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ABSTRACT 
In regression analysis the use of ordinary least squares, (OLS) method would not be appropriate in solving problem 
containing outlier or extreme observations. Therefore, we need a method of robust estimation where the value of the 
estimation is not much affected with these outlier or extreme observations. In this paper, six methods of estimation will 
be compared in order to reach the best estimation, and these methods are M.Humpel estimation method, M.Bisquare 
estimation method, M.Huber estimation method, S-estimation method, MM(S)-estimation method, and MM estimation 
method in robust regression to determine a regression model. We find that, the best three method, through this study, 
are M-estimation method, MM(S)-estimation method and MM estimation method. Since M-estimation method is an 
extension of the maximum likelihood method, while MM estimation method is the development of M-estimation method 
and MM(S) estimation method is the development of S-estimation method. Robust regression methods can considerably 
improve estimation precision, but should not be applied automatically instead of the classical methods. 
 
Keywords: Ordinary Least Squares, Robust Estimation, M-estimation, S-estimation, MM estimation and Monte Carlo 
simulation. 

 
 

1. INTRODUCTION 
 
Zioutas et al (2005), Discussed linear regression models are commonly used to analyze data from many fields of study. 
These data often contain outliers and influential observations. Hample (2002) introduced the alternative methods to 
ordinary least squares (OLS), which are known as "Robust Regression". Robust regression analysis provides good 
alternative method of a least squares regression model, when fundamental assumptions are unfulfilled by the nature of 
the data. Robust methods have been defined to deal with the influential points in regression analysis. Hample (2011) 
introduced robust inference is more precision, because it is insensitive to (smaller or larger) deviations from the 
assumptions under which it is derived. Some very commonly used assumptions in statistics are normality, 
independence, identical distributions, linearity, and stationary of stochastic processes. Almongy and Almetwaly (2018) 
discussed comparisons between the method of Least Absolute Deviations (LAD) estimation, the method of Least 
Median of Squares (LMS) estimation, the method of Least Quantile of Squares (LQS) estimation, the method of Least 
Trimmed Squares (LTS) estimation, the method of Reweighted Least Squares (LTS.RLS) estimation, the method of 
M.Huber (MH) estimation and the method of S-estimation in robust regression to determine a suitable regression 
model. As a rule, such assumptions are only approximations to reality, and the questions arise what deviations tend to 
occur in practice, what effects they have unknown statistical procedures, and how to develop better, “more robust” 
procedures? In this paper, this question will be answered by introducing alternative methods of robust estimation and 
more comparison between M-estimation method, S-estimation method, MM estimation method and MM(S) estimation 
method in robust regression. 
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2. THE LEAST SQUARES METHOD 
 
Consider the standard linear regression model: 

 𝑌 = 𝑋𝛽 + 𝜀.               (1) 
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Regression analysis aims to find the best relationship between one or more independent variables and a dependent 
variable. The method of least squares is one of the oldest techniques, the least square methods (LS) is probably the 
most popular technique in statistical methods. Abdi (2007) discussed the resulted OLS estimators which have unbiased, 
minimum variance, minimum mean square error, efficiency and best linear unbiased estimator (BLUE). The Least 
Squares (LS) is widely used to estimate the numerical values of the parameters to a function, OLS is called ordinary 
least squares (OLS), which defined as: 

 �̂�𝑂𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌               (3) 
The OLS estimates for regression models are highly sensitive to (not robust against) outliers. So that is no precise 
definition of an outlier, outliers are observations which do not follow the pattern of the other observations. This is not 
normally a problem when the outlier observation is simply an extreme observation drawn from the tail of a normal 
distribution; however, if the outlier results from non-normal measurement error or some other violation of standard 
OLS assumptions, then it compromises the validity of the regression results when a non-robust estimation technique is 
used. \ 

 
3. ROBUST ESTIMATION METHOD 
 
When the data are contaminated with a single or few outliers, the problem of identifying such observations is serious 
problem. We note that, in most cases data sets contain more outliers or a group of influential observations. Alma (2011) 
discussed robust estimation is an important method for analyzing data that are contaminated with outliers, robust 
estimation method is a form of regression analysis designed to circumvent some limitations of traditional parametric 
and non-parametric methods, Robust estimation methods are designed to be not overly affected to outliers. Under these 
conditions, robust regression is resistant to the influence of outliers is the best method. Therefore, we introduce a 
comparison between robust methods to get the best method. 
 
