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ABSTRACT 
In this paper, we prove a common fixed point theorem in complex valued b-metric space satisfying rational inequality 
using compatible and weakly compatible mappings. Our result extend and generalize some well known results from the 
existing literature.  
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1. INTRODUCTION AND PRELIMINARIES 
 
In 2011, Azam et al.[1] introduced the concept of complex valued metric space and proved some fixed point theorem 
for mappings satisfying a rational inequality.  After then, many authors have worked in this direction see in [8, 9, 12 
and 13]. 
 
Recently, Rao et al. [11] introduced the concept of complex valued b-metric space which is more general than the 
notion of well known complex valued metric space and proved some common fixed point results. Further, several 
authors [2, 3, 4, 5, 6, 7, 10] continue the study of common fixed point in complex valued b-metric space.  
 
In this paper, we establish common fixed point theorem for rational type inequality in the framework of complex 
valued b-metric spaces. 
 
Let ℂ be the set of complex numbers and 𝑧1, 𝑧2 ∈ ℂ. Define a partial order ≾ on ℂ as follows: 
𝑧1 ≾ 𝑧2 if and only if 𝑅𝑒(𝑧1) ≤ 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) ≤ 𝐼𝑚(𝑧2). It follows that 𝑧1 ≾ 𝑧2 if one of the following conditions is 
satisfied: 

(i) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2); 
(ii) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2); 
(iii) 𝑅𝑒(𝑧1) < 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) < 𝐼𝑚(𝑧2); 
(iv) 𝑅𝑒(𝑧1) = 𝑅𝑒(𝑧2), 𝐼𝑚(𝑧1) = 𝐼𝑚(𝑧2). 

 
In particular, we will write 𝑧1 ⋨ 𝑧2 if 𝑧1 ≠ 𝑧2 and one of (i), (ii) or (iii) is satisfied and we will write 𝑧1 ≺ 𝑧2 if only 
(iii) is satisfied, Notice that 
(C1) 0 ≾ 𝑧1 ⋨ 𝑧2 ⇒ |𝑧1| < |𝑧2|,   
(C2)  𝑧1 ≼ 𝑧2, 𝑧2 ≺ 𝑧3 ⇒ 𝑧1 ≺ 𝑧3, 
(C3)  if 𝑎, 𝑏 ∈ ℝ and 𝑎 ≤ 𝑏 then 𝑎𝑧 ≾ 𝑏𝑧 for all 𝑧 ∈ ℂ. 
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The following definition is recently introduced by Rao et al. [11]. 
 
Definition 1.1: [11] Let X be a non-empty set and let 𝑠 ≥ 1 be a given real number. A function 𝑑:𝑋 × 𝑋 → ℂ is called 
a complex valued b-metric if the following conditions are satisfied: 

(1)  0 ≾ 𝑑(𝑥,𝑦) 𝑎𝑛𝑑 𝑑(𝑥, 𝑦) = 0 ⇔ 𝑥 = 𝑦 for all 𝑥,𝑦 ∈ 𝑋; 
(2) 𝑑(𝑥, 𝑦) = 𝑑(𝑦, 𝑥)  for all 𝑥, 𝑦 ∈ 𝑋;   
(3) 𝑑(𝑥, 𝑦) ≾ 𝑠[𝑑(𝑥, 𝑧) + 𝑑(𝑧,𝑦)] for all 𝑥,𝑦, 𝑧 ∈ 𝑋. 

The pair (𝑋,𝑑) is called a complex valued b-metric space. 
 
Example 1.2: [11] Let 𝑋 = [0,1]. Define the mapping 𝑑:𝑋 × 𝑋 → ℂ by 𝑑(𝑥,𝑦) = |𝑥 − 𝑦|2 +i|𝑥 − 𝑦|2 for all  𝑥,𝑦 ∈ 𝑋.  
Then (𝑋, 𝑑) is a complex valued b-metric space with 𝑠 = 2. 
 
