WEAKLY CONVEX DOUBLY CONNECTED DOMINATION IN GRAPHS
UNDER SOME BINARY OPERATIONS

RUJUBE N. HINOQUIN
Institute of Arts and Sciences,
Southern Leyte State University, Sogod So. Leyte, Philippines.

ENRICO L. ENRIQUEZ*
Department of Mathematics,
School of Arts and Sciences, University of San Carlos, 6000 Cebu City, Philippines.

(Received On: 15-10-18; Revised & Accepted On: 26-10-18)

ABSTRACT

Let \(G \) be a connected simple graph. A weakly convex dominating set \(S \) of \(G \) is a weakly convex doubly connected dominating set if \(S \) is a doubly connected dominating set of \(G \). The weakly convex doubly connected domination number of \(G \), denoted by \(\gamma_{ccw}(G) \), is the smallest cardinality of a convex doubly connected dominating set \(S \) of \(G \). In this paper, we characterized the weakly convex doubly connected dominating sets of the composition and Cartesian product of graphs.

Mathematics Subject Classification: 05C69.

Keywords: dominating set, doubly connected dominating set, convex dominating set, convex doubly connected dominating set

1. INTRODUCTION

Let \(G \) be a connected simple graph. A subset \(S \) of \(V(G) \) is a dominating set of \(G \) if for every \(v \in (V(G)\setminus S) \), there exists \(x \in S \) such that \(xv \in E(G) \). The domination number \(\gamma(G) \) of \(G \) is the smallest cardinality of a dominating set of \(G \). A graph \(G \) is connected if there is at least one path that connects every two vertices \(x, y \in V(G) \), otherwise, \(G \) is disconnected. A component of a graph is a maximal connected subgraph. Clearly, if a graph has only one component, then it is connected, otherwise it is disconnected. A dominating set \(S \subseteq V(G) \) is called a connected dominating set of \(G \) if the subgraph \(\langle S \rangle \) induced by \(S \) is connected. The connected domination number of \(G \), denoted by \(\gamma_c(G) \), is the smallest cardinality of a connected dominating set of \(G \). A connected dominating set of cardinality \(\gamma_c(G) \) is called a \(\gamma_c \)-set of \(G \). A set \(S \subseteq V(G) \) is a doubly connected dominating set if it is dominating and both \(\langle S \rangle \) and \(\langle V(G) \setminus S \rangle \) are connected. The doubly connected domination number of \(G \), denoted by \(\gamma_{cc}(G) \), is the smallest cardinality of a doubly connected dominating set \(S \) of \(G \). A doubly connected dominating set of cardinality \(\gamma_{cc}(G) \) is called a \(\gamma_{cc} \)-set of \(G \). Studies on doubly connected domination in graphs are found in [1, 2, 3, 4, 5].

For any two vertices \(u \) and \(v \) in a connected graph, the distance \(d_G(u,v) \) between \(u \) and \(v \) is the length of a shortest path in \(G \). A \(u-v \) path of length \(d_G(u,v) \) is also referred to as \(u-v \) geodesic. A subset \(C \) of \(V(G) \) is called a convex set of \(G \) if for every two vertices \(u, v \in C \), the vertex-set of every \(u-v \) geodesic is contained in \(C \). A subset \(C \) of \(V(G) \) is called a weakly convex set of \(G \) if for every two vertices \(u, v \in C \), there exists a \(u-v \) geodesic whose vertices bolong to \(C \). Convexity in graphs was studied in [6,7,8,9]. Some variants of convex domination in graphs are found in [10, 11, 12, 13, 14, 15, 16, 17].

