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ABSTRACT

In this paper, we define the new subclasses of analytic functions using the Al - Oboudi operator. For functions

belonging to these classes we determine coefficient inequalities, extreme points and integral means inequalities.
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1. INTRODUCTION

Let A denote the class of analytic functions f of the form

f@2)=z+X7,a7 (1.1)
which are analytic in the open unit disc U = {z; |z| < 1}.
Definition1.1: [1] Letn € N and A = 0, the AI0Oboudi operator D}*: A — A4, is defined as
Df(z) = f(2), Dif(z) =1 -Nf(2)+zf'(z) = D, f(z) and
DIf(z) = D, (D} f(2))-
Further, if f(z) = z + X5, a,z*, then we have,
DI'f(z) =z+ X[l + (k—Dlagzk, n €N, (1.2)
Remarks 1.2: It is easy to observe that for 1 = 1, we get the Sdlcdgean operator [8].
Definition 1.3: A function f € A is said to be in the class N,,, ,, (@, 8, 1) if
DI'f(2) DI'f(z) |
]R{{D?f(z)} > f DI 1| + «a, (1.3)
forsome0 < a<1, f =20, me N, n eNy,A >20andz € U.
The following are the special cases of the class N,, , (a, 8, 1):
i.  Npa(a,,1) = Np,,(a,B),the class introducd by Eker and Owa [3].
ii. Ny o(a, B,1) = SD(a, B, D)and N, (a, B, 1) =
KD(a, B), the classes studied by Shams, Kulkarni and Jahangiri [9].
iii. Npn(a,0,1) = K, (@), be the class studied by Eker and Owa [4].
iv. N;(a,0,1) = S*(a)and N,,(a,0,1) = K(a),the classes introduced by Robertson [7].
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2. COEFFICIENT INEQUALITIES FOR THE CLASS N, ,, (e, B, 1)

Theorem 2.1: If f € A satisfies,

Y, pA,mnk,a B)lagl <2(1 —a) (2.1)

where
YvAmnkapB)=|1+a)[1+ (k—-1DA"—[1+ (k—-1A]™|
+({(1—a)[1+ (] —-DA"+[1+ (k—1DA™))
+2B|[1+ (k— DA™ —[1+ (k — DA™

forsome0 < a<1, $ 20, m € N, n €Ny,1 =20, thenf € Ny ,(a,f,2).

Proof: Let the expression (2.1) betruefor0 < a <1, § =20, m € N, n € Nyand 4 = 0. Hence to show that,

|(1 - )DF£(2) + DI'f (2) — Be®IDJ'f (2) — DFF(2)|
— |+ @)Dpf @) - Dpf(2) + pet®IDF £ (2) - DFf ()| > 0.

So, we have
|(1 = )DF£(2) + DI f (2) — Be®IDJ'f (2) — DFF(2)|
- |a+ @02 - Drfe) + pelny £ - D@

2—-a)z+ Z{u [+ (= DA™+ [1+ (k — DAI™ayz*

Z (1 + (k = DA™ = [1+ (k — DA a, 28
k=2

az + Z{u + 1+ (k= DA™ = [1+ (k — DA™y z*

Be® Z{[l + (k= DA™ = [1 + (k — DA}, 2"
k=2

> 2- ol - Y (A= @[T+ 0= DA +[1+ 0~ DA Hayl 124]
k=2
—Ble®] Y 1+ (ke — DA™ = [1+ (k= DAl 12¥]
I(CX):Z
—alzl = ) {1 + @1+ (k= DA = [1+ G = DA} lay | 124
k=2

=Ble®] D I+ (k= DA™ = [1+ Gk = DAl |7*]
>2(1—a) =
{Zm + L+ (k= DA = [1+ (k — DA™
+ (A-a)[1+ Kk —DA"+[1+ (k—DA™)

+2B1[1+ (k— DA™ —[1+4+ (k — DA™ lagl = 0.