Definition 1.3: Let (𝑋, 𝑑) be a complex valued b-metric space. 

(1)  A point 𝑥 ∈ 𝑋  is called an interior point of a subset 𝐴 ⊆ 𝑋  whenever there exists 0 ≺ 𝑟 ∈ ℂ  such that 
𝐵(𝑥, 𝑟) = {𝑦 ∈ 𝑋:𝑑(𝑥, 𝑦) ≺ 𝑟} ⊆ 𝐴.  

(2) A point 𝑥 ∈ 𝑋 is called a limit of A whenever for every 0≺ 𝑟 ∈ ℂ such that 𝐵(𝑥, 𝑟) ∩ (𝐴 − {𝑥}) ≠ ∅. 
(3) The set 𝐴 is called open whenever each element of 𝐴 is an interior point of 𝐴.  𝐴 subbset 𝐵 is called closed 

whenever each limit point of 𝐵 belongs to 𝐵. 
(4) A Sub-basis for a Hausdorff topology 𝜏 𝑜𝑛 𝑋 is a family ℱ ≔ {𝐵(𝑥, 𝑟): 𝑥 ∈ 𝑋, 0 ≺ 𝑟}.  

 
Definition 1.4: [11]  Let (𝑋, 𝑑) be a complex valued b-metric space.  Let {𝑥𝑛} be a sequence in 𝑋 and 𝑥 ∈ 𝑋. Then 

(i) {𝑥𝑛}   is a called convergent, if for every 𝑐 ∈ ℂ , with 0 ≺ 𝑐  there exists 𝑛0 ∈ ℕ  such that for all                     
𝑛 > 𝑛0,𝑑(𝑥𝑛 ,𝑥) ≺ 𝑐. Also,{𝑥𝑛} converges to 𝑥 (written as, 𝑥𝑛 → 𝑥 or lim𝑛→∞ 𝑥𝑛 = 𝑥) and 𝑥 is the limit of 
{𝑥𝑛}. 

(ii) {𝑥𝑛}  is called a Cauchy sequence in  𝑋, if for every 𝑐 ∈ ℂ, with 0 ≺ 𝑐 there exists  𝑛0 ∈ ℕ such that for all 
𝑛 > 𝑛0,𝑑(𝑥𝑛 ,𝑥𝑛+𝑚) ≺ 𝑐. If for every Cauchy sequence converges in 𝑋, then 𝑋 is called a complete complex 
valued b-metric  space. 

 
Lemma 1.5: [11] Let (𝑋, 𝑑) be a complex valued b-metric space and let {𝑥𝑛} be a sequence in 𝑋. Then {𝑥𝑛} converges 
to 𝑥 if and only if lim𝑛→∞ |𝑑(𝑥𝑛 ,𝑥)| = 0. 
 
Lemma 1.6: [11] Let (𝑋, 𝑑) be a complex valued b- metric space and let {𝑥𝑛} be a sequence in 𝑋. Then {𝑥𝑛} is a 
Cauchy sequence if and only if  lim𝑛→∞ |𝑑(𝑥𝑛 ,𝑥𝑛+𝑚)| = 0. 
 
Definition 1.7: If 𝑓 𝑎𝑛𝑑 𝑔  are mappings from a metric space (𝑋,𝑑)  into itself, are called commuting on 𝑋,  if 
𝑑(𝑓𝑔𝑥,𝑔𝑓𝑥) = 0 for all 𝑥 ∈ 𝑋.  
 
Definition 1.8: If 𝑓 𝑎𝑛𝑑 𝑔 are mappings from a metric space (𝑋,𝑑) into itself, are called weakly commuting on 𝑋, if 
𝑑(𝑓𝑔𝑥,𝑔𝑓𝑥) ≤ 𝑑(𝑓𝑥,𝑔𝑥) for all 𝑥 ∈ 𝑋.  
 