Corresponding Author: Enrico L. Enriquez*
Department of Mathematics,
School of Arts and Sciences, University of San Carlos, 6000 Cebu City, Philippines.
A dominating set of G which is weakly convex is called a weakly convex dominating set. The weakly convex domination number of G, denoted by $\gamma_{wcon}(G)$, is the smallest cardinality of a weakly convex dominating set of G. A dominating set S which is also convex is called a convex dominating set of G. The convex domination number $\gamma_{con}(G)$ of G is the smallest cardinality of a convex dominating set of G. A convex dominating set of cardinality $\gamma_{con}(G)$ is called a γ_{con}-set of G. A weakly convex dominating set S of G is a weakly convex doubly connected dominating set if S is a doubly connected dominating set of G. The weakly convex doubly connected dominating number of G, denoted by $\gamma_{wccc}(G)$, is the smallest cardinality of a weakly convex doubly connected dominating set S of G. A weakly convex doubly connected dominating set of cardinality $\gamma_{wccc}(G)$ is called a γ_{wccc}-set of G. For general concepts we refer the reader to [19].

2. RESULTS

The following remarks are immediate from the definitions.

Remark 2.1: Let G be a connected graph. If $C \subseteq V(G)$ is a convex dominating set, then C is a weakly convex dominating set of G.

Remark 2.2: Let G be a non-trivial connected graph of order n. Then

(i) $\gamma(G) \leq \gamma_{wcon}(G) \leq \gamma_{wccc}(G) \leq \gamma_{ccc}(G)$, and

(ii) $1 \leq \gamma_{wccc}(G) \leq n$.

The composition of two graphs G and H is the graph $G[H]$ with vertex-set $V(G[H]) = V(G) \times V(H)$ and edge-set $E(G[H])$ satisfying the following conditions: $(x,u)(y,v) \in E(G[H])$ if and only if either $xy \in E(G)$ or $x = y$ and $uv \in E(H)$.

A subset S of $V(G[H]) = V(G) \times V(H)$ can be written as $C = \bigcup_{x \in S} \{x\} \times T_x$, where $S \subseteq V(G)$ and $T_x \subseteq V(H)$ for every $x \in S$. We shall be using this form to denote any subset C of $V(G[H])$.

The following results are needed for the characterization of the weakly convex doubly connected dominating sets of the composition to two of graphs.

Theorem 2.3[7]: Let G be connected graph of order $m \geq 2$ and H any graph. A subset $C = \bigcup_{x \in S} \{x\} \times T_x$ is a weakly convex dominating set of $G[H]$ if and only if S is a weakly convex dominating set of G and T_x is a dominating set of H with $\text{diam}_H(T_x) \leq 2$ if $|S| = 1$.

Remark 2.4: Let G and H be non-complete connected graphs. If S is a weakly convex dominating set of G with $|S| \geq 2$, then a subset $C = \bigcup_{x \in S} \{x\} \times T_x$ is a weakly convex dominating set of $G[H]$.

The following result is the characterization of the weakly convex doubly connected dominating sets of the composition to two of graphs.

Theorem 2.5: Let G and H be non-complete connected graphs. A subset $C = \bigcup_{x \in S} \{x\} \times T_x$ is a weakly convex doubly connected dominating set of $G[H]$ if and only if S is a weakly convex dominating set of G and T_x is a weakly convex set of H and one of the following holds:

i) $S = \{x\}$ and T_x is a dominating set of H with $\text{diam}_H(T_x) \leq 2$, where $T_x \neq V(H)$ whenever $|V(G) \setminus S|$ is not connected.

ii) $S = V(G) \setminus \{z\}$.

iii) $S = S_1 \cup \{z\} = V(G)$ and $(V(H) \setminus T_x)$ is connected.

iv) $T_x \neq V(H)$ for all $x \in S$ whenever $S \neq V(G) \setminus \{z\}$.

Proof: Suppose that a subset $C = \bigcup_{x \in S} \{x\} \times T_x$ is a weakly convex doubly connected dominating set of $G[H]$. Then C is a weakly convex dominating set of $G[H]$. Thus S is a weakly convex dominating set of G by Theorem 2.3. Suppose that T_x is not a weakly convex set of H. Let $S = \{x\}$ and $T_x = \{a, b\}$ such that $ab \notin E(H)S$. Then $C = \{(x, a), (x, b)\}$ and $(x, a)(x, b) \notin E(G[H])$ contrary to the assumption that C is a weakly convex doubly connected dominating set of $G[H]$. Thus T_x must be a weakly convex set of H. Further, $S = \{x\}$ and T_x is a dominating set of H with $\text{diam}_H(T_x) \leq 2$ holds by Theorem 2.3. Suppose that $(V(G) \setminus S)$ is not connected. If $T_x = V(H)$, then

$$V(G[H]) \setminus C = (V(G) \times V(H)) \setminus (S \times V(H)) = (V(G) \setminus S) \times V(H).$$