3. RELATION FOR N, (e, 8, )

By Theorem 2.1, we introduce the class N, , (e, B, 2) as the subclass of N,,,(a, B,2) consisting of f satisfying

Y vAmnka Blal < 2(1-a) (3.1)

Where
YA mnkaB)=|1+a)[1+ (k—-1DA"—[1+ (k—-1A™|
+({(1—a)[1+ (] —-DA"+ 1+ (k—1DA™))
+2B|[1+ (k—DA™ —[1+ (k— 1A
forsome0<a<1, =20 meN, neN, and 1 = 0.
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Theorem 3.1: If f € A, then Ny, (@, B2,2) € Nyp(@, B4, 2) for some B and B, such that 0 < B, < B,.
Proof: For 0 < [)’1 < B,, we have

Zz,b(/l m,nk,a,B)la;] < Zz,b(/l m,nk,a, B)lal.

Therefore, if f € Npn(a, By, MDthenif f € Ny, (a,Bq, ).
4. EXTREME POINTS

The determination of the extreme points of a family F of univalent functions enables us to solve many external
problems for F.

Theorem 4.1: Let f; (z) = z and

h@ =2+ g mn k,a, )
Then, f € Nm,n(a' B, A) if and only if it can be expressed in the form

fl2) = Zlkfk (z), where 4, =0 andZAk =1
k=1 k=1

2% (k=12 .;lel=1).

Proof: Let f(z) = X7 1Akfk (2), 4,20 ,k=12,.. with X7, 4, = 1. Then, we have

2(1 —
f(z) = ZAkfk (z2) =4z + Z A (Z + ¢(/1,(m, n,O;\",),‘Zﬁ) Zk)

_ © 2(1- a)sk k
=z+ Zk:llk YAmnk,apB)

That is,

Zz,b(/l m,nk,a,B) | L Z 21 —a)A,
YA, mnk, a, [)’)
2(1—04)(1— A4) < 2(1-a),

which is the condition (3.1) for f(z) = X5, A, fi (2). Thus f € Nm,n (a, B, ). Conversly,let f € Ny, ,(a, B, 2).

Since
21 —a)
lal < Samakap K=z
We put
_ Yy@Amnkap) B
A = 2(1 — a)e, Qg , (lex 1 =1)
and A =1—- X7, Then f(z) =Xy, Afi (2).
Corollary 4.2: The extreme points of Nm,n (a, B, A) are the functions f, (z) = z and
() =7+ =D (k=12.5le] = D
fiz) =z 1p(/1,m,n,k,a,ﬁ)z , =1,2,..;l&l =1).

5. INTEGRAL MEANS INEQUALITIES

For any two functions f and g analytic in U, f is said to be subordinate to g in U, denoted by f < g if there exists an
analytic function w defined in U satisfying w(0) = 0 and |w(z)| < 1 such that f(z) = g(w(2)), z € U.

In particular, if the function g is univalent in U, the above subordination is equivalent to f(0) = g(0) and f(U) c
g(U). In 1925, Littlewood [6] proved the following subordination theorem.

Theorem 5.1: Iff and g are any two functions, analytic in U, with f < g, then for u > 0 and z = re’?, (0<r<1),

f F)de < f 9G¥ db.
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Theorem 5.2: Let f € N,,,(a, B, 2) and f; be defined by

2(1 —a)e
( ek i (k=12 ..;le = 1.

ful2) =2+ v mnkapB)

If there exists an analytic function w(z) given by

1

_ @Amnka,p) _
lw(z)|1 = MZ?zzaka )

2(1-a)gg

Thenforz=re and 0 <r < 1.

f|f(rei9)|" do < f|fk(rei9)|" do, (u>0).

Proof: We have to prove that

2m

J

0

1+ Z a,zk 1
k=2

C (. 20-a g
_a Sk
do < 1 k=11 de.
= ” TG mnkap)’
0

By Theorem 5.1, it suffices to show that

- 2(1 - @),
1 Z k=1 < 1 k=1,
T LW TG mnkap)

k=2
By taking
- 2(1 - @),
k-1 _ k-1
1+ ;akz = 1+1,b(/1,m,n,k,a,ﬁ) [w(2)]
we get

YA mnkaf)

k-1 _ k-1
[Q)(Z)] 2(1 _ Of)sk apz .
k=2
Clearly, w(0) = 0.By (3.1), we have
k=1 _ |[PAmnkaB) sioo k-1
@]l = LRty a1+ |
Y@, m,nk, a,B) z
< lag|1z" 1]
2(1 - a’)Sk =
<|z| < 1.
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