Definition 1.9: If 𝑓 𝑎𝑛𝑑 𝑔  are mappings from a metric space (𝑋,𝑑)  into itself are called compatible on 𝑋,  if 
lim
𝑛→∞

𝑑(𝑓𝑔𝑥𝑛 ,𝑔𝑓𝑥𝑛) = 0, whenever {𝑥𝑛} is a sequence in 𝑋 such that lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑥, for some point 𝑥 ∈ 𝑋. 
 
Definition 1.10: Let  𝑓 𝑎𝑛𝑑 𝑔 be two self-maps defined on a set 𝑋, then 𝑓 𝑎𝑛𝑑 𝑔 are said to be weakly compatible if 
they commute at coincidence point. 
 
Lemma 1.11: Let 𝑓 𝑎𝑛𝑑 𝑔 be compatible mappings from a metric space (𝑋,𝑑) into itself. Suppose that  
lim
𝑛→∞

𝑓𝑥𝑛 = lim
𝑛→∞

𝑔𝑥𝑛 = 𝑥, for some point 𝑥 ∈ 𝑋. Then lim
𝑛→∞

𝑔𝑓𝑥𝑛 = 𝑓𝑥, if 𝑓 is continuous. 
 
2. MAIN RESULTS 

 
Theorem 2.1: Let (𝑋,𝑑) be a complete complex valued b-metric space with the coefficient 𝑠 ≥ 1. Suppose that the 
mappings   𝑓,𝑔, 𝑆 𝑎𝑛𝑑 𝑇:𝑋 → 𝑋 satisfying  

(i) 𝑆 ⊂ 𝑔,𝑇 ⊂ 𝑓; 
(ii) 𝑑(𝑆𝑥,𝑇𝑦) ≾∝ 𝑑(𝑓𝑥,𝑔𝑦) + 𝛽 � 𝑑(𝑓𝑥 ,𝑆𝑥)𝑑(𝑔𝑦,𝑇𝑦)

𝑑(𝑓𝑥 ,𝑇𝑦)+𝑑(𝑔𝑦,𝑆𝑥)+𝑑(𝑓𝑥 ,𝑔𝑦)
� for all 𝑥, 𝑦 ∈ 𝑋 such that  

𝑥 ≠ 𝑦,𝑑(𝑓𝑥,𝑇𝑦) + 𝑑(𝑔𝑦,𝑆𝑥) + 𝑑(𝑓𝑥,𝑔𝑦) ≠ 0 where ∝,𝛽 are nonnegative reals with ∝ +𝑠𝛽 < 1. 
(iii) Suppose that one of  𝑆 𝑜𝑟 𝑓 is continuous, pair (𝑆,𝑓) is compatible and (𝑇,𝑔) is weak compatible. 
(iv) One of 𝑇 𝑜𝑟 𝑔 is continuous, pair (𝑆,𝑓) is weak compatible and (𝑇,𝑔) is compatible.  Then 𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇 have 

a unique common fixed point in 𝑋. 
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Proof: Suppose 𝑥0 ∈ 𝑋 be an arbitrary point. We define a sequence {𝑦2𝑛} in 𝑋 such that 

𝑦2𝑛 = 𝑆𝑥2𝑛 = 𝑔𝑥2𝑛+1 
𝑦2𝑛+1 = 𝑇𝑥2𝑛+1 = 𝑓𝑥2𝑛+2, 𝑛 = 0,1,2, … … … 

Then, 
 𝑑(𝑦2𝑛,𝑦2𝑛+1) = 𝑑(𝑆𝑥2𝑛 ,𝑇𝑥2𝑛+1) 

≾∝ 𝑑(𝑓𝑥2𝑛,,𝑔𝑥2𝑛+1) + 𝛽 �
𝑑(𝑓𝑥2𝑛 ,𝑆𝑥2𝑛)𝑑(𝑔𝑥2𝑛+1,𝑇𝑥2𝑛+1)