Since $(V(G) \setminus S)$ is not connected, it follows that $(V(G[H]) \setminus C)$ is not connected contrary to our assumption that C is doubly connected dominating set of $G[H]$. Thus, $T_x \neq V(H)$. This proves statement i).

Next, suppose that $|S| \neq 1$. If $S = V(G) \setminus \{z\}$ then we are done with statement ii). Suppose that $S \neq V(G) \setminus \{z\}$. Consider the following cases:

© 2018, IJMA. All Rights Reserved
Case-2: Suppose that $S \subseteq V(G)$ such that $wz \notin E(G)$. If $T_x = V(H)$ for all $x \in S$, then $V(G[H]) \setminus C = \bigcup_{x \in S, uz \notin E(G)} \{(u, z)\}$. Since $wz \notin E(G)$, it follows that $(w, u)(z, u) \notin E(G[H])$ for all $(w, u), (z, u) \in V(G[H]) \setminus C$. Thus, C is not a doubly connected dominating set of $G[H]$ contrary to our assumption. Hence $T_x \neq V(H)$. This proves statement iii).

For the converse, suppose that S is a weakly convex dominating set of G and T_x is a weakly convex set of H and one of the following statements (i), (ii), or (iv) holds.

First, suppose that statement i) holds. Then $C = \bigcup_{x \in S}((x) \times T_x)$ is a weakly convex dominating set of $G[H]$ by Theorem 2.3. Clearly, if $(V(G) \setminus S)$ is connected, then C is a weakly convex doubly connected dominating set of $G[H]$. Suppose that $(V(G) \setminus S)$ is not connected. Let $T_x \neq V(H)$. If $T_x = \{a\}$ then $C = \{(x, a)\}$. Since H is non-complete connected graph, let $b, c \in V(H) \setminus T_x$. If $bc \in E(H)$, then $(x, b)(x, c) \in E(G[H])$ for all $z \in N_G(x)$, that is, $(V(G[H]) \setminus C)$ is connected. Suppose that $bc \notin E(H)$. Since H is connected, then exists a path $\{b = u_1, u_2, \ldots, u_i = c\}$ such that $\{(x, b), (z, u_1), \ldots, (z, c)\}$ is a path in $(V(G[H]) \setminus C)$ for all $z \in N_G(x)$, that is, $(V(G[H]) \setminus C)$ is connected. Thus, C is a doubly connected dominating set of $G[H]$. Similarly, if $|T_x| \geq 2$, then C is a doubly connected dominating set of $G[H]$.

Next, suppose that ii) holds. If $T_x = V(H)$ for each $x \in S$, then T_x is a dominating set of H. Since S is a weakly convex dominating set of G, it follows that $C = \bigcup_{x \in S}((x) \times T_x)$ is a weakly convex dominating set of $G[H]$ by Theorem 2.3. Since G is a non-complete connected graphs, $|V(G)| \geq 3$ and $|S| \neq 1$. Since H is non-complete connected graph, let $a, b \in V(H)$. If $ab \in E(H)$, then $(x, a)(x, b) \in E(G[H])$ for all $(x, a), (x, b) \in V(G[H]) \setminus C$ and for all $z \in V(G[H]) \setminus S$. Thus, $(V(G[H]) \setminus C)$ is connected, and hence C is a doubly connected dominating set of $G[H]$.