3.1 M-Estimation Method 
Fox (2002) discussed the most common general method of robust regression is M-estimation method, introduced by 
Huber (1964), the method of M-estimation method as a generalization to maximum likelihood estimation in context of 
location models. That is nearly as efficient as OLS. Rather than minimizing the sum of squared errors, as the objective, 
M-estimation method principle is minimizing the residual function. The M-estimate objective function is: 

 �̂�𝑀 = 𝑚𝑖𝑛�𝜌�𝑦𝑖 −�𝑥𝑖𝑗′ 𝛽𝑗
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we have to solve  
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   𝜎�𝑀𝐴𝐷 = 𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|
0.6745

.               (6) 

where 𝜎� (median absolute deviation) is an estimate of scale often formed from linear combination of the residuals, the 
constant 0.6745 makes S an approximately unbiased estimate of σ if n is large and the distribution is normal.  For ρ 
function, we use the table (M) 
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where 𝜓 = �́� is derivative of  , 𝑥𝑖𝑗  is i-th observation on the j-th independent variable. Iteratively Reweighted Least 
Squares (IRLS) are the two methods to solve the M-estimates nonlinear normal equations. Since the weights depend on 
the unknown parameter β (and σ), we cannot calculate the weighted mean explicitly. But this weighted-means 
representation of M-estimators leads to a simple iterative algorithm for calculating the M-estimator. 

1. We start with the median as an initial estimate of β and then estimate s. Calculate the weights 𝑤𝑖 . 
3. Calculate a new estimate of β using equation (4). 
4. Repeat Step 2 and 3 until the algorithm converges. Ruckstuhl (2014) 
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Hampel et al. (2011) introduced the system of normal equations to solve this minimization problem which is found by 
taking partial derivatives with respect to β and setting them equal to zero, 𝑥′𝑤𝑥𝛽′ = 𝑥′𝑤𝑦 . Where w is an (𝑛𝑛) 
diagonal matrix of weight, popular functions for M-estimators. 

 �̂�𝑀 = (𝑥′𝑤 𝑋)−1(𝑥′𝑤  𝑌).           (8) 
 

Table-1: A detailed description of M-estimations method 
 Objective Function Score Function Weight Function (w) 
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3.2 S-Estimation Method 
The regression estimators associated with M-scales is the S-estimators which proposed by Yohai (1987), S-estimation 
method is based on residual scale of M-estimation method. S-estimators are a generalization of LMS and LTS. And 
they have the same asymptotic properties corresponding to M-estimators and also handle 50% of the outliers appearing 
in the data. The weakness of M-estimation method is the lack of consideration on the data distribution and not a 
function of the overall data because only using the median as the weighted value. S-estimator refers to the fact that this 
estimator essentially is based on the minimization of a (robust) Scale M-Estimator. Susanti and Pratiwi (2014) 
discussed this method uses the residual standard deviation to overcome the weaknesses of median, the S-estimator is 
defined by 

 �̂�𝑆 = 𝑚𝑖𝑛𝛽  𝜎�𝑠(𝑒1, 𝑒2, … , 𝑒𝑛).               (9) 
with determining minimum robust scale estimator  𝜎�𝑠  and satisfying 

𝑚𝑖𝑛�𝜌�
𝑦𝑖 − ∑ 𝑥𝑖𝑗𝛽𝑛

𝑖=1

𝜎�𝑠
�

𝑛

𝑖=1

 

where 
 

𝜎�𝑠 = �

𝑚𝑒𝑑𝑖𝑎𝑛|𝑒𝑖−𝑚𝑒𝑑𝑖𝑎𝑛(𝑒𝑖)|
0.6745

  ; iteration = 1

� 1
𝑛𝑘
∑ 𝑤𝑖𝑒𝑖 2𝑛
𝑖=1             ; iteration > 1

�.              (10) 

�𝑥𝑖𝑗𝜓�
𝑦𝑖− ∑ 𝑥𝑖𝑗𝛽𝑘

𝑖=0

𝜎�𝑠
� = 0

𝑛

𝑖=1

    , 𝑗 = 0,1, … , 𝑘 

ψ is a function as derivative of ρ: 

𝜓(𝑢𝑖) = 𝜌′(𝑢𝑖) = �𝑢𝑖 �1− (
𝑢𝑖
𝑐 )2�

2
, |𝑢𝑖| ≤ 𝑐  

0                          , |𝑢𝑖| > 𝑐
� 

S-estimators are more robustly than the M-estimator, because S-estimators have smaller asymptotic bias and smaller 
asymptotic variance in the case contaminated data. Rousseeuw and Leroy (2005), and Pitselis, (2013). 
 