𝑑(𝑓𝑥2𝑛 ,𝑇𝑥2𝑛+1) + 𝑑(𝑔𝑥2𝑛+1,𝑆𝑥2𝑛) + 𝑑( 𝑓𝑥2𝑛 ,𝑔𝑥2𝑛+1)
� 

=∝ 𝑑(𝑦2𝑛−1,𝑦2𝑛) + 𝛽 �
𝑑(𝑦2𝑛−1,𝑦2𝑛)𝑑(𝑦2𝑛,𝑦2𝑛+1)

𝑑(𝑦2𝑛−1,𝑦2𝑛+1) + 𝑑(𝑦2𝑛,𝑦2𝑛) + 𝑑(𝑦2𝑛−1,𝑦2𝑛)
� 

=∝ 𝑑(𝑦2𝑛−1,𝑦2𝑛) + 𝛽 �
𝑑(𝑦2𝑛−1,𝑦2𝑛)𝑑(𝑦2𝑛,𝑦2𝑛+1)

𝑑(𝑦2𝑛−1,𝑦2𝑛+1) + 𝑑(𝑦2𝑛−1,𝑦2𝑛)
� 

=∝ 𝑑(𝑦2𝑛−1,𝑦2𝑛) + 𝑠𝛽 �
𝑑(𝑦2𝑛−1,𝑦2𝑛)𝑑(𝑦2𝑛,𝑦2𝑛+1)

𝑑(𝑦2𝑛,𝑦2𝑛+1) � 

 
𝑑(𝑦2𝑛,𝑦2𝑛+1) ≾ (∝ +𝑠𝛽)𝑑(𝑦2𝑛,𝑦2𝑛−1). 

 
Similarly, we can show that  

𝑑(𝑦2𝑛+1,𝑦2𝑛+2) ≾ (∝ +𝑠𝛽)𝑑(𝑦2𝑛,𝑦2𝑛+1). 
 
If (∝ +𝑠𝛽) = 𝛿 < 1, then  

|𝑑(𝑦2𝑛+1,𝑦2𝑛+2)� | ≤ 𝛿|𝑑(𝑦2𝑛,𝑦2𝑛+1)|≤ −−≤ 𝛿2𝑛+1|𝑑(𝑦0,𝑦1)|. 
 
Let 𝑚,𝑛 ≥ 1 𝑎𝑛𝑑 𝑚 > 𝑛, we have 

|𝑑(𝑦2𝑛,𝑦2𝑚)| ≤ 𝑠|𝑑(𝑦2𝑛,𝑦2𝑛+1) + 𝑑(𝑦2𝑛+1,𝑦2𝑚)| 
= 𝑠|𝑑(𝑦2𝑛,𝑦2𝑛+1)| + 𝑠|𝑑(𝑦2𝑛+1,𝑦2𝑚)| 
≤ 𝑠|𝑑(𝑦2𝑛,𝑦2𝑛+1)| + 𝑠2|𝑑(𝑦2𝑛+1,𝑦2𝑛+2) + 𝑑(𝑦2𝑛+2,𝑦2𝑚)| 
= 𝑠|𝑑(𝑦2𝑛,𝑦2𝑛+1)| + 𝑠2|𝑑(𝑦2𝑛+1,𝑦2𝑛+2)| + 𝑠2| 𝑑�(𝑦2𝑛+2,𝑦2𝑚)� |     
≤ 𝑠|𝑑(𝑦2𝑛,𝑦2𝑛+1)| + 𝑠2|𝑑(𝑦2𝑛+1,𝑦2𝑛+2)|+𝑠3|𝑑(𝑦2𝑛+2,𝑦2𝑛+3)| 

+  −−− −+ 𝑠2𝑛+2𝑚−1|𝑑(𝑥2𝑛+2𝑚−1,𝑥2𝑚)| 
≤ [𝑠𝛿2𝑛 + 𝑠2𝛿2𝑛+1+𝑠3𝛿2𝑛+2 + −−−  + (𝑠𝛿)2𝑚−1]|𝑑(𝑦0,𝑦1)| 

≤ �
𝑠𝛿2𝑛

1− 𝑠𝛿
� |𝑑(𝑦0,𝑦1)| 

and  so  
|𝑑(𝑦2𝑛,𝑦2𝑚)| ≤ �𝑠𝛿

2𝑛

1−𝑠𝛿
� |𝑑(𝑦0,𝑦1)| → 0 as, 𝑚,𝑛 → ∞. 

