077 0.5565 
0.7 2.9748 1.0904 0.5746 
0.8 3.4333 1.1768 0.5936 
0.9 3.9223 1.2629 0.6125 

Table-3: (Variations in γ) 

 

S=50,s=5,λ=1.5,γ=0.6,N=25, 
θ=1.5, β=2, µ=3,α=1.4. 

 
δ ORR SRR SBP 
0.1 1.8168 0.8388 0.5194 
0.2 1.8577 0.8492 0.5217 
0.3 1.9122 0.8629 0.5247 
0.4 1.9880 0.8814 0.5288 
0.5 2.0990 0.9075 0.5345 
0.6 2.2722 0.9462 0.5430 
0.7 2.5654 1.0077 0.5565 
0.8 3.1202 1.1129 0.5795 
0.9 4.3642 1.3115 0.6227 

Table-4: (Variations in δ) 

 S=50,s=5, γ=0.6, N=25, θ=1.5, 
δ=0.7,β=2,µ=3,α =1.4. 

 
λ ORR SRR SBP 

1.1 2.0014 0.9387 0.4970 
1.2 2.1168 0.9512 0.5118 
1.3 2.2495 0.9671 0.5267 
1.4 2.3993 0.9861 0.5416 
1.5 2.5654 1.0077 0.5565 
1.6 2.7463 1.0315 0.5711 
1.7 2.9403 1.0569 0.5854 
1.8 3.1454 1.0834 0.5994 
1.9 3.3594 1.1105 0.6129 

Table-5: (Variations in λ) 

 

S=50,s=5,λ=1.6,γ=0.6, N=25, 
δ=0.7, β=2, µ=2.5, α =1.4. 

 
θ ORR SRR SBP 

1.1 2.7230 0.9099 0.6116 
1.2 2.7950 0.9242 0.6150 
1.3 2.8652 0.9385 0.6185 
1.4 2.9346 0.9531 0.6221 
1.5 3.0041 0.9679 0.6257 
1.6 3.0743 0.9830 0.6294 
1.7 3.1455 0.9983 0.6331 
1.8 3.2179 1.0138 0.6369 
1.9 3.2918 1.0294 0.6407 

Table-6: (Variations in θ) 
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𝑆 = 50, 𝑠 = 5, 𝜆 = 1.5,𝛾 = 0.8,𝑁 = 25, 𝜃 = 1.5,𝛽 = 2,𝛿 = 0.7, µ = 3,𝐶 = 20, 

𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 10.8, 𝑐4 = 20.8, 𝑐5 = 20.8, 𝑐6 = 1 

 
Figure-1: ETC versus α 

 
 
 

 

 
Figure-2: ETC versus µ 
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S=50, s=5, λ=1.6, γ=0.6, N=25, θ=1.5, δ=0.7, β=2, α=1.4,        

C=20, c1=1, c2=1, c3=1, c4=1, c5=1, c6=6.7 
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Figure-3: ETC versus γ 

 
S=50, s=5, λ=1.5, α =1.4, N=25,θ=1.5, β=2, γ=0.6, µ=3, 

C=20, c1=1, c2=1, c3=2.8, c4=1, c5=1, c6=3.8. 

 
Figure-4: ETC versus δ 
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Figure-5: ETC versus λ 

 
 
 
 

 
Figure-6: ETC versus θ 

 
4.2 Optimization of (𝒔,𝑺) pair 
Here we calculate the optimum value of expected total cost by varying the values of the maximum inventory level 𝑆 and the 
inventory level 𝑠 at which production starts. We find out the optimum (𝑠,𝑆) pair, by fixing the parameter values and cost 
values. The optimum value of 𝑠, for each value of 𝑆, is obtained as in Table 7. The optimum value of 𝑠 is 7 when             
𝑆 = 31, 32, 33, 34, 35 and 36. The optimum (𝑠, 𝑆) pair, which minimizes 𝐸𝑇𝐶, is (𝟕,𝟑𝟑) and the minimum value of 𝐸𝑇𝐶 
is 𝟐𝟑𝟑.𝟒𝟗𝟔𝟖. 
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𝜆 = 1.5,𝛼 = 1.4,𝑁 = 25,𝛽 = 2, 𝛾 = 0.8, µ = 3, 𝛿 = 0.7,𝜃 = 1.5, 

𝑐1 = 1, 𝑐2 = 1, 𝑐3 = 10.8, 𝑐4 = 20.8, 𝑐5 = 20.8, 𝑐6 = 1 
 

𝑆 
𝑠 

31 32 33 34 35 36 

5 233.6654 233.6544 233.6470 233.6431 233.6422 233.6441 
6 233.5345 233.5282 233.5253 233.5256 233.5287 233.5345 
7 233.5031 233.4982 233.4968 233.4984 233.5028 233.5097 
8 233.5243 233.5191 233.5173 233.5186 233.5228 233.5296 
9 233.5721 233.5655 233.5625 233.5627 233.5659 233.5717 

10 233.6326 233.6241 233.6194 233.6181 233.6199 233.6245 
Table-7: Optimization of (𝑠,𝑆) pair 

 
5. CONCLUDING REMARKS 
 
In this paper, we considered a production inventory system with different production rates and retrial of customers. We 
derived some important measures of performances of the system in the steady state. We assumed the higher rate of 
production 𝛼𝛽, where 𝛼 ∈ [1,𝑘], when the inventory level reaches 𝑠. This will reduce customers’ loss in the stock out 
period. A suitable cost function is constructed and the optimum value of the enhancing parameter  𝛼 corresponding to the 
minimum expected total cost was obtained. The optimum values of other parameters corresponding to minimum expected 
total cost were also found. The optimum (𝑠, 𝑆) pair was calculated. This model has many applications in manufacturing 
industries. For an example, in the case of a pharmaceutical company medicines can be considered as inventory. In some 
seasons, large amount of particular type of medicines are required for the treatment of patients. In such situations, the 
company has to increase its rate of production to satisfy the needs and when the inventory level crosses a particular level, 
the company keeps the usual production rate. The analyzed model can be extended by assuming Markovian arrival process 
and phase- type distribution instead of Poisson process and exponential distribution. 
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	We partition the steady state probability vector 𝐱 = (,𝑥-0.,,𝑥-1., ...,,𝑥-𝑁−1.,,𝑥-𝑁.,...) such that its (,𝑖 + 1)-𝑡ℎ. component is given by