3.3 MM Estimate 
MM estimation method is a special type of M-estimation method developed by Yohai (1987). MM estimation method 
is a combination of high breakdown value estimation method and efficient estimation method Yohai's MM estimator, 
which was the first estimation with a high breakdown point and high efficiency under normal error. The so-called 
regression MM estimator (Modified M estimator) 
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where 𝒔𝑀𝑀 is the standard deviation obtained from the residual of S-estimation method. MM estimation method aims to 
obtain estimators that have a high breakdown value and more efficient, we will simply extend this approach to mixed 
linear models. An MM estimator of  β is then defined as any solution of an M-type equation where 

 𝜓𝑀𝑀(𝑦,𝑥,𝛽) = 𝑢𝑀𝑀(𝑑)𝑥′∑�𝑆−1(𝑦 − 𝑥𝛽) .   (11) 
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This looks similar to the previous proposal. The difference with the Huber estimator lies in the definition of the weight 
function 𝑢𝑀𝑀(𝑑) now based on a redescending score. 

∑ uMM(d)𝑥′i
,∑�𝑆−1(𝑦𝑖 − 𝑥𝑖𝛽) = 0. 

It is likely that their approach can be extended to MM estimators in mixed effects models. The formal derivation of the 
breakdown point of MM-estimators in this setting is however beyond the scope of this paper. Some properties of MM-
estimator are follows as they are highly efficient when the errors have normal distribution. Their BP is 0.5. Susanti and 
Pratiwi (2014) introduced the algorithm of computing MM-estimator can be illustrated in detail as follow: 

1. Estimate regression coefficients on the data using the OLS.  
2. Test assumptions of the classical regression model. 
3. Detect the presence of outliers in the data. 
4. Calculate residual value 𝑒𝑖 =  𝑦𝑖  −  𝑦�𝑖 of 𝑆 estimate. 
5. Calculate value of 𝜎�𝑖  =  𝜎�𝑠𝑛. 
6. Calculate value 𝑢𝑖  =  𝑒𝑖

𝜎𝑖
 

7. Calculate weighted value 
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8. Calculate �̂�𝑀  𝑀 using WLS method with weighted 𝜔𝑖 . 
9. Repeate steps 5 − 8 to obtain a convergent value of �̂�𝑀  𝑀. 
10. Test to determine whether independent variables have significant effect on the dependent variable. 

For more information, see Yohai, et al (1987) and Ruckstuhl (2014) 
 
4. THE SIMULATION STUDY 
 
We make Mote Carlo simulation compare. Least Squares Estimators (OLS), M-Huber (MH), M-Bisquare, MM-
Estimator robust regression, S-Estimator, and MM based initials of coefficient S-Estimator, (MM(S).  We use R 
language to create our program to set up Monte Carlo simulation and this program is available if requested. 
 
4.1 Design of the Simulation 
Monte Carlo experiments were carried out based on the following data-generating process: Obtain the error term (𝜀) 
using normal distribution(𝑛, 0,𝜎). 𝜎 is stander deviation of Normal distribution, 𝜎 = 1, 5. 𝑋 is distributed Uniform 
distribution on interval (0,1), (1,3), (2,4), (3,6), and (0,6)  where (k-1) is number of the Variables of 𝑋 Selecting 
𝐾 =  (3,6), samples of size 𝑛 =  50, 100,𝑎𝑛𝑑 150 and consider that these samples may contain outliers, To 
investigate the robustness of the methods against outliers, we randomly generate different percentages of outliers (P= 
5%, 10%, 15%, 20%, 25% and 30%). Setting the coefficients 𝛽 equal 1, all simulation results are based on 1500 
replications. All computations are obtained based on the 𝑅 language. The simulation methods are compared using the 
criteria of estimation method parameters, bias and mean square errors (MSE). When comparing to the MSE of the OLS 
for such robust methods. 