 
Hence {𝑦2𝑛}  is a Cauchy sequence and since 𝑋  is complete, sequence {𝑦2𝑛}  converges to point 𝑢  in 𝑋  and its 
subsequences 𝑆𝑥2𝑛 ,𝑇𝑥2𝑛+1,𝑓𝑥2𝑛+2 and 𝑔𝑥2𝑛+1 of  sequence {𝑦2𝑛} also converges to point 𝑢. 
 
Let 𝑓 is continuous and since  𝑆 and 𝑓 are compatible on 𝑋. Then by Lemma (1.11), we have 𝑓2𝑥2𝑛 𝑎𝑛𝑑 𝑆𝑓𝑥2𝑛 → 𝑓𝑢 
as 𝑛 → ∞. 
Consider   

𝑑(𝑆𝑓𝑥2𝑛,𝑇𝑥2𝑛+1) ≾∝ 𝑑(𝑓2𝑥2𝑛 ,𝑔𝑥2𝑛+1) + 𝛽 �
𝑑(𝑓2𝑥2𝑛 ,𝑆𝑓𝑥2𝑛)𝑑(𝑔𝑥2𝑛+1,𝑇𝑥2𝑛+1)

𝑑(𝑓2𝑥2𝑛,𝑇𝑥2𝑛+1) + 𝑑(𝑔𝑥2𝑛+1,𝑆𝑓𝑥2𝑛) + 𝑑(𝑓2𝑥2𝑛 ,𝑔𝑥2𝑛+1)�. 

 
Letting  𝑛 → ∞, we get  

𝑑(𝑓𝑢,𝑢) ≾ ∝ 𝑑(𝑓𝑢, 𝑢) + 𝛽 � 𝑑(𝑓𝑢,𝑓𝑢)𝑑(𝑢,𝑢)
𝑑(𝑓𝑢,𝑢)+𝑑(𝑢,𝑓𝑢)+𝑑(𝑓𝑢,𝑢)

�. 
(1−∝)𝑑(𝑓𝑢,𝑢) ≾ 0 so that 𝑓𝑢 = 𝑢. 

 
Again consider 

𝑑(𝑆𝑢,𝑇𝑥2𝑛+1) ≾∝ 𝑑(𝑓𝑢,𝑔𝑥2𝑛+1) + 𝛽 �
𝑑(𝑓𝑢,𝑆𝑢)𝑑(𝑔𝑥2𝑛+1,𝑇𝑥2𝑛+1)

𝑑(𝑓𝑢,𝑇𝑥2𝑛+1) + 𝑑(𝑔𝑥2𝑛+1,𝑆𝑢) + 𝑑(𝑓𝑢,𝑔𝑥2𝑛+1)
�. 

 
Letting  𝑛 → ∞, we get  

𝑑(𝑆𝑢,𝑢) ≾∝ 𝑑(𝑢, 𝑢) + 𝛽 �
𝑑(𝑢, 𝑆𝑢)𝑑(𝑢,𝑢)

𝑑(𝑢,𝑢) + 𝑑(𝑢, 𝑆𝑢) + 𝑑(𝑢, 𝑢)�. 

𝑑(𝑆𝑢,𝑢) ≾ 0 so that 𝑆𝑢 = 𝑢. 
 