Since C is connected dominating set of $G[H]$. Now, suppose that $T_x \neq V(H)$ for some $x \in S$. Consider T_x is a dominating set of H for each $x \in S$. Then $C = \bigcup_{x \in S}((x) \times T_x)$ is a weakly convex dominating set of $G[H]$ by Theorem 2.3. This further implies that C is connected dominating set in $G[H]$. Since S is a dominating set in G, there exists $x \in S$ such that $xz \in E(G)$ for all $z \in V(G) \setminus S$. Let $a \in V(H) \setminus T_x$ for each $x \in S$. Then $(x, a)(z, u) \in E(G[H])$ for all $u \in V(H)$ and $(x, a)(y, a) \in E(G[H])$ for all $y \in N_G(x) (y \neq z)$. Thus, $(V(G[H]) \setminus C)$ is connected. Hence C is a doubly connected dominating set of $G[H]$. Consider T_x is not a dominating set of H for each $x \in S$. Since S is a weakly convex dominating set of G and $|S| \geq 2$, then C is a weakly convex dominating set of $G[H]$ by Remark 2.4. Let $a \in V(H) \setminus T_x$. By following similar arguments used earlier, C is a doubly connected dominating set of $G[H]$.

Suppose that statement iii) holds. Consider the following cases.

Case-1: Suppose that $T_x = V(H)$ for all $x \in S_x$.

Since S is a weakly convex dominating set of G and T_x is a dominating set of H, it follows that C is a weakly convex dominating set of $G[H]$ by Theorem 2.3. If $T_x = V(H)$, then

$C = \bigcup_{x \in S}((x) \times T_x)$

$= \bigcup_{x \in S, z \in \{1\}}((x) \times T_x)$

$= \bigcup_{x \in S}((x) \times T_x) \cup \{(z) \times T_x\}$

$= \bigcup_{x \in S}((x) \times V(H)) \cup \{(z) \times V(H)\}$

$= \bigcup_{x \in S}((x) \times V(H))$

$= S \times V(H) = V(G[H]) \times V(H) = E(G[H])$.

This implies that $V(G[H]) \setminus C = \emptyset$ and hence $(V(G[H]) \setminus C)$ is connected.

If $T_x \neq V(H)$, then let $[a] \subseteq T_x \subset V(H)$. Consider $T_x = \{a\}$. Since H is a non-complete connected graph, $|V(H)| \geq 3$. Let $b, c \in V(H) \setminus T_x$. If $bc \in E(H)$, then $(b, z)(c, z) \notin E(G[H])$ for all $(b, z), (c, z) \in V(G[H]) \setminus C$ and hence $(V(G[H]) \setminus C)$ is connected. Suppose that $bc \notin E(H)$. Since $(V(H) \setminus T_x)$ is connected, there exists a path $[b = v_1, v_2, \ldots, v_i = c]$ in $(V(H) \setminus T_x)$ such that $(b, v_1)(v_2, z) \ldots, (z, c)$ is also a path in $(V(G[H]) \setminus C)$. Thus, $(V(G[H]) \setminus C)$ is connected. Similarly, if $[a] \subset T_x$, then $(V(G[H]) \setminus C)$ is connected. Consider $T_x = V(H) \setminus \{a\}$. Then $V(G[H]) \setminus C = \{(z, a)\}$ and hence $(V(G[H]) \setminus C)$ is connected. Thus, C is a doubly connected dominating set of $G[H]$.
Accordingly, Corollary 2.6: As a consequence of Theorem 2.5, we obtain the following result.

Case-2: Suppose that \(T_x \neq V(H) \) for all \(x \in S \).

Since \(G \) is a non-complete connected graph and \(S = V(G) \), it follows that \(|S| \geq 3 \). Since \(S \) is a weakly convex dominating set of \(G \) with \(|S| \geq 3 \), \(C = \cup_{x \in S} \left\{ (x) \times T_x \right\} \) is a weakly convex dominating set of \(G[H] \) by Remark 2.4. This implies that \(\{C\} \) is connected. Let \(a \in V(H) \setminus T_x \) and \(x, y \in S \). If \(xy \in E(G) \), then \((x, a)(y, a) \in E(G[H]) \) for all \((x, a), (y, a) \in V(G[H]) \). This implies that \(\{V(G[H])\} \setminus C \) is connected. Suppose that \(xy \notin E(G) \). Since \(G \) is connected, there exists a path \([x = x_1, x_2, \ldots, x_r = y] \) in \(G \) such that \([(x, a), (x_2, a), \ldots, (y, a)] \) is also a path in \(\{V(G[H])\} \setminus C \). Thus, \(\{V(G[H])\} \setminus C \) is connected, that is, \(C \) is a doubly connected dominating set of \(G[H] \).