 𝑀𝑆𝐸 = 𝑀𝑒𝑎𝑛(�̂� − 𝛽)2       (12) 
where �̂�  is the estimated value of β. 
 
4.2 The Simulation Results 
The simulation results are presented in tables (2), (3), (4), (5), (6) and (7), displaying the properties of different robust 
estimation methods for different percentages of outliers (P), different number of parameters (k), different of standard 
normal distribution of error term (σ) and different sample sizes (n). Note that the higher the value of σ and the value of 
sample size and the ratio of outliers, the lower the value of MSE for the following methods of Robust MM(S), MM and 
S compared with OLS. As k increases, the bias increases and MSE increases. As σ increases, the bias increases and 
MSE increases. As n increases, the bias decreases and MSE decreases. As p increases, the bias decreases and MSE 
increases. 

 
Table 2 Indicates that, in general, the value of bias and MSE are the smallest for the following methods of robust 
(M.Huber, M.Hampel, M.Bisqare, S, MM(S) and MM estimations). When  𝜎 ≥  1, 𝑘 = 3, 𝑛 = 50 and 0.05 < 𝑝 <
0.20 , the best method is M.Hampel estimation and the next is MM estimation. If 𝑝 > 0.20 then the MM estimation 
method is the smallest in bias and MSE compared with other methods. Followed by MM(S) estimation method, and S-
estimation method. When 𝑝 = 30%  M-estimators are not robust.  
 
Table 4 Indicates that, in general, the value of bias and MSE are the smallest for the following methods of robust M-
Estimations (M.Huber, M.Hampel, M.Bisqare), S, MM(S) and MM estimations. When 𝜎 ≥  1, 𝑘 = 6, 𝑛 = 50 and 
0.05 < 𝑝 < 0.20 , the best method is M.Hampel estimation and the next is MM(S) estimation. If  𝑝 > 0.20 then the 
MM estimation method is the smallest in bias and MSE compared with other methods. Followed by MM(S) estimation 
method, and S-estimation method. When 𝑝 = 30%  M-estimators are not robust. 
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Table-2: Bias and MSE values for different estimation method when n=50 and k=3 

 𝜎 = 1 
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 0.2758 0.0081 -0.0021 -0.0023 -0.0007 -0.0025 -0.0014 
MSE 15.794 0.2378 0.2087 0.2215 0.676 0.2191 0.2366 

0.10 
Bias 1.8319 0.082 -0.0023 -0.0019 -0.0021 -0.0024 -0.0027 
MSE 24.1761 0.4588 0.219 0.2274 0.6173 0.2255 0.2297 

0.15 
Bias 3.072 0.1498 -0.0027 -0.0025 -0.0035 -0.0026 -0.0019 
MSE 45.8409 0.3366 0.2241 0.2316 0.5805 0.2285 0.2326 

0.20 Bias 4.0357 0.2496 -0.0033 -0.0033 -0.0016 -0.0034 -0.0035 
MSE 85.2381 0.6171 0.2466 0.2519 0.5386 0.2498 0.2488 

0.25 
Bias 2.4862 0.181 2.3447 -0.003 -0.0067 -0.003 -0.0028 
MSE 12.4908 0.2996 10.962 0.2402 0.4779 0.2381 0.2361 

0.30 Bias 2.9892 1.2072 2.9892 0.6614 -0.0012 -0.0036 -0.0035 
MSE 49.3169 11.4253 49.3169 9.661 0.4602 0.2677 0.2673 

 𝜎 = 5  
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 1.3788 0.0406 -0.0103 -0.0117 -0.0033 -0.0115 -0.0068 
MSE 394.8489 5.9454 5.2187 5.5366 16.8988 5.4699 5.9155 

0.10 
Bias 9.1594 0.4101 -0.0113 -0.0095 -0.0103 -0.0118 -0.0136 
MSE 2604.402 11.4692 5.4759 5.6847 15.4333 5.6438 5.7416 

0.15 
Bias 15.3601 0.7492 -0.0134 -0.0124 -0.0173 -0.0132 -0.0095 
MSE 1146.024 8.4158 5.6024 5.7902 14.5122 5.7135 5.816 

0.20 Bias 20.1784 1.2478 -0.0165 -0.0167 -0.0081 -0.0169 -0.0176 
MSE 2130.953 15.428 6.1642 6.2974 13.4644 6.2449 6.2188 