Now since 𝑆 ⊂ 𝑔 and there exists another point 𝑤 in 𝑋, such that 𝑢 = 𝑆𝑢 = 𝑔𝑤. 
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Consider 

𝑑(𝑢,𝑇𝑤) = 𝑑(𝑆𝑢,𝑇𝑤) 

≾∝ 𝑑(𝑓𝑢,𝑔𝑤) + 𝛽 �
𝑑(𝑓𝑢, 𝑆𝑢)𝑑(𝑔𝑤,𝑇𝑤)

𝑑(𝑓𝑢,𝑇𝑤) + 𝑑(𝑔𝑤,𝑆𝑢) + 𝑑(𝑓𝑢,𝑔𝑤)
� 

≾∝ 𝑑(𝑢, 𝑢) + 𝛽 �
𝑑(𝑢, 𝑢)𝑑(𝑢,𝑇𝑤)

𝑑(𝑢,𝑇𝑤) + 𝑑(𝑢,𝑢) + 𝑑(𝑢,𝑢)� 

 
𝑑(𝑢,𝑇𝑤) ≾ 0 so that 𝑇𝑤 = 𝑢. 

 
Since T and g are weak compatible on 𝑋 and 𝑇𝑤 = 𝑔𝑤 𝑎𝑛𝑑 𝑇𝑔𝑤 = 𝑔𝑇𝑤. 
 
Consider 

 𝑑(𝑢,𝑔𝑢) = 𝑑(𝑆𝑢,𝑇𝑢) 

≾∝ 𝑑(𝑓𝑢,𝑔𝑢) + 𝛽 �
𝑑(𝑓𝑢,𝑆𝑢)𝑑(𝑔𝑢,𝑇𝑢)

𝑑(𝑓𝑢,𝑇𝑢) + 𝑑(𝑔𝑢,𝑆𝑢) + 𝑑(𝑓𝑢,𝑔𝑢)� 

𝑑(𝑢,𝑔𝑢) ≾∝ 𝑑(𝑢,𝑔𝑢) + 𝛽 �
𝑑(𝑢,𝑢)𝑑(𝑔𝑢,𝑇𝑢)

𝑑(𝑢,𝑇𝑢) + 𝑑(𝑔𝑢, 𝑢) + 𝑑(𝑢,𝑔𝑢)� 

(1−∝)𝑑(𝑢,𝑔𝑢) ≾ 0 so that 𝑔𝑢 = 𝑢. 
 
Hence 𝑓𝑢 = 𝑔𝑢 = 𝑆𝑢 = 𝑇𝑢 = 𝑢. 
 
Thus 𝑢  is a common fixed point of 𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇.  similarly, we can show that 𝑢  is a common fixed point of 
𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇, when 𝑆 is continuous. Next, we will prove the (iv) part of Theorem 2.1. 
 
Let T is continuous and since T and g are compatible on 𝑋. Then by Lemma (1.11), we have  𝑇2𝑥2𝑛 and 𝑔𝑇𝑥2𝑛 = 𝑇𝑢 
as 𝑛 → ∞. 
 
Consider 

 𝑑(𝑆𝑥2𝑛 ,𝑇2𝑥2𝑛) ≾∝ 𝑑(𝑓𝑥2𝑛 ,𝑔𝑇𝑥2𝑛) +𝛽 � 𝑑(𝑓𝑥2𝑛,𝑆𝑥2𝑛)𝑑(𝑔𝑇𝑥2𝑛,𝑇2𝑥2𝑛)
𝑑(𝑓𝑥2𝑛,𝑇2𝑥2𝑛)+𝑑(𝑔𝑇𝑥2𝑛,𝑆𝑥2𝑛)+𝑑(𝑓𝑥2𝑛,𝑔𝑇𝑥2𝑛)

�. 
 
Letting  𝑛 → ∞, we get  

𝑑(𝑢,𝑇𝑢) ≾∝ 𝑑(𝑢,𝑇𝑢) + 𝛽 �
𝑑(𝑢, 𝑢)𝑑(𝑇𝑢,𝑇𝑢)

𝑑(𝑢,𝑇𝑢) + 𝑑(𝑇𝑢, 𝑢) + 𝑑(𝑢,𝑇𝑢)� 

(1−∝)𝑑(𝑢,𝑇𝑢) ≾ 0 so that 𝑇𝑢 = 𝑢. 
 