Finally, suppose that statement (iv) holds. If \(|S| = 1 \), then \(C \) is a weakly convex doubly connected dominating set of \(G[H] \) by statement (i). Suppose that \(|S| \geq 2 \). If \(S = V(G) \), then \(C \) is a weakly convex doubly connected dominating set of \(G[H] \) by statement (iii). If \(S = V(G) \setminus \{z\} \), then \(C \) is a weakly convex doubly connected dominating set of \(G[H] \) by statement (ii). Since \(S \) is a weakly convex dominating set of \(G \) with \(|S| \geq 2 \), \(C = \cup_{x \in S} \left\{ (x) \times T_x \right\} \) is a weakly convex dominating set of \(G[H] \) by Remark 2.4. Let \(w \in V(G[H]) \setminus \{z\} \) and \(a \in V(H) \setminus T_x \).

Case-1: If \(wz \notin E(G) \), then \((w, a)(z, a) \in E(G[H]) \) for all \((w, a), (z, a) \in V(G[H]) \setminus \{C\} \), that is, \(\{V(G[H])\} \setminus C \) is connected.

Case-2: Suppose that \(wz \notin E(G) \). Since \(G \) is connected, there exists a path \(\{w = x_1, x_2, \ldots, x_r = z\} \) in \(G \) such that \([(w, a), (x_2, a), \ldots, (z, a)] \) is a path in \(\{V(G[H])\} \setminus C \). Thus, \(\{V(G[H])\} \setminus C \) is connected, that is, \(C \) is a doubly connected dominating set of \(G[H] \).

Accordingly, \(C \) is a weakly convex doubly connected dominating set of \(G[H] \). ■

As a consequence of Theorem 2.5, we obtain the following result.

Corollary 2.6: Let \(G \) and \(H \) be non-complete connected graphs. Then

\[
y_{\text{wconv}}(G[H]) = \begin{cases}
1 & \text{if } \gamma(G) = 1 \text{ and } \gamma(H) = 1 \\
\begin{cases}
\gamma(G) & \text{if } \gamma(G) = k \\
1 & \text{if } \gamma(G) = 1
\end{cases} & \text{if } \gamma(G) = k \text{ where } k \geq 2
\end{cases}
\]

Proof: Suppose that \(\gamma(G) = 1 \) and \(\gamma(H) = 1 \). Let \(S = \{x\} \) be a \(y \)-set in \(G \) and \(T_x = \{a\} \) be a \(y \)-set in \(H \). Then \(S \) is a weakly convex dominating set of \(G \) and \(T_x = V(H) \) is a weakly convex dominating set of \(H \) with diam\(_p\)(\(T_x \)) < 2. Thus \(C = \cup_{x \in S} \left\{ (x, a) \right\} \) is a weakly convex doubly connected dominating set of \(G[H] \) by Theorem 2.5. Hence, \(y_{\text{wconv}}(G[H]) = |C| = 1 \).