0.25 
Bias 12.4312 0.9049 11.7234 -0.015 -0.0335 -0.0151 -0.0139 
MSE 312.2702 7.4893 274.0496 6.0057 11.9486 5.952 5.9019 

0.30 
Bias 14.9459 6.036 14.9459 3.3069 -0.0062 -0.0179 -0.0173 
MSE 1232.923 285.6326 1232.923 241.5242 11.5045 6.692 6.6825 

 
Table-3: Bias and MSE values for different estimation method when n=100 and k=3 

 𝜎 = 1  
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias 0.6596 0.0274 0.003 0.0035 0.0029 0.0036 0.0039 
MSE 27.6315 0.1461 0.1057 0.1097 0.3504 0.1105 0.1158 

0.10 Bias 1.1647 0.0486 0.0044 0.0051 0.0079 0.0048 0.0047 
MSE 17.3342 0.1391 0.1083 0.1116 0.3172 0.1111 0.1154 

0.15 Bias 3.2944 0.1612 0.004 0.0045 0.0047 0.0043 0.0041 
MSE 32.717 0.1928 0.1127 0.1158 0.2978 0.115 0.1179 

0.20 Bias 4.3209 0.2623 0.0034 0.004 0.0039 0.004 0.0034 
MSE 83.9513 0.4288 0.1188 0.1212 0.2861 0.1205 0.1215 

0.25 Bias 5.0449 0.451 5.0488 0.004 0.0094 0.0039 0.0037 
MSE 138.5631 1.2479 139.0472 0.1244 0.2661 0.1236 0.1237 

0.30 Bias 6.5279 6.6844 6.5279 5.9648 0.0044 0.0036 0.0035 
MSE 179.4393 194.6137 179.4393 155.6399 0.2568 0.1299 0.1294 

 𝜎 = 5   
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias 3.2982 0.1371 0.0148 0.0175 0.0143 0.018 0.0194 
MSE 690.7878 3.6531 2.6437 2.7428 8.7601 2.7623 2.896 

0.10 Bias 5.8234 0.2429 0.022 0.0254 0.0395 0.0239 0.0236 
MSE 433.3552 3.4786 2.7081 2.7898 7.9299 2.7781 2.8843 

0.15 Bias 16.4718 0.806 0.0198 0.0224 0.0236 0.0216 0.0203 
MSE 817.9255 4.821 2.818 2.8943 7.444 2.8741 2.9487 

0.20 Bias 21.6043 1.3113 0.0172 0.0202 0.0193 0.02 0.0172 
MSE 2098.7834 10.7192 2.9704 3.0295 7.1524 3.0113 3.0385 

0.25 Bias 25.2244 2.255 25.2441 0.0198 0.0469 0.0193 0.0183 
MSE 3464.0777 31.1964 3476.1806 3.1097 6.6536 3.0896 3.0936 

0.30 Bias 32.6397 33.4218 32.6397 29.8238 0.0222 0.0182 0.0176 
MSE 4485.9816 4865.3425 4485.9816 3890.9974 6.4194 3.2481 3.2349 
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Table-4: Bias and MSE values for different estimation method when n=50 and k=6 

 𝜎 = 1   
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 1.6641 0.0717 0.0032 0.0035 0.0089 0.0036 0.003 
MSE 56.6139 0.4741 0.3557 0.3818 1.3212 0.3862 0.4292 

0.10 
Bias 3.5349 0.171 -0.0031 -0.0029 0.0072 -0.0038 -0.0041 
MSE 284.8458 1.1116 0.4133 0.4356 1.3606 0.4372 0.449 

0.15 
Bias 2.309 0.1217 0.0023 0.0026 0.0067 0.0034 0.002 
MSE 51.8402 0.5466 0.3937 0.4087 1.1176 0.4066 0.4231 

0.20 
Bias 2.3863 0.1476 -0.0034 -0.0035 0.0088 -0.0035 -0.0037 
MSE 47.4764 0.6354 0.4587 0.4712 1.2981 0.4637 0.4659 

0.25 
Bias 1.5679 0.1168 1.5646 0.0018 0.0095 0.0017 0.0018 
MSE 8.3258 0.4727 8.1673 0.4275 1.1215 0.4229 0.4198 

0.30 
Bias 1.5584 1.4923 1.5584 1.3647 0.0019 -0.0002 -0.0003 
MSE 23.3054 32.7936 23.3054 26.8426 1.4133 0.5487 0.547 

𝜎 = 5    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 8.3206 0.3586 0.0161 0.0176 0.0447 0.0212 0.0152 
MSE 1415.3479 11.8517 8.8933 9.5442 33.0292 9.609 10.73 