Now since 𝑇 ⊂ 𝑓, there exists a point 𝑣 𝑖𝑛 𝑋, such that 𝑢 = 𝑇𝑢 = 𝑓𝑣. 
 
Consider 

𝑑(𝑆𝑣,𝑇2𝑥2𝑛) ≾∝ 𝑑(𝑓𝑣,𝑔𝑇𝑥2𝑛) +𝛽 � 𝑑(𝑓𝑣,𝑆𝑣)𝑑(𝑔𝑇𝑥2𝑛,𝑇2𝑥2𝑛)
𝑑(𝑓𝑣,𝑇2𝑥2𝑛)+𝑑(𝑔𝑇𝑥2𝑛,𝑆𝑣)+𝑑(𝑓𝑣,𝑔𝑇𝑥2𝑛)

�. 
 
Letting 𝑛 → ∞, we get 

𝑑(𝑆𝑣,𝑇𝑢) ≾∝ 𝑑(𝑢,𝑇𝑢) + 𝛽 �
𝑑(𝑢, 𝑆𝑣)𝑑(𝑇𝑢,𝑇𝑢)

𝑑(𝑢,𝑇𝑢) + 𝑑(𝑇𝑢, 𝑆𝑣) + 𝑑(𝑢,𝑇𝑢)
� 

𝑑(𝑆𝑣,𝑢) ≾∝ 𝑑(𝑢, 𝑢) 
𝑑(𝑆𝑣,𝑢) ≾ 0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑆𝑣 = 𝑢. 

 
Since S and f are weakly compatible on 𝑋 and 𝑆𝑣 = 𝑓𝑣 and 𝑆𝑓𝑣 = 𝑓𝑆𝑣 ⇒ 𝑆𝑢 = 𝑆𝑓𝑣 = 𝑓𝑆𝑣 = 𝑓𝑢. 
 
Now consider 

 𝑑(𝑆𝑢,𝑇𝑥2𝑛+1) ≾∝ 𝑑(𝑓𝑢,𝑔𝑥2𝑛+1) + 𝛽 � 𝑑(𝑓𝑢,𝑆𝑢)𝑑(𝑔𝑥2𝑛+1,𝑇𝑥2𝑛+1)
𝑑(𝑓𝑢,𝑇𝑥2𝑛+1)+𝑑(𝑔𝑥2𝑛+1,𝑆𝑢)+𝑑(𝑓𝑢,𝑔𝑥2𝑛+1)

�. 
 
Letting 𝑛 → ∞, we get 

𝑑(𝑆𝑢,𝑢) ≾∝ 𝑑(𝑆𝑢, 𝑢) + 𝛽 �
𝑑(𝑆𝑢, 𝑆𝑢)𝑑(𝑢,𝑢)

𝑑(𝑆𝑢, 𝑢) + 𝑑(𝑢, 𝑆𝑢) + 𝑑(𝑆𝑢, 𝑢)
� 

(1−∝)𝑑(𝑆𝑢,𝑢) ≾ 0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑆𝑢 = 𝑢. 
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Now since 𝑆 ⊂ 𝑔, there exists a point 𝑡 in 𝑋, such that 𝑢 = 𝑆𝑢 = 𝑔𝑡. Now 

𝑑(𝑢,𝑇𝑡) = 𝑑(𝑆𝑢,𝑇𝑡) 

≾∝ 𝑑(𝑓𝑢,𝑔𝑡) + 𝛽 �
𝑑(𝑓𝑢, 𝑆𝑢)𝑑(𝑔𝑡,𝑇𝑡)

𝑑(𝑓𝑢,𝑇𝑡) + 𝑑(𝑔𝑡, 𝑆𝑢) + 𝑑(𝑓𝑢,𝑔𝑡)
� 

≾∝ 𝑑(𝑢, 𝑢) + 𝛽 �
𝑑(𝑢, 𝑢)𝑑(𝑢,𝑇𝑡)

𝑑(𝑡,𝑇𝑡) + 𝑑(𝑢,𝑢) + 𝑑(𝑢,𝑢)
� 

𝑑(𝑢,𝑇𝑡) ≾ 0 𝑠𝑜 𝑡ℎ𝑎𝑡 𝑢 = 𝑇𝑡. 
 