Suppose that \(y_{\text{wconv}}(G) = k \) where \(k \geq 2 \). Let \(S = \{x_1, x_2, \ldots, x_k\} \) be a \(y_{\text{wconv}} \)-set in \(G \). Since \(S \) is a weakly convex dominating set of \(G \) with \(|S| \geq 2 \), a subset \(C = \cup_{x \in S} \left\{ (x) \times T_x \right\} \) is a weakly convex dominating set of \(G[H] \) by Remark 2.4. Let \(T_x = \{a\} \) for all \(x \in S \). Then \(C = \{(x_1, a), (x_2, a), \ldots, (x_k, a)\} \), that is, \(|C| = k \). Let \(x, y \in S \) and let \(b \in V(H) \setminus T_x \) for all \(v \in S \). If \(xy \in E(G) \), then by similar arguments used to prove Theorem 2.5, \(C \) is a weakly convex doubly connected dominating set of \(G[H] \). Similarly, if \(xy \notin E(G) \), then \(C \) is a weakly convex doubly connected dominating set of \(G[H] \). Thus, \(y_{\text{wconv}}(G[H]) \leq |C| = k \). Since \(k = y_{\text{wconv}}(G[H]) \leq y_{\text{wconv}}(G[H]) \) by Remark 2.2, it follows that \(y_{\text{wconv}}(G[H]) = k \). ■

The Cartesian product of two graphs \(G \) and \(H \) is the graph \(G \square H \) with vertex-set \(V(G \square H) = V(G) \times V(H) \) and edge-set \(E(G \square H) \) satisfying the following conditions: \((x, a)(y, b) \in E(G \square H) \) if and only if either \(xy \in E(G) \) and \(a = b \) or \(x = y \) and \(ab \in E(H) \).

The next result is needed for the characterization of the weakly convex doubly connected dominating sets of the Cartesian product of two of graphs.

Lemma 2.7: Let \(G \) and \(H \) be non-trivial connected graphs. Then \(C = \cup_{x \in S} \left\{ (x) \times T_x \right\} \) is a weakly convex dominating set of \(G \square H \) if \(S \) is a weakly convex dominating set of \(G \) and \(T_x = V(H) \) for all \(x \in S \), or \(S = V(G) \) and \(T_x = V(H) \) is a weakly convex dominating set of \(H \) for all \(x \in S \).

Proof: Suppose that \(C = \cup_{x \in S} \left\{ (x) \times T_x \right\} \) is not a weakly convex dominating set of \(G \square H \). Let \((x, a) \in C \). If there exists \((y, a) \in C \) whose vertices in any \((x, a)-(y, a)\) geodesic are not all in \(C \), then for each \(x \in S \), there exists \(y \in S \) whose vertices in any \(x-y \) geodesic are not all in \(S \), that is, \(S \) is not a weakly convex dominating set of \(G \). If there exists \((x, b) \in C \) whose vertices in any \((x, a)-(x, b)\) geodesic are not all in \(C \), then for each \(a \in T_x \), there exists \(b \in T_x \) for all \(x \in S \) whose vertices in any \(a-b \) geodesic are not all in \(T_x \), that is, \(T_x \) is not a weakly convex dominating set of \(H \) for all \(x \in S \). ■

The following result is the characterization of the weakly convex doubly connected dominating sets of the Cartesian product of two of graphs.
Theorem 2.8: Let G and H be non-trivial connected graphs. Then \(C = \bigcup_{x \in S} \{x \times T_x\} \) is a weakly convex doubly connected dominating set of \(G \square H \) if and only if \(S \) is a weakly convex dominating set of \(G \) and \(H \) is a weakly convex dominating set of \(H \) and one of the following statements holds:

i) \(S \neq \emptyset \) and \(T_x = V(H) \) for all \(x \in S \) where \((V(H) \setminus S_1) \) is connected.

ii) \(S = \emptyset \) and \(T_x \neq V(H) \) for all \(x \in S \) where \((V(H) \setminus S_1) \) is connected.

iii) \(S = S_1 \cup S_2 \) where \(S_1 = \{x \in V(G) : T_x = V(H)\}, S_2 = \{x \in V(G) : T_x \neq V(H)\}, (S_1) \) is connected, \((S_2) \) is connected, and \((V(H) \setminus S_1) \) is connected for all \(z \in S_2 \).

iv) \(T_x = T_x^r \cup T_x^r \), where \(T_x^r = \{a \in V(H) : S = V(G)\}, T_x^r = \{a \in V(H) : S \neq V(G)\}, (T_x^r) \) is connected, \((T_x^r) \) is connected, and \((V(G) \setminus S') \) is connected where \(S' = \{x \in V(G) : a \in T_x^r\} \).