0.10 
Bias 17.6743 0.8549 -0.0154 -0.0146 0.0359 -0.0198 -0.0204 
MSE 7121.1457 27.7911 10.3325 10.8906 34.0148 11.0429 11.2249 

0.15 
Bias 11.5449 0.6086 0.0116 0.0132 0.0336 0.017 0.0098 
MSE 1296.0047 13.6639 9.8435 10.2166 27.9407 10.1672 10.5775 

0.20 
Bias 11.9315 0.7381 -0.0171 -0.0174 0.0441 -0.0175 -0.0184 
MSE 1186.9093 15.8843 11.4674 11.781 32.4526 11.593 11.6477 

0.25 
Bias 7.8395 0.5838 7.8229 0.0089 0.0477 0.0085 0.0089 
MSE 208.1448 11.8172 204.1834 10.6866 28.0365 10.5749 10.4948 

0.30 
Bias 7.7922 7.4613 7.7922 6.8234 0.0096 -0.0009 -0.0014 
MSE 582.636 819.841 582.636 671.0652 35.3315 13.7183 13.6751 

 
Table-5: Bias and MSE values for different estimation method when n=100 and k=6 

 𝜎 = 1    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias 1.7659 0.0686 0.0035 0.0029 -0.007 0.0027 0.0028 
MSE 62.7539 0.2587 0.1615 0.168 0.6212 0.1742 0.1754 

0.10 Bias 1.0529 0.0446 0.0033 0.0029 0.0024 0.0035 0.0031 
MSE 17.3685 0.2115 0.1735 0.1787 0.6364 0.1803 0.1827 

0.15 Bias 2.4574 0.129 0.0031 0.003 -0.0017 0.0024 0.0028 
MSE 48.8491 0.3426 0.192 0.1963 0.7028 0.1984 0.1979 

0.20 Bias 3.7896 0.2597 0.0052 0.0051 0.0071 0.0049 0.0053 
MSE 119.5279 0.8259 0.2066 0.2095 0.73 0.2087 0.2091 

0.25 Bias 5.2723 0.6284 5.4063 0.0052 0.0074 0.0052 0.0053 
MSE 290.1303 4.741 307.9456 0.225 0.7977 0.2237 0.2224 

0.30 Bias 4.7001 4.9983 4.7001 4.6767 0.006 0.0045 0.0045 
MSE 221.0939 272.7856 221.0939 235.2693 0.8118 0.232 0.231 

𝜎 = 5    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias 8.8296 0.3429 0.0176 0.0146 -0.0348 0.0128 0.0141 
MSE 1568.8467 6.4685 4.0366 4.1988 15.5305 4.3549 4.3859 

0.10 Bias 5.2646 0.223 0.0166 0.0145 0.012 0.0177 0.0154 
MSE 434.2128 5.2873 4.337 4.4669 15.9102 4.5423 4.5678 

0.15 Bias 12.2869 0.6448 0.0154 0.0148 -0.0084 0.0126 0.0139 
MSE 1221.227 8.5643 4.7996 4.9078 17.5691 4.9625 4.9474 

0.20 Bias 18.9481 1.2986 0.0261 0.0254 0.0356 0.0245 0.0265 
MSE 2988.1963 20.6466 5.1655 5.2383 18.2497 5.2173 5.2269 

0.25 Bias 26.3614 3.1421 27.0314 0.0258 0.0369 0.0259 0.0264 
MSE 7253.2582 118.5256 7698.6407 5.6256 19.9418 5.5925 5.561 

0.30 Bias 23.5007 24.9913 23.5007 23.3836 0.0299 0.0223 0.0227 
MSE 5527.3468 6819.639 5527.3468 5881.7322 20.2949 5.8002 5.7749 
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Table-6: Bias and MSE values for different estimation method when n=150 and k=3 

 𝜎 = 1    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 0.3424 0.0107 -0.0006 -0.0002 0.0031 -0.0003 -0.0002 
MSE 4.2576 0.0913 0.0832 0.0864 0.2974 0.0864 0.0904 