Since 𝑇 and g are compatible on 𝑋 and 𝑇𝑡 = 𝑔𝑡 = 𝑢 and 𝑑(𝑔𝑇𝑡,𝑇𝑔𝑡) = 0 ⇒ 𝑔𝑢 = 𝑔𝑇𝑡 = 𝑇𝑔𝑡 = 𝑇𝑢. 
Hence 𝑆𝑢 = 𝑇𝑢 = 𝑓𝑢 = 𝑔𝑢 = 𝑢. 
 
Therefore, 𝑢 is common fixed point of 𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇. Similarly, we can show that 𝑢 is also common fixed point of  
𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇, when 𝑔 is continuous. 
 
To prove the uniqueness of fixed point 𝑢, assume that 𝑢∗ is another common fixed point of  𝑓,𝑔, 𝑆 𝑎𝑛𝑑 𝑇. Then 

 𝑑(𝑢, 𝑢∗) = 𝑑(𝑆𝑢,𝑇𝑢∗) 

≾∝ 𝑑(𝑓𝑢,𝑔𝑢∗) + 𝛽 �
𝑑(𝑓𝑢,𝑆𝑢)𝑑(𝑔𝑢∗,𝑇𝑢∗)

𝑑(𝑓𝑢,𝑇𝑢∗) + 𝑑(𝑔𝑢∗,𝑆𝑢) + 𝑑(𝑓𝑢,𝑔𝑢∗)
� 

≾∝ 𝑑(𝑢, 𝑢∗) + 𝛽 �
𝑑(𝑢,𝑢)𝑑(𝑢∗, 𝑢∗)

𝑑(𝑢,𝑢∗) + 𝑑(𝑢∗,𝑢) + 𝑑(𝑢,𝑢∗)
� 

 𝑑(𝑢, 𝑢∗) ≾∝ 𝑑(𝑢,𝑢∗) 
(1−∝)𝑑(𝑢,𝑢∗) ≾ 0, which is a contradiction.  

Hence 𝑢 = 𝑢∗. 
 
Therefore, 𝑢 is unique common fixed point of 𝑓,𝑔,𝑆 𝑎𝑛𝑑 𝑇. 
 
By setting 𝑓 = 𝑔 = 𝐼 we get the following Corollary: 
 
Corollary 2.2: Let (𝑋, 𝑑) be a complete complex valued b-metric space with the coefficient 𝑠 ≥ 1.  Suppose that the 
mapping 𝑆,𝑇:𝑋 → 𝑋 satisfy: 

(i) 𝑆 ⊂ 𝑇 
(ii) 𝑑(𝑆𝑥,𝑇𝑦) ≾∝ 𝑑(𝑥, 𝑦) + 𝛽 � 𝑑(𝑥,𝑆𝑥)𝑑(𝑦,𝑇𝑦)

𝑑(𝑥,𝑇𝑦)+𝑑(𝑦,𝑆𝑥)+𝑑(𝑥,𝑦)
� 

for all 𝑥,𝑦  𝑖𝑛 𝑋 such that 𝑥 ≠ 𝑦, 𝑑(𝑥,𝑇𝑦) + 𝑑(𝑦,𝑆𝑥) + 𝑑(𝑥,𝑦) ≠ 0, where ∝,𝛽 are nonnegative reals with  
∝ +𝑠𝛽 < 1. If pair (𝑆,𝑇) is weakly compatible. Then 𝑆 and 𝑇 have unique common fixed point in 𝑋.  
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