Proof: Suppose that \(C = \bigcup_{x \in S} \{x \times T_x\} \) is a weakly convex doubly connected dominating set of \(G \square H \). Suppose that \(S \) is not a weakly convex dominating set of \(G \). Let \(x \in S \). If \(S \) is not a dominating set of \(G \), then there exists \(y \in V(G) \setminus S \) such that \(xy \notin E(G) \). Let \(a \in T_x \) for all \(x \in S \). Then there exists \(y, a \in V(G (H) \setminus C \) such that \((x, a) \notin E(G) \) for all \((z, a) \in C \). Hence \(C \) is not a dominating set of \(G \square H \) contrary to our assumption. If \(S \) is not a weakly convex set in \(G \), then \(|S| \geq 2 \). Let \(x, y \in S \) such that \(xy \notin E(G) \). For each \(v \in S \), let \(a \in T_v \). If \(|S| = 2 \), then \((x, a) \notin E(G) \) for all \((x, a) \in C \). Hence \(C \) is not a dominating set of \(G \square H \) contrary to our assumption. If \(|S| = 3 \), then there exists \(z \in V(G) \setminus S \) such that for every \(x \), \(y \) geodesic in \((S) \), \(z \in I_{G}(x, y) \). Thus, for every \((x, y, a) \) geodesic in \((C) \), \(G \) is connected for all \(z \in V(G \square H) \). This is contrary to our assumption that \(C \) is a weakly convex dominating set of \(G \square H \). Thus, \(|S| \geq 4 \).

Next, suppose that \(S = S_1 \cup S_2 \) where \(S_1 = \{x \in V(G) : T_x = V(H)\}, S_2 = \{x \in V(G) : T_x \neq V(H)\} \). Suppose that \(|S_1| = 2 \). If \(|V(H)| = 2 \), then \(|S_1| = 1 \) and \(|S_2| = 1 \). Hence \((S_1) \) is connected and \((S_2) \) is connected. Clearly \((V(H) \setminus T_x) \) is connected for all \(z \in S_2 \). Similarly, if \(|V(H)| \geq 3 \), then \((S_1) \) is connected, \((S_2) \) is connected. Suppose that \((V(H) \setminus T_x) \) is not connected for some \(z \in S_2 \). Then there exists \(a, b \in T_x \) such that \(a, b \) geodesic is not a path in \((T_x) \) for all \(z \in S_2 \). Thus, there exists \((z, a), (z, b) \in (C) \) such that \(a, b \) geodesic is not a path in \((C) \). This contradicts our assumption that \(C \) is a weakly convex set of \(G \square H \). Thus, \((V(H) \setminus T_x) \) must be connected for all \(z \in S_2 \). This proves statement i).

Similarly, statement iv) holds.

For the converse, suppose that \(S \) is a weakly convex dominating set of \(G \) and \(H \) is a weakly convex dominating set of \(H \) and one of the statements i), ii), iii), or iv) holds. Then \(C = \bigcup_{x \in S} \{x \times T_x\} \) is a weakly convex dominating set of \(G \square H \) by Lemma 2.7. Suppose first that statement i) holds. Let \(z \in V(G) \setminus S \). Consider \(|V(G) \setminus S| = 1 \). Since \(H \) is connected, there exists an \(a-b \) path in \(H \) such that \((z, a)-(z, b) \) is a path in \(V(G \square H) \). This implies that \(C \) is a doubly connected dominating set of \(G \square H \). Hence \(C \) is a weakly convex doubly connected dominating set of \(G \square H \).