0.10 
Bias 1.9375 0.0747 0.0007 0.0011 0.0055 0.0011 0.0003 
MSE 12.6273 0.1018 0.0808 0.0825 0.2601 0.0823 0.085 

0.15 
Bias 2.7999 0.1194 -0.0014 -0.0011 0.0012 -0.0011 -0.0017 
MSE 19.7873 0.1315 0.0959 0.0986 0.2882 0.0981 0.0992 

0.20 
Bias 4.126 0.2256 0.0026 0.003 0.0048 0.003 0.0026 
MSE 43.7382 0.2218 0.0971 0.0984 0.2447 0.0979 0.0988 

0.25 
Bias 4.043 0.2853 3.972 -0.001 0.0005 -0.0009 -0.0011 
MSE 27.6015 0.2121 24.5644 0.1075 0.2662 0.1069 0.1065 

0.30 
Bias 3.592 1.6741 3.592 1.8948 0.005 0.0037 0.0036 
MSE 61.1725 19.0827 61.1725 29.895 0.2548 0.1103 0.11 

𝜎 = 5    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 
Bias 1.7119 0.0535 -0.0028 -0.0009 0.0155 -0.0014 -0.001 
MSE 106.4398 2.2824 2.0796 2.1593 7.436 2.1605 2.2611 

0.10 
Bias 9.6875 0.3734 0.0034 0.0054 0.0273 0.0054 0.0014 
MSE 315.6821 2.545 2.0206 2.0625 6.5022 2.0576 2.1261 

0.15 
Bias 13.9997 0.597 -0.0071 -0.0054 0.0061 -0.0053 -0.0086 
MSE 494.6815 3.2869 2.3976 2.4657 7.205 2.4533 2.4799 

0.20 
Bias 20.6301 1.1281 0.0132 0.0152 0.0241 0.0149 0.0129 
MSE 1093.4541 5.5452 2.4285 2.4589 6.1166 2.4473 2.4711 

0.25 
Bias 20.2149 1.4265 19.86 -0.0048 0.0024 -0.0047 -0.0053 
MSE 690.0381 5.3025 614.1107 2.6871 6.6551 2.6726 2.6614 

0.30 
Bias 17.9601 8.3705 17.9601 9.4742 0.0248 0.0184 0.0178 
MSE 1529.3124 477.0668 1529.3124 747.376 6.3697 2.7576 2.7501 

 
Table-7: Bias and MSE values for different estimation method when n=150 and k=6 

𝜎 = 1    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias -0.812 -0.0313 -0.0026 -0.0025 0.0007 -0.0029 -0.0024 
MSE 9.2295 0.1214 0.105 0.1093 0.5296 0.1148 0.1144 

0.10 Bias 0.242 0.0052 -0.0029 -0.0029 0.0011 -0.0032 -0.0033 
MSE 3.9336 0.1203 0.1082 0.1116 0.5392 0.1133 0.1149 

0.15 Bias 1.3113 0.0562 -0.0029 -0.0027 0.0081 -0.0027 -0.0028 
MSE 15.7825 0.1645 0.1212 0.1247 0.6025 0.1241 0.1266 

0.20 Bias 2.9832 0.1652 -0.0035 -0.0036 0.0005 -0.0037 -0.0039 
MSE 66.0396 0.3547 0.1327 0.1353 0.5942 0.1349 0.1337 

0.25 Bias 4.0064 0.3415 4.0092 -0.0045 0.0046 -0.0045 -0.0046 
MSE 119.628 1.0735 119.8884 0.1371 0.6563 0.1363 0.1357 

0.30 Bias 3.5952 3.57 3.5952 3.2383 -0.0062 -0.0049 -0.0049 
MSE 145.8346 169.3027 145.8346 140.2173 0.7458 0.1483 0.1474 