Next, suppose that \(iii \) holds. Let \(a \in V(H) \setminus T_x \) for all \(a \in S_2 \). Consider that \(|S_2| = 1 \). Then \((z, a) \in V(G \square H) \). If \(|V(H) \setminus T_x| = 1 \), then \((V(G \square H) \setminus C) = \{(z, a)\} \). This implies that \(V(G \square H) \) is connected and hence \(C \) is weakly convex doubly connected dominating set of \(G \square H \). Suppose that \(|V(H) \setminus T_x| \geq 2 \). Then there exists \(b \in V(H) \setminus T_x \) such that \(a-b \) is a path in \(V(H) \setminus T_x \) for all \(a \in S_2 \). Thus, for each \((z, a) \in V(G \square H) \), there exists \((z, b) \in V(G \square H) \) such that \((z, a)-(z, b) \) is a path in \(V(G \square H) \). This implies that \((V(G \square H) \setminus C) \) is connected and hence \(C \) is a weakly convex doubly connected dominating set of \(G \square H \).

© 2018, IJMA. All Rights Reserved
The next result is the consequence of Theorem 2.8.

Corollary 2.9: Let G and H be non-trivial connected graphs. Then

$$
\gamma_{wcc}^w(G \boxplus H) = (\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1)
$$

if S is a weakly convex dominating set of G and T_x is a weakly convex dominating set of H for all $x \in S$ and one of the following statements holds:

i) $S = V(G) \setminus \{x\}$ and $T_x = V(H)$ for all $x \in S$ and $|V(G)| \leq |V(H)|$.

ii) $S = V(G)$ and $T_x = V(H) \setminus \{a\}$ for all $x \in S$ and $|V(G)| \geq |V(H)|$.

Proof: Suppose that S is a weakly convex dominating set of G and T_x is a weakly convex dominating set of H for all $x \in S$ and one of the statements i) or ii) holds. Then $C = \cup_{x \in S} \{x\} \cup T_x$ is a weakly convex doubly connected dominating set of $G \boxplus H$ by Theorem 2.8. Further, $C = S \times V(H)$ if $C = (G \boxplus H)$ for all $x \in S$.

Let $|C| = \min(|S \times V(H)|, |V(G) \times T_x|)$ for all $x \in S$.

$$
\gamma_{wcc}^w(G \boxplus H) \leq |C| = \min(|S \times V(H)|, |V(G) \times T_x|) = \min(|S||V(H)|, |V(G)||T_x|).
$$

If i) holds, then $|C| = |S \times V(H)| = |S||V(H)|$

$$
= (\min(|S|, |V(H)|))(\max(|V(G)|, |V(H)|))
$$

$$
= (\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|))
$$

$$
(\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1)
$$

$$
(\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1).
$$

If ii) holds, then $|C| = |V(G) \times T_x| = |V(G)||T_x|$

$$
= (\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|))
$$

$$
(\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1)
$$

$$
(\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1).
$$

Thus, $\gamma_{wcc}^w(G \boxplus H) \leq (\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1)$.

Since C is also a weakly convex dominating set of $G \boxplus H$, it follows that $\gamma_{wcon}(G \boxplus H) \leq |C|$. Let $(x, a) \in C$ and $C' = C \setminus \{(x, a)\}$. Then $(x, a),(z, b) \in E(G \boxplus H)$ for all $x \in N_G(x)$ and $(z, a),(z, b) \in E(G \boxplus H)$ for all $b \in N_H(z)$. If $z \in V(G) \setminus S$, then $(z, a) \in V(G \boxplus H) \setminus C$ is not dominated by any element of C since $(x, a),(z, b) \notin C'$. This implies that C' is not a weakly convex dominating set of $G \boxplus H$ and hence C is a minimum weakly convex dominating set of $G \boxplus H$. Thus, $|C| = \gamma_{wcon}(G \boxplus H) \leq \gamma_{wcc}^w(G \boxplus H)$ by Remark 2.2.

Therefore $\gamma_{wcc}^w(G \boxplus H) = |C| = (\max(|V(G)|, |V(H)|))(\min(|V(G)|, |V(H)|) - 1)$.

REFERENCES

11. Enriquez, E.L. and Canoy Jr., S.R. On a Variant of Convex Domination in a Graph

15. Enriquez, E.L. Secure Convex Dominating Sets in Corona of Graphs

17. Enriquez, E.L. On Some Operations of Secure Restrained Convex Domination in Graphs

© 2018, IJMA. All Rights Reserved 44