𝜎 = 5    
P   OLS M.Huber M.Hampel M.Bisquare S MM(S) MM 

0.05 Bias -4.06 -0.1565 -0.013 -0.0127 0.0037 -0.0166 -0.0121 
MSE 230.7363 3.0359 2.6248 2.7336 13.2412 2.8877 2.8611 

0.10 Bias 1.2099 0.0261 -0.0144 -0.0146 0.0055 -0.0159 -0.0165 
MSE 98.3398 3.007 2.7039 2.7894 13.4799 2.8526 2.8722 

0.15 Bias 6.5566 0.2811 -0.0147 -0.0137 0.0403 -0.0135 -0.014 
MSE 394.5614 4.1118 3.0292 3.1167 15.0634 3.1138 3.1656 

0.20 Bias 14.9161 0.8258 -0.0176 -0.0181 0.0024 -0.0185 -0.0193 
MSE 1650.991 8.8675 3.3181 3.3833 14.8542 3.3727 3.3431 

0.25 Bias 20.0319 1.7077 20.046 -0.0224 0.0231 -0.0227 -0.023 
MSE 2990.6992 26.8378 2997.2108 3.4275 16.4083 3.4086 3.3923 

0.30 Bias 17.9762 17.8502 17.9762 16.1915 -0.0312 -0.0243 -0.0243 
MSE 3645.865 4232.5687 3645.865 3505.4335 18.6451 3.7081 3.6843 
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4.3 Summary and Conclusions From Simulation Results: 
For all sample sizes, MSE decreases with increasing sample size for all estimation methods for sample sizes 50, 100 
and 150.  In the case of errors of normal distribution. We note that S, M-Estimations, MM(S) and MM estimation 
methods are the most efficient compared with other methods, but MM is more efficient than S, MM(S) and M-
estimations, and it is better in generating outlier (distribution error). When the number of parameters (K) is equal 3 and 
the 𝜎 value is equal 5, the higher the ratio of the outliers (P) the better method is S, MM(S) or MM. When the number 
of parameters (K) is equal 6 and the σ value is equal 1, the higher the ratio of the outliers (P) the better method is the 
MM(S) method followed by the MM method if the sample size is less than 100 observations. But in case of sample size 
greater than 100 observations the best method is MM and the next method is MM(S). When the number of parameters 
(K) is equal 6 and the σ value is equal 5, the higher the value of P, the better method is MM method followed by the 
MM(S) method. when the number of parameters (K) changes and the value of σ changes, the greater the value of (P) 
than 20%, the better method is MM and the next is MM(S) method if the sample size changes. 
 
5. THE APPLICATION OF REAL DATA 
 
We present the numerical results of robust regression estimators of real data. The Grunfeld's Investment Data, 
Description the total number of observations 200 of production units in United States, since data is gross investment 
value is value of the firm and capital is stock of plant and equipment by Baltagi (2013). 

  
Figure-1: Residuals of OLS estimator  

From the previous drawing, we note the extent to which the variable is abnormal and that because there are outliers and 
conform to that test of Shapiro test of normality since the result is: 

𝑊 =  0.8798,      𝑝 − 𝑣𝑎𝑙𝑢𝑒 =  1.552𝑒−11. 
 

Table-2: Robust estimation method of real data in case 1 

methods 
coefficients 

std 
(Intercept) value capital 

OLS -42.714 0.116 0.231 80.242 
M.Huber -24.816 0.119 0.148 74.943 

M.Hampel -20.989 0.119 0.125 74.434 
M.Bisquare -19.699 0.124 0.120 77.375 

S 3.820 0.053 0.092 24.602 
MM(S) 6.12689 0.052 0.0815 24.433 

MM 10.636 0.051 0.072 24.132 
We note from the previous results that if OLS estimation method is used then not robust is produced and the standard 
deviation is increased, compared with the robust methods where the standard deviation is reduced we can use methods 
M, MM and MM based initials of coefficient S (MM(S). The result of application then the best method estimation 
method is MM estimation method based on initial (S). 
 
6. CONCLUSION 
 
We have discussed procedures to estimate robust regression model using OLS estimation method, M.Huber-estimation 
method, M.Hampel-estimation method, M.Bisquare-estimation method, S-estimation method, MM(S)-estimation 
method and MM estimation method. The use of the method of robust estimation method in the presence of outliers 
tends to improve the efficiency and reduce the bias compared with the classical methods of estimation. MM(S) is the 
most efficiency compared with other methods, but MM is the more efficiency compared with S method and it is better 
in outlier generating error distribution. The M.Humpel-estimator is not robust with respect to high leverage points, so it 
should be used in situations where high leverage points do not occur, but we can use methods MM and MM(S). The 
result of simulation Monte Carlo then the best method estimation method is MM estimation method. 
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